1
|
Boone PM, Buenaventura T, King JWD, Merkenschlager M. X-linked competition - implications for human development and disease. Nat Rev Genet 2025:10.1038/s41576-025-00840-3. [PMID: 40355603 DOI: 10.1038/s41576-025-00840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
During early mammalian female development, X chromosome inactivation leads to random transcriptional silencing of one of the two X chromosomes. This inactivation is maintained through subsequent cell divisions, leading to intra-individual diversity, whereby cells express either the maternal or paternal X chromosome. Differences in X chromosome sequence content can trigger competitive interactions between clones that may alter organismal development and skew the representation of X-linked sequence variants in a cell-type-specific manner - a recently described phenomenon termed X-linked competition in analogy to existing cell competition paradigms. Skewed representation can define the phenotypic impact of X-linked variants, for example, the manifestation of disease in female carriers of X-linked disease alleles. Here, we review what is currently known about X-linked competition, reflect on what remains to be learnt and map out the implications for X-linked human disease.
Collapse
Affiliation(s)
- Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Teresa Buenaventura
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - James W D King
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
2
|
Pederzolli M, Barion E, Valerio A, Cuda AV, Manara V, Bellosta P. Optimized protocol for single-cell isolation and alkaline comet assay to detect DNA damage in cells of Drosophila wing imaginal discs. STAR Protoc 2025; 6:103590. [PMID: 39854203 PMCID: PMC11804111 DOI: 10.1016/j.xpro.2024.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Reduced expression of nucleolar genes induces stress and DNA damage. Here, we present a protocol to analyze DNA fragmentation at the single-cell level in Drosophila imaginal discs using an optimized alkaline comet assay. We describe steps for larvae development, tissue disaggregation, and single-cell dissociation. We then detail procedures for cell lysis, electrophoresis, and DNA visualization. This approach provides insights into the molecular consequences of nucleolar stress induction and its role in the DNA damage response pathways in vivo.
Collapse
Affiliation(s)
- Melissa Pederzolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy
| | - Edoardo Barion
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy
| | - Anna Valerio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy
| | - Andrea Vutera Cuda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy.
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy; Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
3
|
Hill HJ, Sullivan W, Cooper BS. Quantification of variegated Drosophila ommatidia with high-resolution image analysis and machine learning. Biol Methods Protoc 2025; 10:bpaf002. [PMID: 39830229 PMCID: PMC11739462 DOI: 10.1093/biomethods/bpaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
A longstanding challenge in biology is accurately analyzing images acquired using microscopy. Recently, machine learning (ML) approaches have facilitated detailed quantification of images that were refractile to traditional computation methods. Here, we detail a method for measuring pigments in the complex-mosaic adult Drosophila eye using high-resolution photographs and the pixel classifier ilastik [1]. We compare our results to analyses focused on pigment biochemistry and subjective interpretation, demonstrating general overlap, while highlighting the inverse relationship between accuracy and high-throughput capability of each approach. Notably, no coding experience is necessary for image analysis and pigment quantification. When considering time, resolution, and accuracy, our view is that ML-based image analysis is the preferred method.
Collapse
Affiliation(s)
- Hunter J Hill
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
4
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
5
|
Lou Y, Wu L, Cai W, Deng H, Sang R, Xie S, Xu X, Yuan X, Wu C, Xu M, Ge W, Xi Y, Yang X. The FAcilitates Chromatin Transcription complex regulates the ratio of glycolysis to oxidative phosphorylation in neural stem cells. J Mol Cell Biol 2024; 16:mjae017. [PMID: 38719542 PMCID: PMC11467811 DOI: 10.1093/jmcb/mjae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 10/12/2024] Open
Abstract
Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.
Collapse
Affiliation(s)
- Yuhan Lou
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Litao Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Wanlin Cai
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Huan Deng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rong Sang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shanshan Xie
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yuan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Man Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanzhong Ge
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohang Yang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
6
|
Kodra AL, Singh AS, de la Cova C, Ziosi M, Johnston LA. The Drosophila tumor necrosis factor Eiger promotes Myc supercompetition independent of canonical Jun N-terminal kinase signaling. Genetics 2024; 228:iyae107. [PMID: 38985651 PMCID: PMC11373512 DOI: 10.1093/genetics/iyae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.
Collapse
Affiliation(s)
- Albana L Kodra
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Aditi Sharma Singh
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Claire de la Cova
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | | - Laura A Johnston
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Falconi J, Strobel K, Djiane A, Lassus P. [Drosophila as a model to study cancer biology]. Bull Cancer 2024; 111:880-892. [PMID: 38960821 DOI: 10.1016/j.bulcan.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 07/05/2024]
Abstract
The rising global incidence of cancer makes it the second leading cause of death worldwide. Over the past decades, significant progress has been made in both basic knowledge and the discovery of new therapeutic approaches. However, the complexity of mechanisms related to tumor development requires the use of sophisticated and adapted research tools. Among these, the fruitfly Drosophila melanogaster represents a powerful genetic model with numerous practical and conceptual advantages. Indeed, the conservation of genes implicated in cancer between this insect and mammals places Drosophila as a crucial genetic tool for understanding the fundamental mechanisms governing tumorigenesis and identifying new therapeutic targets. This review aims to describe this original model and demonstrate its relevance for studying cancer biology.
Collapse
Affiliation(s)
- Jennifer Falconi
- IRCM, Inserm, ICM, université de Montpellier, Montpellier, France
| | - Katrin Strobel
- IRCM, Inserm, ICM, université de Montpellier, Montpellier, France
| | - Alexandre Djiane
- IRCM, Inserm, ICM, université de Montpellier, Montpellier, France
| | - Patrice Lassus
- IRCM, Inserm U1194, ICM, CNRS, université de Montpellier, 208, rue des Apothicaires, 34298 Montpellier cedex, France.
| |
Collapse
|
8
|
Li Y, Xu Y, Zhang B, Wang Z, Ma L, Sun L, Wang X, Lin Y, Li JA, Wu C. Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila. J Tradit Complement Med 2024; 14:424-434. [PMID: 39035690 PMCID: PMC11259714 DOI: 10.1016/j.jtcme.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Biwei Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhigang Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Leilei Ma
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Longyu Sun
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiuping Wang
- Institute of Coastal Agriculture Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, China
| | - Yimin Lin
- First Hospital of Qinhuangdao, 258 Wenhua Road, Qinguangdao, 066000, China
| | - Ji-an Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| |
Collapse
|
9
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
10
|
Zhang Y, Zeng J, Xu B. Phenotypic analysis with trans-recombination-based genetic mosaic models. J Biol Chem 2023; 299:105265. [PMID: 37734556 PMCID: PMC10587715 DOI: 10.1016/j.jbc.2023.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
11
|
Baumgartner ME, Langton PF, Logeay R, Mastrogiannopoulos A, Nilsson-Takeuchi A, Kucinski I, Lavalou J, Piddini E. The PECAn image and statistical analysis pipeline identifies Minute cell competition genes and features. Nat Commun 2023; 14:2686. [PMID: 37164982 PMCID: PMC10172353 DOI: 10.1038/s41467-023-38287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Investigating organ biology often requires methodologies to induce genetically distinct clones within a living tissue. However, the 3D nature of clones makes sample image analysis challenging and slow, limiting the amount of information that can be extracted manually. Here we develop PECAn, a pipeline for image processing and statistical data analysis of complex multi-genotype 3D images. PECAn includes data handling, machine-learning-enabled segmentation, multivariant statistical analysis, and graph generation. This enables researchers to perform rigorous analyses rapidly and at scale, without requiring programming skills. We demonstrate the power of this pipeline by applying it to the study of Minute cell competition. We find an unappreciated sexual dimorphism in Minute cell growth in competing wing discs and identify, by statistical regression analysis, tissue parameters that model and correlate with competitive death. Furthermore, using PECAn, we identify several genes with a role in cell competition by conducting an RNAi-based screen.
