1
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
3
|
Kamińska D, Skrzycki M. Lipid droplets, autophagy, and ER stress as key (survival) pathways during ischemia-reperfusion of transplanted grafts. Cell Biol Int 2024; 48:253-279. [PMID: 38178581 DOI: 10.1002/cbin.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Ischemia-reperfusion injury is an event concerning any organ under a procedure of transplantation. The early result of ischemia is hypoxia, which causes malfunction of mitochondria and decrease in cellular ATP. This leads to disruption of cellular metabolism. Reperfusion also results in cell damage due to reoxygenation and increased production of reactive oxygen species, and later by induced inflammation. In damaged and hypoxic cells, the endoplasmic reticulum (ER) stress pathway is activated by increased amount of damaged or misfolded proteins, accumulation of free fatty acids and other lipids due to inability of their oxidation (lipotoxicity). ER stress is an adaptive response and a survival pathway, however, its prolonged activity eventually lead to induction of apoptosis. Sustaining cell functionality in stress conditions is a great challenge for transplant surgeons as it is crucial for maintaining a desired level of graft vitality. Pathways counteracting negative consequences of ischemia-reperfusion are autophagy and lipid droplets (LD) metabolism. Autophagy remove damaged organelles and molecules driving them to lysosomes, digested simpler compounds are energy source for the cell. Mitophagy and ER-phagy results in improvement of cell energetic balance and alleviation of ER stress. This is important in sustaining metabolic homeostasis and thus cell survival. LD metabolism is connected with autophagy as LD are degraded by lipophagy, a source of free fatty acids and glycerol-thus autophagy and LD can readily remove lipotoxic compounds in the cell. In conclusion, monitoring and pharmaceutic regulation of those pathways during transplantation procedure might result in increased/improved vitality of transplanted organ.
Collapse
Affiliation(s)
- Daria Kamińska
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warszawa, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
4
|
Wang J, Yu Y, Zhang H, Li L, Wang J, Su S, Zhang Y, Song L, Zhou K. Gypenoside XVII attenuates renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome-triggered pyroptosis. Eur J Pharmacol 2024; 962:176187. [PMID: 37984729 DOI: 10.1016/j.ejphar.2023.176187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) is one of the main causes of acute kidney injury (AKI), for which there is currently no effective treatment. Recently, the interaction between endoplasmic reticulum (ER) stress and pyroptosis during AKI has been investigated. AIM The purpose of this study was to investigate the protective effects of Gypenoside XVII (GP-17) against I/R-induced renal injury. METHODS In this study, mice were divided into 6 groups, sham group, I/R group, GP-17 low-, medium-, high-dose group, and positive control 4-PBA group. The renal I/R was performed in mice by clamping the bilateral renal pedicles for 40 min, and then reperfusing for 24 h. Blood and kidney samples were collected for analysis. RESULTS The results showed that GP-17 improved renal function and alleviated renal histopathological abnormalities caused by I/R. In addition, GP-17 pretreatment significantly decreased the expression or phosphorylation of ER stress response proteins including BIP, p-PERK, and CHOP. Besides, GP-17 inhibited the expression of pyroptosis proteins including caspase-1, GSDMD, and apoptotic protein BAX. The inflammatory factor IL-1β in these GP-17 pretreatment groups was also significantly reduced. CONCLUSION GP-17 blocked NLRP3 inflammasome activation by inhibiting ERS, thereby inhibiting renal tubular cell pyroptosis and apoptosis, and prevented renal I/R injury.
