1
|
Hamade S, Traver M, Bartel B. The Atypical Pectin Methylesterase Family Member PME31 Promotes Seedling Lipid Droplet Utilization. PLANT DIRECT 2025; 9:e70054. [PMID: 40212536 PMCID: PMC11982519 DOI: 10.1002/pld3.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 04/15/2025]
Abstract
In plants, the primary form of energy stored in seed lipid droplets, triacylglycerol (TAG), is catabolized during germination to support pre-photosynthetic growth. Although this process is essential for seedling development, it is incompletely understood. In a screen for Arabidopsis thaliana mutants displaying delayed degradation of the lipid droplet coat protein oleosin, five independent mutations in PECTIN METHYLESTERASE31 (PME31) were recovered. In addition to delayed oleosin degradation, pme31 mutant seedlings exhibited sustained lipid droplets and elevated levels of several TAG and diacylglycerol species. Although structural prediction classified PME31 as a pectinesterase, this structural family also includes a putative E. coli lipase, YbhC. Moreover, PME31 lacks an N-terminal signal peptide that would target it to the cell wall, where pectin resides. We found that a fluorescent PME31 reporter was cytosolic and partially associated with peroxisomes, the site of fatty acid catabolism, during lipid mobilization. Our findings suggest that, in contrast to canonical PMEs, which modify cell wall pectin, PME31 functions at peroxisomes to directly or indirectly promote lipid mobilization.
Collapse
Affiliation(s)
- Sarah Hamade
- Biosciences DepartmentRice UniversityHoustonTexasUSA
| | | | - Bonnie Bartel
- Biosciences DepartmentRice UniversityHoustonTexasUSA
| |
Collapse
|
2
|
Muhammad D, Clark NM, Tharp NE, Chatt EC, Vierstra RD, Bartel B. Global impacts of peroxisome and pexophagy dysfunction revealed through multi-omics analyses of lon2 and atg2 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2563-2583. [PMID: 39526456 DOI: 10.1111/tpj.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Natalie M Clark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Nathan E Tharp
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
3
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
4
|
Baales J, Zeisler-Diehl VV, Kreszies T, Klaus A, Hochholdinger F, Schreiber L. Transcriptomic changes in barley leaves induced by alcohol ethoxylates indicate potential pathways of surfactant detoxification. Sci Rep 2024; 14:4535. [PMID: 38402319 PMCID: PMC10894278 DOI: 10.1038/s41598-024-54806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
Hardly anything is known regarding the detoxification of surfactants in crop plants, although they are frequently treated with agrochemical formulations. Therefore, we studied transcriptomic changes in barley leaves induced in response to spraying leaf surfaces with two alcohol ethoxylates (AEs). As model surfactants, we selected the monodisperse tetraethylene glycol monododecyl (C12E4) ether and the polydisperse BrijL4. Barley plants were harvested 8 h after spraying with a 0.1% surfactant solution and changes in gene expression were analysed by RNA-sequencing (RNA-Seq). Gene expression was significantly altered in response to both surfactants. With BrijL4 more genes (9724) were differentially expressed compared to C12E4 (6197). Gene families showing pronounced up-regulation were cytochrome P450 enzymes, monooxygenases, ABC-transporters, acetyl- and methyl- transferases, glutathione-S-transferases and glycosyltransferases. These specific changes in gene expression and the postulated function of the corresponding enzymes allowed hypothesizing three potential metabolic pathways of AE detoxification in barley leaves. (i) Up-regulation of P450 cytochrome oxidoreductases suggested a degradation of the lipophilic alkyl residue (dodecyl chain) of the AEs by ω- and β- oxidation. (ii) Alternatively, the polar PEG-chain of AEs could be degraded. (iii) Instead of surfactant degradation, a further pathway of detoxification could be the sequestration of AEs into the vacuole or the apoplast (cell wall). Thus, our results show that AEs lead to pronounced changes in the expression of genes coding for proteins potentially being involved in the detoxification of surfactants.