Collapse
Affiliation(s)
- Michael E Baumgartner
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Paul F Langton
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Remi Logeay
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Alex Mastrogiannopoulos
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Anna Nilsson-Takeuchi
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome & MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jules Lavalou
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
12
|
Ma M, Zhang X, Zheng Y, Lu S, Pan X, Mao X, Pan H, Chung HL, Wang H, Guo H, Bellen HJ. The fly homolog of SUPT16H, a gene associated with neurodevelopmental disorders, is required in a cell-autonomous fashion for cell survival. Hum Mol Genet 2023; 32:984-997. [PMID: 36255738 PMCID: PMC9991001 DOI: 10.1093/hmg/ddac259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022] Open
Abstract
SUPT16H encodes the large subunit of the FAcilitate Chromatin Transcription (FACT) complex, which functions as a nucleosome organizer during transcription. We identified two individuals from unrelated families carrying de novo missense variants in SUPT16H. The probands exhibit global developmental delay, intellectual disability, epilepsy, facial dysmorphism and brain structural abnormalities. We used Drosophila to characterize two variants: p.T171I and p.G808R. Loss of the fly ortholog, dre4, causes lethality at an early developmental stage. RNAi-mediated knockdown of dre4 in either glia or neurons causes severely reduced eclosion and longevity. Tissue-specific knockdown of dre4 in the eye or wing leads to the loss of these tissues, whereas overexpression of SUPT16H has no dominant effect. Moreover, expression of the reference SUPT16H significantly rescues the loss-of-function phenotypes in the nervous system as well as wing and eye. In contrast, expression of SUPT16H p.T171I or p.G808R rescues the phenotypes poorly, indicating that the variants are partial loss-of-function alleles. While previous studies argued that the developmental arrest caused by loss of dre4 is due to impaired ecdysone production in the prothoracic gland, our data show that dre4 is required for proper cell growth and survival in multiple tissues in a cell-autonomous manner. Altogether, our data indicate that the de novo loss-of-function variants in SUPT16H are indeed associated with developmental and neurological defects observed in the probands.
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xi Zhang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyung-lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hua Wang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Hunan Children’s Hospital, Changsha, Hunan 410007, China
| | - Hong Guo
- Department of Medical Genetics, Army Medical University, Chongqing 400038, China
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Meissner GW, Nern A, Dorman Z, DePasquale GM, Forster K, Gibney T, Hausenfluck JH, He Y, Iyer NA, Jeter J, Johnson L, Johnston RM, Lee K, Melton B, Yarbrough B, Zugates CT, Clements J, Goina C, Otsuna H, Rokicki K, Svirskas RR, Aso Y, Card GM, Dickson BJ, Ehrhardt E, Goldammer J, Ito M, Kainmueller D, Korff W, Mais L, Minegishi R, Namiki S, Rubin GM, Sterne GR, Wolff T, Malkesman O. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 2023; 12:e80660. [PMID: 36820523 PMCID: PMC10030108 DOI: 10.7554/elife.80660] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end, we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.
Collapse
Affiliation(s)
- Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Zachary Dorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gina M DePasquale
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaitlyn Forster
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Theresa Gibney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Jeter
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lauren Johnson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelley Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brian Melton
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brianna Yarbrough
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert R Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lisa Mais
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Oz Malkesman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | |
Collapse
|
14
|
Abstract
Understanding the mechanism by which patterned gene activity leads to mechanical deformation of cells and tissues to create complex forms is a major challenge for developmental biology. Plants offer advantages for addressing this problem because their cells do not migrate or rearrange during morphogenesis, which simplifies analysis. We synthesize results from experimental analysis and computational modeling to show how mechanical interactions between cellulose fibers translate through wall, cell, and tissue levels to generate complex plant tissue shapes. Genes can modify mechanical properties and stresses at each level, though the values and pattern of stresses differ from one level to the next. The dynamic cellulose network provides elastic resistance to deformation while allowing growth through fiber sliding, which enables morphogenesis while maintaining mechanical strength.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16870, USA
| |
Collapse
|
15
|
Fusco G, Minelli A. Descriptive versus causal morphology: gynandromorphism and intersexuality. Theory Biosci 2023; 142:1-11. [PMID: 36633802 PMCID: PMC9925516 DOI: 10.1007/s12064-023-00385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
In animal species with separate sexes, abnormal individuals with a mix of phenotypically male and phenotypically female body parts are generally indicated as gynandromorphs, whereas individuals with intermediate sexual phenotypic traits are generally indicated as intersexes. However, this distinction, clear as it may seem, is neither universally agreed upon, nor free of critical issues. In consideration of the role of sex anomalies in understanding normal development, we reassess these phenomena of abnormal sexual development, taking into consideration the more recent advances in the study of sex determination and sexual differentiation. We argue that a distinction between gynandromorphism and intersexuality, although useful for descriptive purposes, is not always possible or sensible. We discuss the conceptual and terminological intricacies of the literature on this subject and provide reasons for largely, although not strictly, preferring a terminology based on descriptive rather than causal morphology, that is, on the observed phenotypic patterns rather on the causal process behind them.
Collapse
Affiliation(s)
- Giuseppe Fusco
- Department of Biology, University of Padova, Padua, Italy.
| | - Alessandro Minelli
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
16
|
Phipps DN, Powell AM, Ables ET. Utilizing the FLP-Out System for Clonal RNAi Analysis in the Adult Drosophila Ovary. Methods Mol Biol 2023; 2626:69-87. [PMID: 36715900 PMCID: PMC10044525 DOI: 10.1007/978-1-0716-2970-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability to conduct spatially controlled RNA interference (RNAi) for gene knockdown using the UAS/Gal4 system is among the most appealing techniques available for analysis of gene function in the Drosophila ovary. While gene knockdown experiments in somatic cells in the developing organism (i.e., embryos and larvae) are effectively and commonly performed, the use of RNAi in adult ovarian cells can be hampered by the unintended deleterious effects of Gal4 expression in "off-target" developing tissues. Mosaic analysis overcomes these problems by imparting temporal and spatial control over gene manipulation, providing a useful tool to compare manipulated cells with wild-type cells in the same tissue. Here, we provide a method to utilize the UAS/Gal4 system in combination with the Flippase (FLP)-Flippase Recognition Target (FRT) system to generate positively labeled "FLP-Out" clones expressing a chosen RNAi in both the germline and the soma in the Drosophila ovary. This protocol outlines each step of the generation of clones and the selection of appropriate fly stocks and reagents, providing a guide to this powerful tool in the Drosophila genetic toolbox. These techniques allow for RNAi analysis within a specific cell type, providing an opportunity to study a variety of unique aspects of cell function that would not be possible in more traditional RNAi-based experiments.