Collapse
Affiliation(s)
- Jiarui Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingli Yu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China.
| | - Haorui Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Li Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shijia Su
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
6
|
Sun Z, Li X, Zhang X, Wang Y, Gong P, Zhang N, Zhang X, Wang X, Li J. Unfolded protein response is involved in resistance to Neospora caninum infection via IRE1α-XBP1s-NOD2 Axis. Parasitol Res 2023; 122:2023-2036. [PMID: 37349656 DOI: 10.1007/s00436-023-07902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Neospora caninum, an intracellular protozoan parasite, causes neosporosis resulting in major losses in the livestock industry worldwide. However, no effective drugs or vaccines have been developed to control neosporosis. An in-depth study on the immune response against N. caninum could help to search for effective approaches to prevent and treat neosporosis. The host unfolded protein response (UPR) functions as a double-edged sword in several protozoan parasite infections, either to initiate immune responses or to help parasite survival. In this study, the roles of the UPR in N. caninum infection in vitro and in vivo were explored, and the mechanism of the UPR in resistance to N. caninum infection was analyzed. The results revealed that N. caninum triggered the UPR in mouse macrophages, such as the activation of the IRE1 and PERK branches, but not the ATF6 branch. Inhibition of the IRE1α-XBP1s branch increased the N. caninum number both in vitro and in vivo, while inhibition of the PERK branch did not affect the parasite number. Furthermore, inhibition of the IRE1α-XBP1s branch reduced the production of cytokines by inhibiting NOD2 signalling and its downstream NF-κB and MAPK pathways. Taken together, the results of this study suggest that the UPR is involved in the resistance of N. caninum infection via the IRE1α-XBP1s branch by regulating NOD2 and its downstream NF-κB and MAPK pathways to induce the production of inflammatory cytokines, which provides a new perspective for the research and development of anti-N. caninum drugs.
Collapse
Affiliation(s)
- Zhichao Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xu Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuru Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xichen Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaocen Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Jianhua Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Erzurumlu Y, Muhammed MT. Triiodothyronine positively regulates endoplasmic reticulum-associated degradation (ERAD) and promotes androgenic signaling in androgen-dependent prostate cancer cells. Cell Signal 2023:110745. [PMID: 37271348 DOI: 10.1016/j.cellsig.2023.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Thyroid hormones (THs) play crucial roles in numerous physiological processes of nearly all mammalian tissues, including differentiation and metabolism. Deterioration of TH signaling has been associated with several pathologies, including cancer. The effect of highly active triiodothyronine (T3) has been investigated in many in vivo and in vitro cancer models. However, the role of T3 on cancerous prostate tissue is controversial. Recent studies have focused on the characterization of the supportive roles of the endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) signaling in prostate cancer (PCa) and investigating new hormonal regulation patterns, including estrogen, progesterone and 1,25(OH)2D3. Additionally, androgenic signaling controlled by androgens, which are critical in PCa progression, has been shown to be regulated by other steroid hormones. While the effects of T3 on ERAD and UPR are unknown today, the impact on androgenic signaling is still not understood in PCa. Therefore, we aimed to investigate the molecular action of T3 on the ERAD mechanism and UPR signaling in PCa cells and also extensively examined the effect of T3 on androgenic signaling. Our data strongly indicated that T3 tightly regulates ERAD and UPR signaling in androgen-dependent PCa cells. We also found that T3 stimulates androgenic signaling by upregulating AR mRNA and protein levels and enhancing its nuclear translocation. Additionally, advanced computational studies supported the ligand binding effect of T3 on AR protein. Our data suggest that targeting thyroidal signaling should be considered in therapeutic approaches to be developed for prostate malignancy in addition to other steroidal regulations.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| |
Collapse
|
8
|