Collapse
Affiliation(s)
- Johanna Baales
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Tino Kreszies
- Department of Crop Science, Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Alina Klaus
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
5
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
6
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
7
|
Zhang X, Guo H, Xiao C, Yan Z, Ning N, Chen G, Zhang J, Hu H. PECTIN METHYLESTERASE INHIBITOR18 functions in stomatal dynamics and stomatal dimension. PLANT PHYSIOLOGY 2023; 192:1603-1620. [PMID: 36879425 PMCID: PMC10231589 DOI: 10.1093/plphys/kiad145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/01/2023]
Abstract
Pectin methylesterification in guard cell (GC) walls plays an important role in stomatal development and stomatal response to external stimuli, and pectin methylesterase inhibitors (PMEIs) modulate pectin methylesterification by inhibition of pectin methylesterase (PME). However, the function of PMEIs has not been reported in stomata. Here, we report the role of Arabidopsis (Arabidopsis thaliana) PECTIN METHYLESTERASE INHIBITOR18 in stomatal dynamic responses to environmental changes. PMEI18 mutation increased pectin demethylesterification and reduced pectin degradation, resulting in increased stomatal pore size, impaired stomatal dynamics, and hypersensitivity to drought stresses. In contrast, overexpression of PMEI18 reduced pectin demethylesterification and increased pectin degradation, causing more rapid stomatal dynamics. PMEI18 interacted with PME31 in plants, and in vitro enzymatic assays demonstrated that PMEI18 directly inhibits the PME activity of PME31 on pectins. Genetic interaction analyses suggested that PMEI18 modulates stomatal dynamics mainly through inhibition of PME31 on pectin methylesterification in cell walls. Our results provide insight into the molecular mechanism of the PMEI18-PME31 module in stomatal dynamics and highlight the role of PMEI18 and PME31 in stomatal dynamics through modulation of pectin methylesterification and distribution in GC walls.
Collapse
Affiliation(s)
- Xianwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Nina Ning
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jumei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Chatzigianni M, Savvas D, Papadopoulou EA, Aliferis KA, Ntatsi G. Combined Effect of Salt Stress and Nitrogen Level on the Primary Metabolism of Two Contrasting Hydroponically Grown Cichorium spinosum L. Ecotypes. Biomolecules 2023; 13:biom13040607. [PMID: 37189356 DOI: 10.3390/biom13040607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Stamnagathi (Cichorium spinosum L.) is an indigenous plant species well-known for its health-promoting properties. Salinity is a long-term issue with devastating consequences on land and farmers. Nitrogen (N) constitutes a crucial element for plant growth and development (chlorophyll, primary metabolites, etc.). Thus, it is of paramount importance to investigate the impact of salinity and N supply on plants’ metabolism. Within this context, a study was conducted aiming to assess the impact of salinity and N stress on the primary metabolism of two contrasting ecotypes of stamnagathi (montane and seaside). Both ecotypes were exposed to three different salinity levels (0.3 mM—non-saline treatment, 20 mM—medium, and 40 mM—high salinity level) combined with two different total-N supply levels: a low-N at 4 mM and a high-N at 16 mM, respectively. The differences between the two ecotypes revealed the variable responses of the plant under the applied treatments. Fluctuations were observed at the level of TCA cycle intermediates (fumarate, malate, and succinate) of the montane ecotype, while the seaside ecotype was not affected. In addition, the results showed that proline (Pro) levels increased in both ecotypes grown under a low N-supply and high salt stress, while other osmoprotectant metabolites such as γ-aminobutyric acid (GABA) exhibited variable responses under the different N supply levels. Fatty acids such as α-linolenate and linoleate also displayed variable fluctuations following plant treatments. The carbohydrate content of the plants, as indicated by the levels of glucose, fructose, α,α-trehalose, and myo-inositol, was significantly affected by the applied treatments. These findings suggest that the different adaptation mechanisms among the two contrasting ecotypes could be strongly correlated with the observed changes in their primary metabolism. This study also suggests that the seaside ecotype may have developed unique adaptation mechanisms to cope with high N supply and salinity stress, making it a promising candidate for future breeding programs aimed at developing stress tolerant varieties of C. spinosum L.