Collapse
Affiliation(s)
- Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, USA
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Amanda M Powell
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
17
|
Hirai K, Inoue YH, Matsuda M. Mitotic progression and dual spindle formation caused by spindle association of de novo-formed microtubule-organizing centers in parthenogenetic embryos of Drosophila ananassae. Genetics 2022; 223:6896485. [PMID: 36516293 PMCID: PMC9910410 DOI: 10.1093/genetics/iyac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Facultative parthenogenesis occurs in many animal species that typically undergo sexual reproduction. In Drosophila, such development from unfertilized eggs involves diploidization after completion of meiosis, but the exact mechanism remains unclear. Here we used a laboratory stock of Drosophila ananassae that has been maintained parthenogenetically to cytologically examine the initial events of parthenogenesis. Specifically, we determined whether the requirements for centrosomes and diploidization that are essential for developmental success can be overcome. As a primal deviation from sexually reproducing (i.e. sexual) strains of the same species, free asters emerged from the de novo formation of centrosome-like structures in the cytosol of unfertilized eggs. Those microtubule-organizing centers had distinct roles in the earliest cycles of parthenogenetic embryos with respect to mitotic progression and arrangement of mitotic spindles. In the first cycle, an anastral bipolar spindle self-assembled around a haploid set of replicated chromosomes. Participation of at least one microtubule-organizing center in the spindle was necessary for mitotic progression into anaphase. In particular, the first mitosis involving a monastral bipolar spindle resulted in haploid daughter nuclei, one of which was associated with a microtubule-organizing center whereas the other was not. Remarkably, in the following cycle, biastral and anastral bipolar spindles formed that were frequently arranged in tandem by sharing an aster with bidirectional connections at their central poles. We propose that, for diploidization of haploid nuclei, unfertilized parthenogenetic embryos utilize dual spindles during the second mitosis, as occurs for the first mitosis in normal fertilized eggs.
Collapse
Affiliation(s)
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
| | - Muneo Matsuda
- Department of Biology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
18
|
Rylee J, Mahato S, Aldrich J, Bergh E, Sizemore B, Feder LE, Grega S, Helms K, Maar M, Britt SG, Zelhof AC. A TRiP RNAi screen to identify molecules necessary for Drosophila photoreceptor differentiation. G3 GENES|GENOMES|GENETICS 2022; 12:6758253. [DOI: 10.1093/g3journal/jkac257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Drosophila rhabdomeric terminal photoreceptor differentiation is an extended process taking several days to complete. Following ommatidial patterning by the morphogenetic furrow, photoreceptors are sequentially recruited and specified, and terminal differentiation begins. Key events of terminal differentiation include the establishment of apical and basolateral domains, rhabdomere and stalk formation, inter-rhabdomeral space formation, and expression of phototransduction machinery. While many key regulators of these processes have been identified, the complete network of transcription factors to downstream effector molecules necessary for regulating each of these major events remains incomplete. Here, we report an RNAi screen to identify additional molecules and cellular pathways required for photoreceptor terminal differentiation. First, we tested several eye-specific GAL4 drivers for correct spatial and temporal specificity and identified Pph13-GAL4 as the most appropriate GAL4 line for our screen. We screened lines available through the Transgenic RNAi Project and isolated lines that when combined with Pph13-GAL4 resulted in the loss of the deep pseudopupil, as a readout for abnormal differentiation. In the end, we screened 6,189 lines, representing 3,971 genes, and have identified 64 genes, illuminating potential new regulatory molecules and cellular pathways for the differentiation and organization of Drosophila rhabdomeric photoreceptors.
Collapse
Affiliation(s)
- Johnathan Rylee
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Simpla Mahato
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - John Aldrich
- Department of Neurology and Ophthalmology, Dell Medical School, University of Texas , Austin, TX 78712, USA
| | - Emma Bergh
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Brandon Sizemore
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Lauren E Feder
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Shaun Grega
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Kennedy Helms
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Megan Maar
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Steven G Britt
- Department of Neurology and Ophthalmology, Dell Medical School, University of Texas , Austin, TX 78712, USA
| | - Andrew C Zelhof
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Li X, Zhang M, Liu M, Liu TH, Hemba-Waduge RUS, Ji JY. Cdk8 attenuates lipogenesis by inhibiting SREBP-dependent transcription in Drosophila. Dis Model Mech 2022; 15:dmm049650. [PMID: 36305265 PMCID: PMC9702540 DOI: 10.1242/dmm.049650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/14/2022] [Indexed: 10/10/2023] Open
Abstract
Fine-tuning of lipogenic gene expression is important for the maintenance of long-term homeostasis of intracellular lipids. The SREBP family of transcription factors are master regulators that control the transcription of lipogenic and cholesterogenic genes, but the mechanisms modulating SREBP-dependent transcription are still not fully understood. We previously reported that CDK8, a subunit of the transcription co-factor Mediator complex, phosphorylates SREBP at a conserved threonine residue. Here, using Drosophila as a model system, we observed that the phosphodeficient SREBP proteins (SREBP-Thr390Ala) were more stable and more potent in stimulating the expression of lipogenic genes and promoting lipogenesis in vivo than wild-type SREBP. In addition, starvation blocked the effects of wild-type SREBP-induced lipogenic gene transcription, whereas phosphodeficient SREBP was resistant to this effect. Furthermore, our biochemical analyses identified six highly conserved amino acid residues in the N-terminus disordered region of SREBP that are required for its interactions with both Cdk8 and the MED15 subunit of the small Mediator complex. These results support that the concerted actions of Cdk8 and MED15 are essential for the tight regulation of SREBP-dependent transcription. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Meng Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Tian A, Morejon V, Kohoutek S, Huang Y, Deng W, Jiang J. Damage-induced regeneration of the intestinal stem cell pool through enteroblast mitosis in the Drosophila midgut. EMBO J 2022; 41:e110834. [PMID: 35950466 PMCID: PMC9531297 DOI: 10.15252/embj.2022110834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Many adult tissues and organs including the intestine rely on resident stem cells to maintain homeostasis and regeneration. In mammals, the progenies of intestinal stem cells (ISCs) can dedifferentiate to generate ISCs upon ablation of resident stem cells. However, whether and how mature tissue cells generate ISCs under physiological conditions remains unknown. Here, we show that infection of the Drosophila melanogaster intestine with pathogenic bacteria induces entry of enteroblasts (EBs), which are ISC progenies, into the mitotic cycle through upregulation of epidermal growth factor receptor (EGFR)-Ras signaling. We also show that ectopic activation of EGFR-Ras signaling in EBs is sufficient to drive enteroblast mitosis cell autonomously. Furthermore, we find that the dividing enteroblasts do not gain ISC identity as a prerequisite to divide, and the regenerative ISCs are produced through EB mitosis. Taken together, our work uncovers a new role for EGFR-Ras signaling in driving EB mitosis and replenishing the ISC pool during fly intestinal regeneration, which may have important implications for tissue homeostasis and tumorigenesis in vertebrates.