Erzurumlu Y, Dogan HK, Catakli D. Progesterone regulates the endoplasmic reticulum-associated degradation and Unfolded Protein Response axis by mimicking the androgenic stimulation in prostate cancer cells. Mol Biol Rep 2023; 50:1253-1265. [PMID: 36445513 DOI: 10.1007/s11033-022-08065-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Today, androgen receptor (AR)-mediated signaling mechanisms in prostate cancer are intensively studied. However, the roles of other steroid hormones in prostate cancer and their effects on androgenic signaling still remain a mystery. Recent studies focused on the androgen-mediated regulation of protein quality control mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer cells. Present study, we investigated the action of progesterone signaling on ERAD and UPR mechanisms and analyzed the crosstalk of progesterone signaling with androgenic signal in prostate cancer cells. METHODS AND RESULTS The mode of action of progesterone on ERAD, UPR and AR signaling in prostate cancer was investigated by cell culture studies using LNCaP and 22Rv1 cells. To this aim qRT-PCR, western-blotting assay, immunofluorescent microscopy, nuclear fractionation and bioinformatic analysis were used. Our results indicated that progesterone positively regulates mRNA and protein levels of ERAD components in LNCaP cells. Also, it induced the IRE⍺ and PERK branches of UPR signaling. Progesterone receptor antagonist effectively antagonized the progesterone-induced responses. We also had similar results in 22Rv1 cells. Also, we tested the effect of the pharmacologically reducing of IRE⍺ and PERK signaling on progesterone-induced ERAD. Additionally, we determined the presence of putative progesterone response elements (PREs) in the promoter regions of ERAD members by bioinformatic tool. More strikingly, we found progesterone regulates AR signaling by modulating the nuclear transactivation of AR. CONCLUSION Herein, we defined that progesterone hormone positively regulates ERAD and UPR mechanisms in prostate cancer cells and that progesterone contributes to the molecular biology of prostate cancer by regulating androgenic signaling. Mode of Action of Progesteron on Androgen sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| |
Collapse
|
9
|
Huang X, Ji S, Bian C, Sun J, Ji H. The endoplasmic reticulum stress and B cell lymphoma-2 related ovarian killer participate in docosahexaenoic acid-induced adipocyte apoptosis in grass carp (Ctenopharyngodon idellus). J Anim Sci 2023; 101:skad101. [PMID: 37067261 PMCID: PMC10118398 DOI: 10.1093/jas/skad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
Docosahexaenoic acid (DHA) lessens adipose tissue lipid deposition partly by inducing adipocyte apoptosis in grass carp, but the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) is the novel pathway for inducing apoptosis. This study aimed to explore the potential role of ER stress in DHA-induced apoptosis in grass carp (Ctenopharyngodon idellus) adipocytes. DHA induced apoptosis by deforming the nuclear envelope, condensing the chromatin, and increasing the expression of apoptosis-related proteins and genes in vivo and in vitro (P < 0.05). However, the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), effectively suppressed DHA-induced apoptosis (P < 0.05), indicating that ER stress mediates DHA-induced adipocyte apoptosis. Furthermore, we observed that 200 μM DHA significantly up-regulates the transcripts of B cell lymphoma-2 (BCL-2) related ovarian killer (BOK) in vitro (P < 0.05). BOK is a pro-apoptotic protein in the BCL-2 family, which governs the mitochondria apoptosis pathway. Hence, we hypothesized that BOK might be an important linker between ER stress and apoptosis. We cloned and identified two grass carp BOK genes, BOKa and BOKb, which encode peptides of 213 and 216 amino acids, respectively. BOKa primarily localizes in ER and mitochondria in the cytoplasm, while BOKb localizes in the nucleus and cytoplasm of grass carp adipocytes. Moreover, 200 μM DHA treatment up-regulated the mRNA expression of BOKa and BOKb, whereas 4-PBA suppressed the DHA-induced expressions. These results raised the possibility that BOK participates in DHA-induced adipocyte apoptosis through ER stress signaling, in line with its localization in ER and mitochondria. Two UPR branches, the inositol-requiring enzyme 1 (IRE1α) and activating transcription factor 6 (ATF6) signaling pathways, are possibly important in DHA-induced adipocyte apoptosis, unlike protein kinase RNA-activated-like ER kinase. The study also emphasized the roles of BOKa and BOKb in IRE1α- and ATF6-mediated apoptosis. This work is the first to elucidate the importance of the ER stress-BOK pathway during adipocyte apoptosis in teleost.