Collapse
|
9
|
Zaghdoud C, Ollio I, Solano CJ, Ochoa J, Suardiaz J, Fernández JA, Martínez Ballesta MDC. Red LED Light Improves Pepper ( Capsicum annuum L.) Seed Radicle Emergence and Growth through the Modulation of Aquaporins, Hormone Homeostasis, and Metabolite Remobilization. Int J Mol Sci 2023; 24:ijms24054779. [PMID: 36902208 PMCID: PMC10002511 DOI: 10.3390/ijms24054779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Red LED light (R LED) is an efficient tool to improve seed germination and plant growth under controlled environments since it is more readily absorbed by photoreceptors' phytochromes compared to other wavelengths of the spectrum. In this work, the effect of R LED on the radicle emergence and growth (Phase III of germination) of pepper seeds was evaluated. Thus, the impact of R LED on water transport through different intrinsic membrane proteins, via aquaporin (AQP) isoforms, was determined. In addition, the remobilization of distinct metabolites such as amino acids, sugars, organic acids, and hormones was analysed. R LED induced a higher germination speed index, regulated by an increased water uptake. PIP2;3 and PIP2;5 aquaporin isoforms were highly expressed and could contribute to a faster and more effective hydration of embryo tissues, leading to a reduction of the germination time. By contrast, TIP1;7, TIP1;8, TIP3;1 and TIP3;2 gene expressions were reduced in R LED-treated seeds, pointing to a lower need for protein remobilization. NIP4;5 and XIP1;1 were also involved in radicle growth but their role needs to be elucidated. In addition, R LED induced changes in amino acids and organic acids as well as sugars. Therefore, an advanced metabolome oriented to a higher energetic metabolism was observed, conditioning better seed germination performance together with a rapid water flux.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Bureau de Transfert de Technologie (BuTT), Université de Gafsa, Gafsa 2112, Tunisia
| | - Irene Ollio
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
| | - Cristóbal J. Solano
- División of Innovation in Telematic Systems and Electronic Technology (DINTEL), Technical University of Cartagena, Campus Muralla del Mar, s/n, E-30202 Cartagena, Spain
| | - Jesús Ochoa
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
| | - Juan Suardiaz
- División of Innovation in Telematic Systems and Electronic Technology (DINTEL), Technical University of Cartagena, Campus Muralla del Mar, s/n, E-30202 Cartagena, Spain
| | - Juan A. Fernández
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
| | - María del Carmen Martínez Ballesta
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
- Correspondence: ; Tel.: +34-968-325457
| |
Collapse
|
10
|
Goto-Yamada S, Oikawa K, Yamato KT, Kanai M, Hikino K, Nishimura M, Mano S. Image-Based Analysis Revealing the Molecular Mechanism of Peroxisome Dynamics in Plants. Front Cell Dev Biol 2022; 10:883491. [PMID: 35592252 PMCID: PMC9110829 DOI: 10.3389/fcell.2022.883491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are present in eukaryotic cells and have essential roles in various biological processes. Plant peroxisomes proliferate by de novo biosynthesis or division of pre-existing peroxisomes, degrade, or replace metabolic enzymes, in response to developmental stages, environmental changes, or external stimuli. Defects of peroxisome functions and biogenesis alter a variety of biological processes and cause aberrant plant growth. Traditionally, peroxisomal function-based screening has been employed to isolate Arabidopsis thaliana mutants that are defective in peroxisomal metabolism, such as lipid degradation and photorespiration. These analyses have revealed that the number, subcellular localization, and activity of peroxisomes are closely related to their efficient function, and the molecular mechanisms underlying peroxisome dynamics including organelle biogenesis, protein transport, and organelle interactions must be understood. Various approaches have been adopted to identify factors involved in peroxisome dynamics. With the development of imaging techniques and fluorescent proteins, peroxisome research has been accelerated. Image-based analyses provide intriguing results concerning the movement, morphology, and number of peroxisomes that were hard to obtain by other approaches. This review addresses image-based analysis of peroxisome dynamics in plants, especially A. thaliana and Marchantia polymorpha.