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| | - Virginia Morejon
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Sarah Kohoutek
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Yi‐Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Jin Jiang
- Department of Molecular Biology and Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
21
|
Khoury MJ, Bilder D. Minimal functional domains of the core polarity regulator Dlg. Biol Open 2022; 11:276053. [PMID: 35722710 PMCID: PMC9346270 DOI: 10.1242/bio.059408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalized domains of polarized epithelial cells arise from mutually antagonistic actions between the apical Par complex and the basolateral Scrib module. In Drosophila, the Scrib module proteins Scribble (Scrib) and Discs-large (Dlg) are required to limit Lgl phosphorylation at the basolateral cortex, but how Scrib and Dlg could carry out such a ‘protection’ activity is not clear. We tested Protein Phosphatase 1α (PP1) as a potential mediator of this activity, but demonstrate that a significant component of Scrib and Dlg regulation of Lgl is PP1 independent, and found no evidence for a Scrib-Dlg-PP1 protein complex. However, the Dlg SH3 domain plays a role in Lgl protection and, in combination with the N-terminal region of the Dlg HOOK domain, in recruitment of Scrib to the membrane. We identify a ‘minimal Dlg’ comprised of the SH3 and HOOK domains that is both necessary and sufficient for Scrib localization and epithelial polarity function in vivo. This article has an associated First Person interview with the first author of the paper. Summary: A minimal SH3-HOOK fragment of Dlg is sufficient to support epithelial polarity through mechanisms independent of the PP1 phosphatase.
Collapse
Affiliation(s)
- Mark J Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
22
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Sang R, Wu C, Xie S, Xu X, Lou Y, Ge W, Xi Y, Yang X. Mxc, a Drosophila homolog of mental retardation-associated gene NPAT, maintains neural stem cell fate. Cell Biosci 2022; 12:78. [PMID: 35642004 PMCID: PMC9153134 DOI: 10.1186/s13578-022-00820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mental retardation is a complex neurodevelopmental disorder. NPAT, a component of the histone locus body (HLB), has been implicated as a candidate gene for mental retardation, with a mechanism yet to be elucidated. RESULTS We identified that mxc, the Drosophila ortholog of NPAT, is required for the development of nervous system. Knockdown of mxc resulted in a massive loss of neurons and locomotion dysfunction in adult flies. In the mxc mutant or RNAi knockdown larval brains, the neuroblast (NB, also known as neural stem cell) cell fate is prematurely terminated and its proliferation potential is impeded concurrent with the blocking of the differentiation process of ganglion mother cells (GMCs). A reduction of transcription levels of histone genes was shown in mxc knockdown larval brains, accompanied by DNA double-strand breaks (DSBs). The subsidence of histone transcription levels leads to prematurely termination of NB cell fate and blockage of the GMC differentiation process. Our data also show that the increase in autophagy induced by mxc knockdown in NBs could be a defense mechanism in response to abnormal HLB assembly and premature termination of NB cell fate. CONCLUSIONS Our study demonstrate that Mxc plays a critical role in maintaining neural stem cell fate and GMC differentiation in the Drosophila larval brain. This discovery may shed light on the understanding of the pathogenesis of NPAT-related mental retardation in humans.
Collapse
Affiliation(s)
- Rong Sang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Wu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Xie
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Xu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuhan Lou
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wanzhong Ge
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongmei Xi
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohang Yang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Joint Institute of Genetics and Genomic Medicine, Between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Dean DM, Deitcher DL, Paster CO, Xu M, Loehlin DW. "A fly appeared": sable, a classic Drosophila mutation, maps to Yippee, a gene affecting body color, wings, and bristles. G3 (BETHESDA, MD.) 2022; 12:jkac058. [PMID: 35266526 PMCID: PMC9073688 DOI: 10.1093/g3journal/jkac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Insect body color is an easily assessed and visually engaging trait that is informative on a broad range of topics including speciation, biomaterial science, and ecdysis. Mutants of the fruit fly Drosophila melanogaster have been an integral part of body color research for more than a century. As a result of this long tenure, backlogs of body color mutations have remained unmapped to their genes, all while their strains have been dutifully maintained, used for recombination mapping, and part of genetics education. Stemming from a lesson plan in our undergraduate genetics class, we have mapped sable1, a dark body mutation originally described by Morgan and Bridges, to Yippee, a gene encoding a predicted member of the E3 ubiquitin ligase complex. Deficiency/duplication mapping, genetic rescue, DNA and cDNA sequencing, RT-qPCR, and 2 new CRISPR alleles indicated that sable1 is a hypomorphic Yippee mutation due to an mdg4 element insertion in the Yippee 5'-UTR. Further analysis revealed additional Yippee mutant phenotypes including curved wings, ectopic/missing bristles, delayed development, and failed adult emergence. RNAi of Yippee in the ectoderm phenocopied sable body color and most other Yippee phenotypes. Although Yippee remains functionally uncharacterized, the results presented here suggest possible connections between melanin biosynthesis, copper homeostasis, and Notch/Delta signaling; in addition, they provide insight into past studies of sable cell nonautonomy and of the genetic modifier suppressor of sable.
Collapse
Affiliation(s)
- Derek M Dean
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Caleigh O Paster
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Manting Xu
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David W Loehlin
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
25
|
Wendler F, Park S, Hill C, Galasso A, Chang KR, Awan I, Sudarikova Y, Bustamante-Sequeiros M, Liu S, Sung EYH, Aisa-Bonoko G, Kim SK, Baena-Lopez LA. A LexAop > UAS > QUAS trimeric plasmid to generate inducible and interconvertible Drosophila overexpression transgenes. Sci Rep 2022; 12:3835. [PMID: 35264662 PMCID: PMC8907290 DOI: 10.1038/s41598-022-07852-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The existence of three independent binary systems for conditional gene expression (Gal4/UAS; LexA/LexAop; QF/QUAS) has greatly expanded versatile genetic analyses in the Drosophila melanogaster; however, the experimental application of these tools is limited by the need to generate multiple collections of noninterchangeable transgenic fly strains for each inducible gene expression system. To address this practical limitation, we developed a modular vector that contains the regulatory elements from all three binary systems, enabling Gal4-, LexA- or QF-dependent expression of transgenes. Our methods also incorporate DNA elements that facilitate independent site-specific recombination and elimination of regulatory UAS, LexAop or QUAS modules with spatial and temporal control, thus offering unprecedented possibilities and logistical advantages for in vivo genetic modulation and efficient interconversion of overexpression transgenic fly lines.