Collapse
Affiliation(s)
- Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| |
Collapse
|
10
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
11
|
Georgiou M, Yang C, Atkinson R, Pan K, Buskin A, Molina MM, Collin J, Al‐Aama J, Goertler F, Ludwig SEJ, Davey T, Lührmann R, Nagaraja‐Grellscheid S, Johnson CA, Ali R, Armstrong L, Korolchuk V, Urlaub H, Mozaffari‐Jovin S, Lako M. Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patient-induced pluripotent stem cell-derived retinal pigment epithelium cells. Clin Transl Med 2022; 12:e759. [PMID: 35297555 PMCID: PMC8926896 DOI: 10.1002/ctm2.759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.
Collapse
Affiliation(s)
- Maria Georgiou
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| | - Chunbo Yang
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| | - Robert Atkinson
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| | - Kuan‐Ting Pan
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Adriana Buskin
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| | | | - Joseph Collin
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| | - Jumana Al‐Aama
- Faculty of MedicineKing Abdulaziz UniversitySaudi Arabia
| | | | | | - Tracey Davey
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| | | | | | | | | | - Lyle Armstrong
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| | | | - Henning Urlaub
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Bioanalytics, Department of Clinical ChemistryUniversity Medical CenterGoettingenGermany
| | - Sina Mozaffari‐Jovin
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Majlinda Lako
- Newcastle University Biosciences InstituteNewcastle upon TyneUK
| |
Collapse
|
12
|
Ye H, Chen C, Wu H, Zheng K, Martín-Adrados B, Caparros E, Francés R, Nelson LJ, Gómez Del Moral M, Asensio I, Vaquero J, Bañares R, Ávila MA, Andrade RJ, Isabel Lucena M, Martínez-Chantar ML, Reeves HL, Masson S, Blumberg RS, Gracia-Sancho J, Nevzorova YA, Martínez-Naves E, Cubero FJ. Genetic and pharmacological inhibition of XBP1 protects against APAP hepatotoxicity through the activation of autophagy. Cell Death Dis 2022; 13:143. [PMID: 35145060 PMCID: PMC8831621 DOI: 10.1038/s41419-022-04580-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity induces endoplasmic reticulum (ER) stress which triggers the unfolded protein response (UPR) in hepatocytes. However, the mechanisms underlying ER stress remain poorly understood, thus reducing the options for exploring new pharmacological therapies for patients with hyperacute liver injury. Eight-to-twelve-week-old C57BL/6J Xbp1-floxed (Xbp1f/f) and hepatocyte-specific knockout Xbp1 mice (Xbp1∆hepa) were challenged with either high dose APAP [500 mg/kg] and sacrificed at early (1-2 h) and late (24 h) stages of hepatotoxicity. Histopathological examination of livers, immunofluorescence and immunohistochemistry, Western blot, real time (RT)-qPCR studies and transmission electron microscopy (TEM) were performed. Pharmacological inhibition of XBP1 using pre-treatment with STF-083010 [STF, 75 mg/kg] and autophagy induction with Rapamycin [RAPA, 8 mg/kg] or blockade with Chloroquine [CQ, 60 mg/kg] was also undertaken in vivo. Cytoplasmic expression of XBP1 coincided with severity of human and murine hyperacute liver injury. Transcriptional and translational activation of the UPR and sustained activation of JNK1/2 were major events in APAP hepatotoxicity, both in a human hepatocytic cell line and in a preclinical model. Xbp1∆hepa livers showed decreased UPR and JNK1/2 activation but enhanced autophagy in response to high dose APAP. Additionally, blockade of XBP1 splicing by STF, mitigated APAP-induced liver injury and without non-specific off-target effects (e.g., CYP2E1 activity). Furthermore, enhanced autophagy might be responsible for modulating CYP2E1 activity in Xbp1∆hepa animals. Genetic and pharmacological inhibition of Xbp1 specifically in hepatocytes ameliorated APAP-induced liver injury by enhancing autophagy and decreasing CYP2E1 expression. These findings provide the basis for the therapeutic restoration of ER stress and/or induction of autophagy in patients with hyperacute liver injury.