Collapse
Affiliation(s)
- Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsuyuki T. Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mikio Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- *Correspondence: Shoji Mano
| |
Collapse
|
11
|
Farre JC, Carolino K, Devanneaux L, Subramani S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife 2022; 11:e75143. [PMID: 35467529 PMCID: PMC9094750 DOI: 10.7554/elife.75143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH-shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Δgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2, and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol, and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
Collapse
Affiliation(s)
- Jean-Claude Farre
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Krypton Carolino
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Lou Devanneaux
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
12
|
Romero-Puertas MC, Peláez-Vico MÁ, Pazmiño DM, Rodríguez-Serrano M, Terrón-Camero L, Bautista R, Gómez-Cadenas A, Claros MG, León J, Sandalio LM. Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. PLANT, CELL & ENVIRONMENT 2022; 45:572-590. [PMID: 34800292 DOI: 10.1111/pce.14229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) functions as an agronomic weed control herbicide. High concentrations of 2,4-D induce plant growth defects, particularly leaf epinasty and stem curvature. Although the 2,4-D triggered reactive oxygen species (ROS) production, little is known about its signalling. In this study, by using a null mutant in peroxisomal acyl CoA oxidase 1 (acx1-2), we identified acyl-coenzyme A oxidase 1 (ACX1) as one of the main sources of ROS production and, in part, also causing the epinastic phenotype following 2,4-D application. Transcriptomic analyses of wild type (WT) plants after treatment with 2,4-D revealed a ROS-related peroxisomal footprint in early plant responses, while other organelles, such as mitochondria and chloroplasts, are involved in later responses. Interestingly, a group of 2,4-D-responsive ACX1-dependent transcripts previously associated with epinasty is related to auxin biosynthesis, metabolism, and signalling. We found that the auxin receptor auxin signalling F-box 3 (AFB3), a component of Skp, Cullin, F-box containing complex (SCF) (ASK-cullin-F-box) E3 ubiquitin ligase complexes, which mediates auxin/indole acetic acid (AUX/IAA) degradation by the 26S proteasome, acts downstream of ACX1 and is involved in the epinastic phenotype induced by 2,4-D. We also found that protein degradation associated with ubiquitin E3-RING and E3-SCF-FBOX in ACX1-dependent signalling in plant responses to 2,4-D is significantly regulated over longer treatment periods.
Collapse
Affiliation(s)
- María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Diana M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | - María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Rocío Bautista
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
| | - Aurelio Gómez-Cadenas
- Department Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Ciencias, Univ. de Málaga, Málaga, Spain
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Univ. Valencia), CPI Edificio 8E, Valencia, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| |
Collapse
|
13
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
14
|
Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas MC. Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. PLANT PHYSIOLOGY 2021; 186:22-35. [PMID: 33587125 PMCID: PMC8154099 DOI: 10.1093/plphys/kiab060] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Peroxisomes are redox nodes playing a diverse range of roles in cell functionality and in the perception of and responses to changes in their environment.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
- Author for communication:
| | - Maria Angeles Peláez-Vico
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C Romero-Puertas
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
15
|
Panda A, Rangani J, Parida AK. Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:284-296. [PMID: 33239222 DOI: 10.1016/j.plaphy.2020.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/11/2020] [Indexed: 05/22/2023]
Abstract
Haloxylon salicornicum is a xero-halophyte growing in saline and arid regions of the world. Metabolite profiling was carried out in shoot of both control and salinity treated (400 mM NaCl) samples by GC-QTOF-MS and HPLC-DAD analysis to decipher the salinity tolerance mechanism in this xero-halophyte. The present study investigates the alteration in metabolite profile of H. salicornicum that support the salinity tolerance of the plant. The metabolomic analysis of H. salicornicum shoot identified 56 metabolites, of which 47 metabolites were significantly changed in response to salinity. These metabolites were mainly included in the category of amino acids, organic acids, amines, sugar alcohols, sugars, fatty acids, alkaloids, and phytohormones. In response to salinity, most of the amino acids were down-regulated except alanine, phenylalanine, lysine, and tyramine, which were up-regulated in H. salicornicum. In contrast to amino acids, most sugars and organic acids were up-regulated in response to salinity. Correlation and pathway enrichment analysis identified important biological pathways playing significant roles in conferring salt tolerance of H. salicornicum. These biological pathways include amino sugar and nucleotide sugar metabolism, citrate cycle (TCA cycle), starch and sucrose metabolism, phenylalanine metabolism, cysteine, methionine, glycine, serine, and threonine metabolism, etc. The data presented here suggest that the modulations of various metabolic pathways facilitate H. salicornicum to survive and grow optimally even under high salinity condition. This study offers comprehensive information on metabolic adaptations and overall salt tolerance mechanisms in H. salicornicum. The information gained through this study will provide guidance to plant breeders and molecular biologists to develop salinity tolerant crop varieties.