Collapse
Affiliation(s)
- Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Hill
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Alessia Galasso
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Kathleen R Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Iman Awan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Yulia Sudarikova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | | | - Sichen Liu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Ethan Y-H Sung
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Gabrielle Aisa-Bonoko
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, and Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Luis A Baena-Lopez
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
26
|
The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila melanogaster. Dev Biol 2022; 485:93-122. [PMID: 35247454 PMCID: PMC9092520 DOI: 10.1016/j.ydbio.2022.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/30/2022]
Abstract
Experimental embryologists working at the turn of the 19th century suggested fundamental mechanisms of development, such as localized cytoplasmic determinants and tissue induction. However, the molecular basis underlying these processes proved intractable for a long time, despite concerted efforts in many developmental systems to isolate factors with a biological role. That road block was overcome by combining developmental biology with genetics. This powerful approach used unbiased genome-wide screens to isolate mutants with developmental defects and to thereby identify genes encoding key determinants and regulatory pathways that govern development. Two small invertebrates were the pioneers: the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Their modes of development differ in many ways, but the two together led the way to unraveling the molecular mechanisms of many fundamental developmental processes. The discovery of the grand homologies between key players in development throughout the animal kingdom underscored the usefulness of studying these small invertebrate models for animal development and even human disease. We describe developmental genetics in Drosophila and C. elegans up to the rise of genomics at the beginning of the 21st Century. Finally, we discuss themes that emerge from the histories of such distinct organisms and prospects of this approach for the future.
Collapse
|
27
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
28
|
Abstract
Wildtype or mutant proteins expressed beyond the capacity of a cell's protein folding system could be detrimental to general cellular function and survival. In response to misfolded protein overload in the endoplasmic reticulum (ER), eukaryotic cells activate the Unfolded Protein Response (UPR) that helps cells restore protein homeostasis in the endoplasmic reticulum (ER). As part of the UPR, cells attenuate general mRNA translation and activate transcription factors that induce stress-responsive gene expression.UPR signaling draws research interest in part because conditions that cause chronic protein misfolding in the ER or those that impair UPR signaling underlie several diseases including neurodegeneration, diabetes, and cancers. Model organisms are frequently employed in the field as the UPR pathways are generally well-conserved throughout phyla. Here, we introduce experimental procedures to detect UPR in Drosophila melanogaster.
Collapse
Affiliation(s)
- Hidetaka Katow
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Umetsu D. Sample Preparation and Imaging of the Pupal Drosophila Abdominal Epidermis. Methods Mol Biol 2022; 2540:335-347. [PMID: 35980587 DOI: 10.1007/978-1-0716-2541-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The epithelium is one of the best studied tissues for morphogenesis, pattern formation, cell polarity, cell division, cell competition, tumorigenesis, and metastatic behaviors. However, it has been challenging to analyze real-time cell interactions or cell dynamics within the epithelia under physiological conditions. The Drosophila pupal abdominal epidermis is a model system that allows to combine long-term real-time imaging under physiological conditions with the use of powerful Drosophila genetics tools. The abdominal epidermis displays a wide range of stereotypical characteristics of the epithelia and cellular behaviors including cell division, cell death, cell rearrangement, apical constriction, and apicobasal/planar polarity, making this tissue a first choice for the study of epithelial morphogenesis and relevant phenomena. In this chapter, I describe the staging and mounting of pupae and the live imaging of the abdominal epidermis. Moreover, methods to combine live imaging with mosaic analysis or drug injection will be presented. The long-term live imaging of the pupal abdominal epidermis is straightforward and opens up the possibility to analyze cell dynamics during epithelial morphogenesis at an unprecedented resolution.
Collapse
Affiliation(s)
- Daiki Umetsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
30
|
Mo D, Shen J, Zhang J. Use of FLP/FRT System to Screen for Notch Signaling Regulators in the Drosophila Wing. Methods Mol Biol 2022; 2472:39-48. [PMID: 35674890 DOI: 10.1007/978-1-0716-2201-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mutations of genes encoding key components of the Notch signaling pathways often result in lethality at early developmental stages, making it difficult to decipher how they regulate the formation of specific cell types or organs. Mosaic analysis using the FLP/FRT system allows investigating the roles of essential genes during wing development in Drosophila melanogaster. This chapter describes the practical methods to isolate Notch signaling regulators by somatic mosaic screen. The fly stocks, cross schemes, and screen parameters are summarized. We also explain how to validate the roles of potential Notch signaling regulators.
Collapse
Affiliation(s)
- Dongqing Mo
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
31
|
Luong TT, Bernstein KA. Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes (Basel) 2021; 12:1919. [PMID: 34946868 PMCID: PMC8701316 DOI: 10.3390/genes12121919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
RECQL4 is a member of the evolutionarily conserved RecQ family of 3' to 5' DNA helicases. RECQL4 is critical for maintaining genomic stability through its functions in DNA repair, recombination, and replication. Unlike many DNA repair proteins, RECQL4 has unique functions in many of the central DNA repair pathways such as replication, telomere, double-strand break repair, base excision repair, mitochondrial maintenance, nucleotide excision repair, and crosslink repair. Consistent with these diverse roles, mutations in RECQL4 are associated with three distinct genetic diseases, which are characterized by developmental defects and/or cancer predisposition. In this review, we provide an overview of the roles and regulation of RECQL4 during maintenance of genome homeostasis.
Collapse
Affiliation(s)
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|
32
|
Martinez-Miguel VE, Lujan C, Espie-Caullet T, Martinez-Martinez D, Moore S, Backes C, Gonzalez S, Galimov ER, Brown AEX, Halic M, Tomita K, Rallis C, von der Haar T, Cabreiro F, Bjedov I. Increased fidelity of protein synthesis extends lifespan. Cell Metab 2021; 33:2288-2300.e12. [PMID: 34525330 PMCID: PMC8570412 DOI: 10.1016/j.cmet.2021.08.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Loss of proteostasis is a fundamental process driving aging. Proteostasis is affected by the accuracy of translation, yet the physiological consequence of having fewer protein synthesis errors during multi-cellular organismal aging is poorly understood. Our phylogenetic analysis of RPS23, a key protein in the ribosomal decoding center, uncovered a lysine residue almost universally conserved across all domains of life, which is replaced by an arginine in a small number of hyperthermophilic archaea. When introduced into eukaryotic RPS23 homologs, this mutation leads to accurate translation, as well as heat shock resistance and longer life, in yeast, worms, and flies. Furthermore, we show that anti-aging drugs such as rapamycin, Torin1, and trametinib reduce translation errors, and that rapamycin extends further organismal longevity in RPS23 hyperaccuracy mutants. This implies a unified mode of action for diverse pharmacological anti-aging therapies. These findings pave the way for identifying novel translation accuracy interventions to improve aging.