Collapse
Affiliation(s)
- Hui Ye
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of Anesthesiology, ZhongDa Hospital Southeast University, 210009, Nanjing, China
| | - Chaobo Chen
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of General Surgery, Wuxi Xishan People's hospital, 214105, Wuxi, China
- Department of Hepatic-Biliary-Pancreatic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical school, 210000, Nanjing, China
| | - Hanghang Wu
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
- Department of Anesthesiology, ZhongDa Hospital Southeast University, 210009, Nanjing, China
| | - Beatriz Martín-Adrados
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
| | - Esther Caparros
- Departmento de Medicina Clínica, Universidad Miguel Hernández, 03550, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, 03010, Alicante, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Rubén Francés
- Departmento de Medicina Clínica, Universidad Miguel Hernández, 03550, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, 03010, Alicante, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), Human Tissue Engineering, Faraday Building, The University of Edinburgh, EH9 3DW, Edinburgh, Scotland, UK
| | - Manuel Gómez Del Moral
- Department of Cell Biology, Complutense University School of Medicine, 28040, Madrid, Spain
| | - Iris Asensio
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Javier Vaquero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Rafael Bañares
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
| | - Matías A Ávila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Hepatology Program, CIMA, University of Navarra, 31008, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, 31008, Pamplona, Spain
| | - Raúl J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Unidad de Gestión Clínica de Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Unidad de Gestión Clínica de Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
| | - Maria Luz Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, 48160, Derio, Bizkaia, Spain
| | - Helen L Reeves
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 DN, Newcastle upon Tyne, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE7 DN, Newcastle upon Tyne, UK
| | - Steven Masson
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, NE7 DN, Newcastle upon Tyne, UK
- Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle University, NE7 DN, Newcastle upon Tyne, UK
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women´s Hospital, Harvard Medical School, Boston, and Harvard Digestive Diseases Center, 02115, Boston, MA, USA
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Liver Vascular Biology Research Group, IDIBAPS, 08036, Barcelona, Spain
- Hepatology, Department of Biomedical Research, University of Bern, cH-3008, Bern, Switzerland
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28007, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007, Madrid, Spain.
| |
Collapse
|
13
|
Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles. Stem Cell Rev Rep 2021; 17:471-501. [PMID: 33398717 DOI: 10.1007/s12015-020-10082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow mesenchymal stem cells have been investigated for many years, especially for tissue regeneration, and have inherent limitations. One of the rapidly developing fields in the scientific world in recent years is extracellular vesicles. Especially, bone marrow mesenchymal stem cell originated extracellular vesicles are known to have positive contributions in tissue regeneration, and these extracellular vesicles have also been used as gene transfer systems for cellular therapy. Through gene expression analysis and bioinformatics tools, it is possible to determine which genes have changed in the targeted tissue or cell and which miRNAs that can correct this gene expression disorder. This approach connecting the stem cell, extracellular vesicles, epigenetics regulation and bioinformatics fields is one of the promising areas for the treatment of diseases in the future. With this review, it is aimed to present the studies carried out for the use of bone marrow stem cell-derived extracellular vesicles loaded with targeted miRNAs in different in vivo and in vitro human disease models and to discuss recent developments in this field.