Collapse
Affiliation(s)
- Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jaykumar Rangani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
16
|
Wright ZJ, Bartel B. Peroxisomes form intralumenal vesicles with roles in fatty acid catabolism and protein compartmentalization in Arabidopsis. Nat Commun 2020; 11:6221. [PMID: 33277488 PMCID: PMC7718247 DOI: 10.1038/s41467-020-20099-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxisomes are vital organelles that compartmentalize critical metabolic reactions, such as the breakdown of fats, in eukaryotic cells. Although peroxisomes typically are considered to consist of a single membrane enclosing a protein lumen, more complex peroxisomal membrane structure has occasionally been observed in yeast, mammals, and plants. However, technical challenges have limited the recognition and understanding of this complexity. Here we exploit the unusually large size of Arabidopsis peroxisomes to demonstrate that peroxisomes have extensive internal membranes. These internal vesicles accumulate over time, use ESCRT (endosomal sorting complexes required for transport) machinery for formation, and appear to derive from the outer peroxisomal membrane. Moreover, these vesicles can harbor distinct proteins and do not form normally when fatty acid β-oxidation, a core function of peroxisomes, is impaired. Our findings suggest a mechanism for lipid mobilization that circumvents challenges in processing insoluble metabolites. This revision of the classical view of peroxisomes as single-membrane organelles has implications for all aspects of peroxisome biogenesis and function and may help address fundamental questions in peroxisome evolution.
Collapse
Affiliation(s)
| | - Bonnie Bartel
- Biosciences Department, Rice University, Houston, TX, USA.
| |
Collapse
|
17
|
Peroxisomal Cofactor Transport. Biomolecules 2020; 10:biom10081174. [PMID: 32806597 PMCID: PMC7463629 DOI: 10.3390/biom10081174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5′-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here.
Collapse
|
18
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
19
|
Zienkiewicz K, Zienkiewicz A. Degradation of Lipid Droplets in Plants and Algae-Right Time, Many Paths, One Goal. FRONTIERS IN PLANT SCIENCE 2020; 11:579019. [PMID: 33014002 PMCID: PMC7509404 DOI: 10.3389/fpls.2020.579019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.
Collapse
|
20
|
Li Y, Liu Y, Zolman BK. Metabolic Alterations in the Enoyl-CoA Hydratase 2 Mutant Disrupt Peroxisomal Pathways in Seedlings. PLANT PHYSIOLOGY 2019; 180:1860-1876. [PMID: 31138624 PMCID: PMC6670076 DOI: 10.1104/pp.19.00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/25/2019] [Indexed: 05/03/2023]
Abstract
Mobilization of seed storage compounds, such as starch and oil, is required to provide energy and metabolic building blocks during seedling development. Over 50% of fatty acids in Arabidopsis (Arabidopsis thaliana) seed oil have a cis-double bond on an even-numbered carbon. Degradation of these substrates requires peroxisomal fatty acid β-oxidation plus additional enzyme activities. Such auxiliary enzymes, including the enoyl-CoA hydratase ECH2, convert (R)-3-hydroxyacyl-CoA intermediates to the core β-oxidation substrate (S)-3-hydroxyacyl-CoA. ECH2 was suggested to function in the peroxisomal conversion of indole-3-butyric acid (IBA) to indole-3-acetic acid, because ech2 seedlings have altered IBA responses. The underlying mechanism connecting ECH2 activity and IBA metabolism is unclear. Here, we show that ech2 seedlings have reduced root length, smaller cotyledons, and arrested pavement cell expansion. At the cellular level, reduced oil body mobilization and enlarged peroxisomes suggest compromised β-oxidation. ech2 seedlings accumulate 3-hydroxyoctenoate (C8:1-OH) and 3-hydroxyoctanoate (C8:0-OH), putative hydrolysis products of catabolic intermediates for α-linolenic acid and linoleic acid, respectively. Wild-type seedlings treated with 3-hydroxyoctanoate have ech2-like growth defects and altered IBA responses. ech2 phenotypes are not rescued by Suc or auxin application. However, ech2 phenotypes are suppressed in combination with the core β-oxidation mutants mfp2 or ped1, and ech2 mfp2 seedlings accumulate less C8:1-OH and C8:0-OH than ech2 seedlings. These results indicate that ech2 phenotypes require efficient core β-oxidation. Our findings suggest that low ECH2 activity causes metabolic alterations through a toxic effect of the accumulating intermediates. These effects manifest in altered lipid metabolism and IBA responses leading to disrupted seedling development.