Collapse
Affiliation(s)
| | - Celia Lujan
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Tristan Espie-Caullet
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Daniel Martinez-Martinez
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Saul Moore
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Cassandra Backes
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Evgeniy R Galimov
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kazunori Tomita
- Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, London UB8 3PH, UK
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany.
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK; Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
33
|
Smylla TK, Wagner K, Huber A. Application of Fluorescent Proteins for Functional Dissection of the Drosophila Visual System. Int J Mol Sci 2021; 22:8930. [PMID: 34445636 PMCID: PMC8396179 DOI: 10.3390/ijms22168930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.
Collapse
Affiliation(s)
- Thomas K. Smylla
- Department of Biochemistry, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (K.W.); (A.H.)
| | | | | |
Collapse
|
34
|
Dillard C, Reis JGT, Rusten TE. RasV12; scrib-/- Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions. Int J Mol Sci 2021; 22:ijms22168873. [PMID: 34445578 PMCID: PMC8396170 DOI: 10.3390/ijms22168873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic RasV12 and the loss of the tumor suppressor scribble in flies, this and other tumor models have provided new concepts and findings in cancer biology that has remarkable parallels and relevance to human cancer. Here we review findings using the RasV12; scrib-/- tumor model and how it has contributed to our understanding of how these initial simple genetic insults cooperate within the tumor cell to set in motion the malignant transformation program leading to tumor growth through cell growth, cell survival and proliferation, dismantling of cell-cell interactions, degradation of basement membrane and spreading to other organs. Recent findings have demonstrated that cooperativity goes beyond cell intrinsic mechanisms as the tumor interacts with the immediate cells of the microenvironment, the immune system and systemic organs to eventually facilitate malignant progression.
Collapse
Affiliation(s)
- Caroline Dillard
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| | - José Gerardo Teles Reis
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| |
Collapse
|
35
|
Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Rep 2021; 35:109274. [PMID: 34161767 PMCID: PMC8317686 DOI: 10.1016/j.celrep.2021.109274] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022] Open
Abstract
Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.
Collapse
Affiliation(s)
- Ximena Contreras
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Johanna Sonntag
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Lill Andersen
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tina Bernthaler
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX 77030, USA
| | - Lindsay A Schwarz
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
36
|
Snigdha K, Singh A, Kango-Singh M. Yorkie-Cactus (IκBα)-JNK axis promotes tumor growth and progression in Drosophila. Oncogene 2021; 40:4124-4136. [PMID: 34017079 DOI: 10.1038/s41388-021-01831-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Presence of inflammatory factors in the tumor microenvironment is well-documented yet their specific role in tumorigenesis is elusive. The core inflammatory pathways like the Toll-Like Receptor (TLR) and the Tumor Necrosis Factor (TNF) pathway are conserved in Drosophila. We induced GFP-marked epithelial tumors by expressing activated oncogenic forms of RasV12 or Yorkie (Yki3SA, mammalian YAP) in scribble deficient cells (scribRNAi, mammalian SCRIB) to study the role of inflammatory factors in tumorigenesis. Similar to RasV12scribRNAi, we found that Yki3SAscribRNAi form invasive neoplastic lethal tumors that induce a systemic inflammatory response. We identified Cactus (Cact, mammalian IκBα), the negative regulator of TLR, as a key player in tumor growth. Cact accumulates in the cytoplasm in Drosophila tumor models, similar to squamous cell carcinoma in mice models and human patients where cytoplasmic IκBα favors oncogenic transformation. Further, cact is transcriptionally upregulated in tumors, and downregulation of Cact affects tumor growth. We investigated if TLR or TNF pathway affect tumor growth through activation of Jun N-terminal Kinase (JNK) pathway and its target Matrix Metalloprotease1 (MMP1). Genetically manipulating levels of TLR components or TNF receptors showed that Cact acts upstream of JNK signaling and regulates JNK via a non-canonical mechanism during tumorigenesis. Further, Hippo coactivator Yki transcriptionally regulates cact expression, and downregulation of Yki or Cact is sufficient to cause downregulation of JNK-mediated signaling that promotes tumorigenesis. Here, we report a link between Hippo, IκBα and JNK signaling that may induce inflammation and innate immune response in tumorigenesis.
Collapse
Affiliation(s)
- Kirti Snigdha
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- Premedical Programs, University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering Center (ISE), University of Dayton, Dayton, OH, USA
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, USA.
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
- Premedical Programs, University of Dayton, Dayton, OH, USA.
- Integrative Science and Engineering Center (ISE), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
37
|
Tiemann‐Boege I, Mair T, Yasari A, Zurovec M. Pathogenic postzygotic mosaicism in the tyrosine receptor kinase pathway: potential unidentified human disease hidden away in a few cells. FEBS J 2021; 288:3108-3119. [PMID: 32810928 PMCID: PMC8247027 DOI: 10.1111/febs.15528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
Mutations occurring during embryonic development affect only a subset of cells resulting in two or more distinct cell populations that are present at different levels, also known as postzygotic mosaicism (PZM). Although PZM is a common biological phenomenon, it is often overlooked as a source of disease due to the challenges associated with its detection and characterization, especially for very low-frequency variants. Moreover, PZM can cause a different phenotype compared to constitutional mutations. Especially, lethal mutations in receptor tyrosine kinase (RTK) pathway genes, which exist only in a mosaic state, can have completely new clinical manifestations and can look very different from the associated monogenic disorder. However, some key questions are still not addressed, such as the level of mosaicism resulting in a pathogenic phenotype and how the clinical outcome changes with the development and age. Addressing these questions is not trivial as we require methods with the sensitivity to capture some of these variants hidden away in very few cells. Recent ultra-accurate deep-sequencing approaches can now identify these low-level mosaics and will be central to understand systemic and local effects of mosaicism in the RTK pathway. The main focus of this review is to highlight the importance of low-level mosaics and the need to include their detection in studies of genomic variation associated with disease.
Collapse
Affiliation(s)
| | - Theresa Mair
- Institute of BiophysicsJohannes Kepler UniversityLinzAustria
| | - Atena Yasari
- Institute of BiophysicsJohannes Kepler UniversityLinzAustria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| |
Collapse
|
38
|
Paraskevopoulos M, McGuigan AP. Application of CRISPR screens to investigate mammalian cell competition. Brief Funct Genomics 2021; 20:135-147. [PMID: 33782689 DOI: 10.1093/bfgp/elab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.