Collapse
|
14
|
Li F, Zhang L, Xue H, Xuan J, Rong S, Wang K. SIRT1 alleviates hepatic ischemia-reperfusion injury via the miR-182-mediated XBP1/NLRP3 pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:1066-1077. [PMID: 33664991 PMCID: PMC7887305 DOI: 10.1016/j.omtn.2020.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
The hepatoprotection of histone deacetylase sirtuin 1 (SIRT1) has been identified to attenuate ischemia-reperfusion (IR)-triggered inflammation and liver damage. This study was performed to characterize the function of SIRT1 in hepatic IR injury. In in vivo assays on liver-specific knockout mice of SIRT1, we first validated the effect of SIRT1 knockout on liver damage and XBP1/NLRP3 inflammasome activation. Next, we examined whether knockdown of XBP1/NLRP3 or miR-182 agomir could reverse the effect of SIRT1 knockout. In in vitro assays, NCTC1469 cells subjected to hypoxia/reoxygenation (H/R) were transduced with small interfering RNA (siRNA)/activator of SIRT1 or miR-182 agomir to confirm the effect of SIRT1 on NCTC1469 cell behaviors as well as the regulation of miR-182 and the XBP1/NLRP3 signaling pathway. Hepatic IR injury was appreciably aggravated in SIRT1 knockout mice, and SIRT1 knockdown abolished the inhibition of XBP1/NLRP3 inflammasome activation, which was reversed by NLRP3 knockdown, XBP1 knockdown, or miR-182 agomir. Mechanistically, miR-182 expression was positively regulated by SIRT1 in hepatic IR injury in mice, and miR-182 inhibited the expression of XBP1 by binding to the 3' untranslated region (UTR) of XBP1. The histone deacetylase SIRT1 inhibits the downstream XBP1/NLRP3 inflammatory pathway by activating miR-182, thus alleviating hepatic IR injury in mice.
Collapse
Affiliation(s)
- Fengwei Li
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Lei Zhang
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Hui Xue
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Jianbing Xuan
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Kui Wang
- Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai 200438, P.R. China
| |
Collapse
|
15
|
Liu B, Deng Q, Zhang L, Zhu W. Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep 2020; 22:4655-4662. [PMID: 33173956 PMCID: PMC7646848 DOI: 10.3892/mmr.2020.11554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that nobiletin (NOB) displays anti-oxidative and anti-apoptotic efficacies against multiple pathological insults. However, the potential effects of NOB on the injury caused by ischemia and reperfusion (I/R) in the kidney remain undetermined. In the present study, I/R injury was elicited by right kidney removal and left renal pedicel clamping for 45 min, followed by reperfusion for 24 h. NOB was added at the start of reperfusion. Histological examination, detection of biomarkers in plasma, and measurement of apoptosis induced by endoplasmic reticulum stress (ERS) were used to evaluate renal injury. Additionally, the PI3K/AKT inhibitor LY294002 was also used in mechanistic experiments. NOB pre-treatment significantly reduced renal damage caused by I/R injury, as indicated by decreased serum levels of creatine, blood urea nitrogen and tubular injury scores. Furthermore, NOB inhibited elevated ERS-associated apoptosis, as evidenced by reduced apoptotic rates and ERS-related signaling molecules (such as, C/EBP homologous protein, caspase-12 and glucose-regulated protein of 78 kDa). NOB increased phosphorylation of proteins in the PI3K/AKT pathway. The inhibition of PI3K/AKT signaling with pharmacological inhibitors could reverse the beneficial effects of NOB during renal I/R insult. In conclusion, NOB pre-treatment may alleviate I/R injury in the kidney by inhibiting reactive oxygen species production and ERS-induced apoptosis, partly through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Quanhong Deng
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Lei Zhang
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Wen Zhu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
16
|
Xiang L, Liu A, Xu G. Expression of XBP1s in B lymphocytes is critical for pristane-induced lupus nephritis in mice. Am J Physiol Renal Physiol 2020; 318:F1258-F1270. [PMID: 32249615 DOI: 10.1152/ajprenal.00472.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
B lymphocyte hyperactivity plays a pathogenic role in systemic lupus erythematosus (SLE), and spliced X box-binding protein 1 (XBP1s) has been implicated in B cell maturation and differentiation. We hypothesized that blockade of the XBP1s pathway inhibits the B cell hyperactivity underlying SLE and lupus nephritis (LN) development. In the present study, we systematically evaluated the changes in B cell activation induced by the Xbp1 splicing inhibitor STF083010 in a pristane-induced lupus mouse model. The lupus mouse model was successfully established, as indicated by the presence of LN with markedly increased urine protein levels, renal deposition of Ig, and mesangial cell proliferation. In lupus mice, B cell hyperactivity was confirmed by increased CD40 and B cell-activating factor levels. B cell activation and plasma cell overproduction were determined by increases in CD40-positive and CD138-positive cells in the spleens of lupus mice by flow cytometry and further confirmed by CD45R and Ig light chain staining in the splenic tissues of lupus mice. mRNA and protein expression of XBP1s in B cells was assessed by real-time PCR, Western blot analysis, and immunofluorescence analysis and was increased in lupus mice. In addition, almost all changes were reversed by STF083010 treatment. However, the expression of XBP1s in the kidneys did not change when mice were exposed to pristane and STF083010. Taken together, these findings suggest that expression of XBP1s in B cells plays key roles in SLE and LN development. Blockade of the XBP1s pathway may be a potential strategy for SLE and LN treatment.