Collapse
Affiliation(s)
- Ying Li
- University of Missouri-St. Louis, St. Louis, Missouri 63121
| | - Yu Liu
- University of Missouri-St. Louis, St. Louis, Missouri 63121
| | | |
Collapse
|
21
|
Burkhart SE, Llinas RJ, Bartel B. PEX16 contributions to peroxisome import and metabolism revealed by viable Arabidopsis pex16 mutants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:853-870. [PMID: 30761735 PMCID: PMC6613983 DOI: 10.1111/jipb.12789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Peroxisomes rely on peroxins (PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum (ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX16 action. The only reported pex16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable, complicating analysis of PEX16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels. Both mutants displayed impaired peroxisome function - slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover, one pex16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX16 gene, these viable pex16 alleles allow assessment of the importance of Arabidopsis PEX16 and its functional domains.
Collapse
|
22
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Patel KJ, Kao Y, Llinas RJ, Bartel B. A PEX5 missense allele preferentially disrupts PTS1 cargo import into Arabidopsis peroxisomes. PLANT DIRECT 2019; 3:e00128. [PMID: 31236542 PMCID: PMC6508846 DOI: 10.1002/pld3.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/09/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
The sorting of eukaryotic proteins to various organellar destinations requires receptors that recognize cargo protein targeting signals and facilitate transport into the organelle. One such receptor is the peroxin PEX5, which recruits cytosolic cargo carrying a peroxisome-targeting signal (PTS) type 1 (PTS1) for delivery into the peroxisomal lumen (matrix). In plants and mammals, PEX5 is also indirectly required for peroxisomal import of proteins carrying a PTS2 signal because PEX5 binds the PTS2 receptor, bringing the associated PTS2 cargo to the peroxisome along with PTS1 cargo. Despite PEX5 being the PTS1 cargo receptor, previously identified Arabidopsis pex5 mutants display either impairment of both PTS1 and PTS2 import or defects only in PTS2 import. Here we report the first Arabidopsis pex5 mutant with an exclusive PTS1 import defect. In addition to markedly diminished GFP-PTS1 import and decreased pex5-2 protein accumulation, this pex5-2 mutant shows typical peroxisome-related defects, including inefficient β-oxidation and reduced growth. Growth at reduced or elevated temperatures ameliorated or exacerbated pex5-2 peroxisome-related defects, respectively, without markedly changing pex5-2 protein levels. In contrast to the diminished PTS1 import, PTS2 processing was only slightly impaired and PTS2-GFP import appeared normal in pex5-2. This finding suggests that even minor peroxisomal localization of the PTS1 protein DEG15, the PTS2-processing protease, is sufficient to maintain robust PTS2 processing.