Collapse
|
39
|
Scaplen KM, Petruccelli E. Receptors and Channels Associated with Alcohol Use: Contributions from Drosophila. Neurosci Insights 2021; 16:26331055211007441. [PMID: 33870197 PMCID: PMC8020223 DOI: 10.1177/26331055211007441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is a debilitating disorder that manifests as problematic patterns of alcohol use. At the core of AUD's behavioral manifestations are the profound structural, physiological, cellular, and molecular effects of alcohol on the brain. While the field has made considerable progress in understanding the neuromolecular targets of alcohol we still lack a comprehensive understanding of alcohol's actions and effective treatment strategies. Drosophila melanogaster is a powerful model for investigating the neuromolecular targets of alcohol because flies model many of the core behavioral elements of AUD and offer a rich genetic toolkit to precisely reveal the in vivo molecular actions of alcohol. In this review, we focus on receptors and channels that are often targeted by alcohol within the brain. We discuss the general roles of these proteins, their role in alcohol-associated behaviors across species, and propose ways in which Drosophila models can help advance the field.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, USA
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
40
|
Schweizer Burguete AB, Ghabrial AS. Dissection of the Role of CCM Genes in Tubulogenesis Using the Drosophila Tracheal System as a Model. Methods Mol Biol 2021; 2152:179-189. [PMID: 32524553 DOI: 10.1007/978-1-0716-0640-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Embryos deficient for an essential gene may show complex phenotypes that reflect pleiotropic functions and non-cell-autonomous requirements for the encoded protein. The generation of mosaic animals, where most cells are wild type, but a few cells are mutant, is a powerful tool permitting the detailed analysis of the cell autonomous function of a gene, in a particular cell type, at cellular and subcellular resolutions. Here we apply this method to the analysis of the Cerebral Cavernous Malformations 3 (CCM3) pathway in Drosophila.The conserved CCM3 protein functions together with its binding partner, Germinal Center Kinase III (Wheezy/GckIII in Drosophila, MST3, STK24, and STK25 in human) in the regulation of tube morphogenesis (Bergametti et al. Am J Hum Genet. 76:42-51, 2005; Fidalgo et al. J Cell Sci. 123:1274-1284, 2010; Guclu et al. Neurosurgery. 57:1008-1013, 2005; Lant et al. Nat Commun. 6:6449, 2015; Song et al. Dev Cell. 25:507-519, 2013; Ceccarelli et al. J Biol Chem. 286:25056-25064, 2011; Rehain-Bell et al. Curr Biol. 27:860-867, 2017; Xu et al. Structure. 21:1059-1066, 2013; Zhang et al. Front Biosci. 17:2295-2305, 2012; Zhang et al. Dev Cell. 27:215-226, 2013; Zheng et al. J Clin Invest. 120:2795-2804, 2010). The Drosophila proteins play a role in the regulation of tube shape in the tracheal (respiratory) system, analogous to the role of the human proteins in the vascular system. To understand the cellular basis for tube dilation defects caused by loss of pathway function, we describe techniques for the generation and analysis of positively marked homozygous mutant GckIII tracheal cells, coupled with an "open book" preparation that can be subjected to immunofluorescent analysis. Dozens of mutant tracheal cells are generated per mosaic animal, and neighboring heterozygous cells in the same animal serve as ideal internal controls.
Collapse
Affiliation(s)
| | - Amin S Ghabrial
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
41
|
Recasens-Alvarez C, Alexandre C, Kirkpatrick J, Nojima H, Huels DJ, Snijders AP, Vincent JP. Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nat Cell Biol 2021; 23:127-135. [PMID: 33495632 PMCID: PMC7116740 DOI: 10.1038/s41556-020-00626-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Ribosomes are multicomponent molecular machines that synthesize all of the proteins of living cells. Most of the genes that encode the protein components of ribosomes are therefore essential. A reduction in gene dosage is often viable albeit deleterious and is associated with human syndromes, which are collectively known as ribosomopathies1-3. The cell biological basis of these pathologies has remained unclear. Here, we model human ribosomopathies in Drosophila and find widespread apoptosis and cellular stress in the resulting animals. This is not caused by insufficient protein synthesis, as reasonably expected. Instead, ribosomal protein deficiency elicits proteotoxic stress, which we suggest is caused by the accumulation of misfolded proteins that overwhelm the protein degradation machinery. We find that dampening the integrated stress response4 or autophagy increases the harm inflicted by ribosomal protein deficiency, suggesting that these activities could be cytoprotective. Inhibition of TOR activity-which decreases ribosomal protein production, slows down protein synthesis and stimulates autophagy5-reduces proteotoxic stress in our ribosomopathy model. Interventions that stimulate autophagy, combined with means of boosting protein quality control, could form the basis of a therapeutic strategy for this class of diseases.
Collapse
Affiliation(s)
| | | | | | - Hisashi Nojima
- The Francis Crick Institute, London, UK
- FUJIREBIO Inc, Tokyo, Japan
| | - David J Huels
- The Francis Crick Institute, London, UK
- Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
- Academic Medical Center, Oncode Institute, Amsterdam, the Netherlands
| | | | | |
Collapse
|
42
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
43
|
Site-Specific Recombination with Inverted Target Sites: A Cautionary Tale of Dicentric and Acentric Chromosomes. Genetics 2020; 215:923-930. [PMID: 32586890 DOI: 10.1534/genetics.120.303394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Site-specific recombinases are widely used tools for analysis of genetics, development, and cell biology, and many schemes have been devised to alter gene expression by recombinase-mediated DNA rearrangements. Because the FRT and lox target sites for the commonly used FLP and Cre recombinases are asymmetrical, and must pair in the same direction to recombine, construct design must take into account orientation of the target sites. Both direct and inverted configurations have been used. However, the outcome of recombination between target sites on sister chromatids is frequently overlooked. This is especially consequential with inverted target sites, where exchange between oppositely oriented target sites on sisters will produce dicentric and acentric chromosomes. By using constructs that have inverted target sites in Drosophila melanogaster and in mice, we show here that dicentric chromosomes are produced in the presence of recombinase, and that the frequency of this event is quite high. The negative effects on cell viability and behavior can be significant, and should be considered when using such constructs.
Collapse
|
44
|
Bernasek SM, Peláez N, Carthew RW, Bagheri N, Amaral LAN. Fly-QMA: Automated analysis of mosaic imaginal discs in Drosophila. PLoS Comput Biol 2020; 16:e1007406. [PMID: 32126077 PMCID: PMC7100978 DOI: 10.1371/journal.pcbi.1007406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/27/2020] [Accepted: 01/27/2020] [Indexed: 12/01/2022] Open
Abstract
Mosaic analysis provides a means to probe developmental processes in situ by generating loss-of-function mutants within otherwise wildtype tissues. Combining these techniques with quantitative microscopy enables researchers to rigorously compare RNA or protein expression across the resultant clones. However, visual inspection of mosaic tissues remains common in the literature because quantification demands considerable labor and computational expertise. Practitioners must segment cell membranes or cell nuclei from a tissue and annotate the clones before their data are suitable for analysis. Here, we introduce Fly-QMA, a computational framework that automates each of these tasks for confocal microscopy images of Drosophila imaginal discs. The framework includes an unsupervised annotation algorithm that incorporates spatial context to inform the genetic identity of each cell. We use a combination of real and synthetic validation data to survey the performance of the annotation algorithm across a broad range of conditions. By contributing our framework to the open-source software ecosystem, we aim to contribute to the current move toward automated quantitative analysis among developmental biologists.