Collapse
Affiliation(s)
- Li Xiang
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University of People's Liberation Army, Xi'an, China
| | - An Liu
- Outpatient Department, Xi'an Children's Hospital, Xi'an, China
| | - Guoshuang Xu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University of People's Liberation Army, Xi'an, China
| |
Collapse
|
17
|
Ferrè S, Deng Y, Huen SC, Lu CY, Scherer PE, Igarashi P, Moe OW. Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney Int 2019; 96:1359-1373. [PMID: 31601454 DOI: 10.1016/j.kint.2019.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/04/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Sepsis is a systemic inflammatory state in response to infection, and concomitant acute kidney injury (AKI) increases mortality significantly. Endoplasmic reticulum stress is activated in many cell types upon microbial infection and modulates inflammation. The role of endoplasmic reticulum signaling in the kidney during septic AKI is unknown. Here we tested the role of the spliced X-box binding protein 1 (Xbp1s), a key component of the endoplasmic reticulum stress-activated pathways, in the renal response to sepsis in the lipopolysaccharide (LPS) model. Xbp1s was increased in the kidneys of mice treated with LPS but not in other models of AKI, or several chronic kidney disease models. The functional significance of Xbp1s induction was examined by genetic manipulation in renal tubules. Renal tubule-specific overexpression of Xbp1s caused severe tubule dilation and vacuolation with expression of the injury markers Kim1 and Ngal, the pro-inflammatory molecules interleukin-6 (Il6) and Toll-like receptor 4 (Tlr4), decreased kidney function and 50% mortality in five days. Renal tubule-specific genetic ablation of Xbp1 had no phenotype at baseline. However, after LPS, Xbp1 knockdown mice displayed lower renal NGAL, pro-apoptotic factor CHOP, serum creatinine levels, and a tendency towards lower Tlr4 compared to LPS-treated mice with intact Xbp1s. LPS treatment in Xbp1s-overexpressing mice caused a mild increase in NGAL and CHOP compared to LPS-treated mice without genetic Xbp1s overexpression. Thus, increased Xbp1s signaling in renal tubules is unique to sepsis-induced AKI and contributes to renal inflammation and injury. Inhibition of this pathway may be a potential portal to alleviate injury.