Collapse
Affiliation(s)
- Khushali J. Patel
- Department of BioSciencesRice UniversityHoustonTexas
- Present address:
Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexas
| | - Yun‐Ting Kao
- Department of BioSciencesRice UniversityHoustonTexas
- Present address:
Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMaryland
| | | | - Bonnie Bartel
- Department of BioSciencesRice UniversityHoustonTexas
| |
Collapse
|
24
|
Young PG, Passalacqua MJ, Chappell K, Llinas RJ, Bartel B. A facile forward-genetic screen for Arabidopsis autophagy mutants reveals twenty-one loss-of-function mutations disrupting six ATG genes. Autophagy 2019; 15:941-959. [PMID: 30734619 PMCID: PMC6526838 DOI: 10.1080/15548627.2019.1569915] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy is a process through which eukaryotic cells degrade large substrates including organelles, protein aggregates, and invading pathogens. Over 40 autophagy-related (ATG) genes have been identified through forward-genetic screens in yeast. Although homology-based analyses have identified conserved ATG genes in plants, only a few atg mutants have emerged from forward-genetic screens in Arabidopsis thaliana. We developed a screen that consistently recovers Arabidopsis atg mutations by exploiting mutants with defective LON2/At5g47040, a protease implicated in peroxisomal quality control. Arabidopsis lon2 mutants exhibit reduced responsiveness to the peroxisomally-metabolized auxin precursor indole-3-butyric acid (IBA), heightened degradation of several peroxisomal matrix proteins, and impaired processing of proteins harboring N-terminal peroxisomal targeting signals; these defects are ameliorated by preventing autophagy. We optimized a lon2 suppressor screen to expedite recovery of additional atg mutants. After screening mutagenized lon2-2 seedlings for restored IBA responsiveness, we evaluated stabilization and processing of peroxisomal proteins, levels of several ATG proteins, and levels of the selective autophagy receptor NBR1/At4g24690, which accumulates when autophagy is impaired. We recovered 21 alleles disrupting 6 ATG genes: ATG2/At3g19190, ATG3/At5g61500, ATG5/At5g17290, ATG7/At5g45900, ATG16/At5g50230, and ATG18a/At3g62770. Twenty alleles were novel, and 3 of the mutated genes lack T-DNA insertional alleles in publicly available repositories. We also demonstrate that an insertional atg11/At4g30790 allele incompletely suppresses lon2 defects. Finally, we show that NBR1 is not necessary for autophagy of lon2 peroxisomes and that NBR1 overexpression is not sufficient to trigger autophagy of seedling peroxisomes, indicating that Arabidopsis can use an NBR1-independent mechanism to target peroxisomes for autophagic degradation. Abbreviations: ATG: autophagy-related; ATI: ATG8-interacting protein; Col-0: Columbia-0; DSK2: dominant suppressor of KAR2; EMS: ethyl methanesulfonate; GFP: green fluorescent protein; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; ICL: isocitrate lyase; MLS: malate synthase; NBR1: Next to BRCA1 gene 1; PEX: peroxin; PMDH: peroxisomal malate dehydrogenase; PTS: peroxisomal targeting signal; thiolase: 3-ketoacyl-CoA thiolase; UBA: ubiquitin-associated; WT: wild type
Collapse
Affiliation(s)
- Pierce G Young
- a Department of Biosciences , Rice University , Houston , TX , USA
| | | | - Kevin Chappell
- a Department of Biosciences , Rice University , Houston , TX , USA.,b Department of Biology , University of Mary Hardin-Baylor , Belton , TX , USA
| | - Roxanna J Llinas
- a Department of Biosciences , Rice University , Houston , TX , USA
| | - Bonnie Bartel
- a Department of Biosciences , Rice University , Houston , TX , USA
| |
Collapse
|
25
|
A pex1 missense mutation improves peroxisome function in a subset of Arabidopsis pex6 mutants without restoring PEX5 recycling. Proc Natl Acad Sci U S A 2018; 115:E3163-E3172. [PMID: 29555730 DOI: 10.1073/pnas.1721279115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Peroxisomes are eukaryotic organelles critical for plant and human development because they house essential metabolic functions, such as fatty acid β-oxidation. The interacting ATPases PEX1 and PEX6 contribute to peroxisome function by recycling PEX5, a cytosolic receptor needed to import proteins targeted to the peroxisomal matrix. Arabidopsis pex6 mutants exhibit low PEX5 levels and defects in peroxisomal matrix protein import, oil body utilization, peroxisomal metabolism, and seedling growth. These defects are hypothesized to stem from impaired PEX5 retrotranslocation leading to PEX5 polyubiquitination and consequent degradation of PEX5 via the proteasome or of the entire organelle via autophagy. We recovered a pex1 missense mutation in a screen for second-site suppressors that restore growth to the pex6-1 mutant. Surprisingly, this pex1-1 mutation ameliorated the metabolic and physiological defects of pex6-1 without restoring PEX5 levels. Similarly, preventing autophagy by introducing an atg7-null allele partially rescued pex6-1 physiological defects without restoring PEX5 levels. atg7 synergistically improved matrix protein import in pex1-1 pex6-1, implying that pex1-1 improves peroxisome function in pex6-1 without impeding autophagy of peroxisomes (i.e., pexophagy). pex1-1 differentially improved peroxisome function in various pex6 alleles but worsened the physiological and molecular defects of a pex26 mutant, which is defective in the tether anchoring the PEX1-PEX6 hexamer to the peroxisome. Our results support the hypothesis that, beyond PEX5 recycling, PEX1 and PEX6 have additional functions in peroxisome homeostasis and perhaps in oil body utilization.