Collapse
Affiliation(s)
- Sebastian M. Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolás Peláez
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Richard W. Carthew
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, Illinois, United States of America
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
45
|
Hemmer LW, Dias GB, Smith B, Van Vaerenberghe K, Howard A, Bergman CM, Blumenstiel JP. Hybrid dysgenesis in Drosophila virilis results in clusters of mitotic recombination and loss-of-heterozygosity but leaves meiotic recombination unaltered. Mob DNA 2020; 11:10. [PMID: 32082426 PMCID: PMC7023781 DOI: 10.1186/s13100-020-0205-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are endogenous mutagens and their harmful effects are especially evident in syndromes of hybrid dysgenesis. In Drosophila virilis, hybrid dysgenesis is a syndrome of incomplete gonadal atrophy that occurs when males with multiple active TE families fertilize females that lack active copies of the same families. This has been demonstrated to cause the transposition of paternally inherited TE families, with gonadal atrophy driven by the death of germline stem cells. Because there are abundant, active TEs in the male inducer genome, that are not present in the female reactive genome, the D. virilis syndrome serves as an excellent model for understanding the effects of hybridization between individuals with asymmetric TE profiles. RESULTS Using the D. virilis syndrome of hybrid dysgenesis as a model, we sought to determine how the landscape of germline recombination is affected by parental TE asymmetry. Using a genotyping-by-sequencing approach, we generated a high-resolution genetic map of D. virilis and show that recombination rate and TE density are negatively correlated in this species. We then contrast recombination events in the germline of dysgenic versus non-dysgenic F1 females to show that the landscape of meiotic recombination is hardly perturbed during hybrid dysgenesis. In contrast, hybrid dysgenesis in the female germline increases transmission of chromosomes with mitotic recombination. Using a de novo PacBio assembly of the D. virilis inducer genome we show that clusters of mitotic recombination events in dysgenic females are associated with genomic regions with transposons implicated in hybrid dysgenesis. CONCLUSIONS Overall, we conclude that increased mitotic recombination is likely the result of early TE activation in dysgenic progeny, but a stable landscape of meiotic recombination indicates that either transposition is ameliorated in the adult female germline or that regulation of meiotic recombination is robust to ongoing transposition. These results indicate that the effects of parental TE asymmetry on recombination are likely sensitive to the timing of transposition.
Collapse
Affiliation(s)
- Lucas W. Hemmer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
- Present Address: Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Guilherme B. Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Brittny Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA
| | - Kelley Van Vaerenberghe
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Ashley Howard
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Casey M. Bergman
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| |
Collapse
|
46
|
Kakanj P, Eming SA, Partridge L, Leptin M. Long-term in vivo imaging of Drosophila larvae. Nat Protoc 2020; 15:1158-1187. [DOI: 10.1038/s41596-019-0282-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
47
|
Defoe DM, Rao H, Harris DJ, Moore PD, Brocher J, Harrison TA. A non-canonical role for p27Kip1 in restricting proliferation of corneal endothelial cells during development. PLoS One 2020; 15:e0226725. [PMID: 31929545 PMCID: PMC6957298 DOI: 10.1371/journal.pone.0226725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/30/2019] [Indexed: 12/04/2022] Open
Abstract
The cell cycle regulator p27Kip1 is a critical factor controlling cell number in many lineages. While its anti-proliferative effects are well-established, the extent to which this is a result of its function as a cyclin-dependent kinase (CDK) inhibitor or through other known molecular interactions is not clear. To genetically dissect its role in the developing corneal endothelium, we examined mice harboring two loss-of-function alleles, a null allele (p27−) that abrogates all protein function and a knockin allele (p27CK−) that targets only its interaction with cyclins and CDKs. Whole-animal mutants, in which all cells are either homozygous knockout or knockin, exhibit identical proliferative increases (~0.6-fold) compared with wild-type tissues. On the other hand, use of mosaic analysis with double markers (MADM) to produce infrequently-occurring clones of wild-type and mutant cells within the same tissue environment uncovers a roughly three- and six-fold expansion of individual p27CK−/CK− and p27−/− cells, respectively. Mosaicism also reveals distinct migration phenotypes, with p27−/− cells being highly restricted to their site of production and p27CK−/CK− cells more widely scattered within the endothelium. Using a density-based clustering algorithm to quantify dispersal of MADM-generated clones, a four-fold difference in aggregation is seen between the two types of mutant cells. Overall, our analysis reveals that, in developing mouse corneal endothelium, p27 regulates cell number by acting cell autonomously, both through its interactions with cyclins and CDKs and through a cyclin-CDK-independent mechanism(s). Combined with its parallel influence on cell motility, it constitutes a potent multi-functional effector mechanism with major impact on tissue organization.
Collapse
Affiliation(s)
- Dennis M. Defoe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- * E-mail:
| | - Huiying Rao
- Department of Ophthalmology, Fujian Provincial Hospital, Fujian, Fuzhou, Peoples Republic of China
| | - David J. Harris
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Preston D. Moore
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Graduate Biomedical Research Program, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | | | - Theresa A. Harrison
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
48
|
Imaging Flies by Fluorescence Microscopy: Principles, Technologies, and Applications. Genetics 2019; 211:15-34. [PMID: 30626639 PMCID: PMC6325693 DOI: 10.1534/genetics.118.300227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The development of fluorescent labels and powerful imaging technologies in the last two decades has revolutionized the field of fluorescence microscopy, which is now widely used in diverse scientific fields from biology to biomedical and materials science. Fluorescence microscopy has also become a standard technique in research laboratories working on Drosophila melanogaster as a model organism. Here, we review the principles of fluorescence microscopy technologies from wide-field to Super-resolution microscopy and its application in the Drosophila research field.
Collapse
|
49
|
Abstract
Drosophila melanogaster has been a central player in the discovery of the Hippo pathway and in understanding its in vivo functions. From a technique standpoint, the Flp-FRT system for the generation of genetic mosaics has been a principle tool. It has broadly been used in the discovery of Hippo pathway members in mutagenesis screens, in the analysis of target gene expression, and in genetic epistasis. Here we briefly introduce this tool, summarize its use in the Hippo pathway field, and provide a protocol for the generation of Flp-FRT clones in imaginal discs with dissection and staining for reporter gene expression to characterize candidate Hippo pathway genes.
Collapse
Affiliation(s)
- Mardelle Atkins
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA.
| |
Collapse
|
50
|
Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Engel SR, Kadin JA, Kaufman TC, Kishore R, Laulederkind SJF, Lewis SE, Moxon SAT, Richardson JE, Smith C. Model organism data evolving in support of translational medicine. Lab Anim (NY) 2018; 47:277-289. [PMID: 30224793 PMCID: PMC6322546 DOI: 10.1038/s41684-018-0150-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.
Collapse
Affiliation(s)
- Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | | | | | - Ranjana Kishore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stanley J F Laulederkind
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Suzanna E Lewis
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sierra A T Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|