Collapse
|
26
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
27
|
Gonzalez KL, Fleming WA, Kao YT, Wright ZJ, Venkova SV, Ventura MJ, Bartel B. Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:110-128. [PMID: 28742939 PMCID: PMC5605450 DOI: 10.1111/tpj.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 05/29/2023]
Abstract
Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bonnie Bartel
- Corresponding author: Bonnie Bartel, Department of Biosciences, MS-140, Rice University, 6100 Main St., Houston TX, USA. Phone: 713-348-5602, Fax: 713-348-5154;
| |
Collapse
|
28
|
Rinaldi MA, Fleming WA, Gonzalez KL, Park J, Ventura MJ, Patel AB, Bartel B. The PEX1 ATPase Stabilizes PEX6 and Plays Essential Roles in Peroxisome Biology. PLANT PHYSIOLOGY 2017; 174:2231-2247. [PMID: 28600347 PMCID: PMC5543962 DOI: 10.1104/pp.17.00548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/07/2017] [Indexed: 05/29/2023]
Abstract
A variety of metabolic pathways are sequestered in peroxisomes, conserved organelles that are essential for human and plant survival. Peroxin (PEX) proteins generate and maintain peroxisomes. The PEX1 ATPase facilitates recycling of the peroxisome matrix protein receptor PEX5 and is the most commonly affected peroxin in human peroxisome biogenesis disorders. Here, we describe the isolation and characterization of, to our knowledge, the first Arabidopsis (Arabidopsis thaliana) pex1 missense alleles: pex1-2 and pex1-3pex1-2 displayed peroxisome-related defects accompanied by reduced PEX1 and PEX6 levels. These pex1-2 defects were exacerbated by growth at high temperature and ameliorated by growth at low temperature or by PEX6 overexpression, suggesting that PEX1 enhances PEX6 stability and vice versa. pex1-3 conferred embryo lethality when homozygous, confirming that PEX1, like several other Arabidopsis peroxins, is essential for embryogenesis. pex1-3 displayed symptoms of peroxisome dysfunction when heterozygous; this semidominance is consistent with PEX1 forming a heterooligomer with PEX6 that is poisoned by pex1-3 subunits. Blocking autophagy partially rescued PEX1/pex1-3 defects, including the restoration of normal peroxisome size, suggesting that increasing peroxisome abundance can compensate for the deficiencies caused by pex1-3 and that the enlarged peroxisomes visible in PEX1/pex1-3 may represent autophagy intermediates. Overexpressing PEX1 in wild-type plants impaired growth, suggesting that excessive PEX1 can be detrimental. Our genetic, molecular, and physiological data support the heterohexamer model of PEX1-PEX6 function in plants.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Department of BioSciences, Rice University, Houston, Texas 77005
| | | | - Kim L Gonzalez
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Jaeseok Park
- Department of BioSciences, Rice University, Houston, Texas 77005
| | | | - Ashish B Patel
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, Texas 77005
| |
Collapse
|