Collapse
Affiliation(s)
- Silvia Ferrè
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Yingfeng Deng
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah C Huen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher Y Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philipp E Scherer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
18
|
Zhan F, Zhao G, Li X, Yang S, Yang W, Zhou S, Zhang F. Inositol-requiring enzyme 1 alpha endoribonuclease specific inhibitor STF-083010 protects the liver from thioacetamide-induced oxidative stress, inflammation and injury by triggering hepatocyte autophagy. Int Immunopharmacol 2019; 73:261-269. [PMID: 31121416 DOI: 10.1016/j.intimp.2019.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
Abstract
Acute liver injury caused by toxins or drugs is a common condition that threatens patients' lives. Inositol-requiring enzyme 1 alpha (IRE1α), the most conserved endoplasmic reticulum (ER) stress sensor, has been implicated in the pathophysiology of liver injury. Activated IRE1α endoribonuclease (RNase) can splice X-box binding protein 1 (XBP1) mRNA to produce the sXBP1 transcription factor. STF-083010, a specific inhibitor of IRE1α RNase, has recently been suggested to exhibit anti-oxidant and anti-inflammatory properties in multiple injury models. However, it remains unknown whether STF-083010 has a protective effect against thioacetamide (TAA)-induced acute liver injury. Here, we demonstrated that IRE1α-sXBP1 signaling is involved in the development of TAA-induced acute liver injury and correlates with the severity of liver damage. STF-083010 protected against TAA-induced liver injury, as evidenced by higher survival rates in response to a lethal dose of TAA and less severe liver injury in response to a toxic dose of TAA. Mechanistic exploration showed that STF-083010 triggered hepatocyte autophagy in response to TAA stimulation both in vivo and in vitro, leading to reduced reactive oxygen species (ROS) production and attenuated hepatic inflammation. We also found that Beclin-1 played a critical role in STF-083010-mediated autophagy in response to TAA stimulation. Autophagy inhibition by chloroquine (CQ) in vivo and Beclin-1 knockdown in vitro markedly abrogated the protective role of STF-083010 against TAA-induced oxidative stress, inflammation and hepatotoxicity. Our results suggested STF-083010 as a potential therapeutic application to prevent TAA-induced acute liver injury.
Collapse
Affiliation(s)
- Feng Zhan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Hepatobiliary and Laparoscopic Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, China
| | - Guoping Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shikun Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenjie Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
19
|
Tian X, Ji Y, Liang Y, Zhang J, Guan L, Wang C. LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J Cell Physiol 2019; 234:14221-14233. [PMID: 30684280 DOI: 10.1002/jcp.28118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) shows several kinds of disorders, which acutely harm the kidney. However, the current medical methods have limited therapeutic effects. The present study aimed to find out the molecular mechanism of AKI pathogenesis, which may provide new insights for future therapy. METHODS Bioinformatic analysis was conducted using the R language (AT&T BellLaboratories, University of Auckland, New Zealand) to acquire the differentially expressed long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in AKI. The expression levels of RNAs and related proteins in tissues and cells were detected by quantitative real-time PCR (qRT-PCR) and western blot. Dual-luciferase reporter gene assays were performed to verify the target relationship between microRNA (miRNA) and lncRNA as well as miRNA and mRNA. Flow cytometry and tunnel assay were used to detect the cell apoptotic rate in AKI. RESULTS LINC00520, miR-27b-3p, and OSMR form an axis to regulate AKI. Knockdown of LINC00520 reduced acute renal injury both in vitro and in vivo. LINC00520 activated the PI3K/AKT pathway to aggravate renal ischemia/reperfusion injury, while upregulation of miR-27b-3p or downregulation of OSMR could accelerate the recovery of AKI. CONCLUSION Overexpression of LINC00520 contributes to the aggravation of AKI by targeting miR-27b-3p/ OSMR.
Collapse
Affiliation(s)
- Xinghan Tian
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yafeng Liang
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jing Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lina Guan
- Department of Neurology Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Use of fucoidan to treat renal diseases: A review of 15 years of clinic studies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:95-111. [DOI: 10.1016/bs.pmbts.2019.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Chen QQ, Zhang C, Qin MQ, Li J, Wang H, Xu DX, Wang JQ. Inositol-Requiring Enzyme 1 Alpha Endoribonuclease Specific Inhibitor STF-083010 Alleviates Carbon Tetrachloride Induced Liver Injury and Liver Fibrosis in Mice. Front Pharmacol 2018; 9:1344. [PMID: 30538632 PMCID: PMC6277551 DOI: 10.3389/fphar.2018.01344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating data demonstrated that hepatic endoplasmic reticulum (ER) stress was involved in the pathogenesis of liver fibrosis. Long-term chronic hepatocyte death contributed to liver fibrosis initiation and progression. Previous researches reported that ER stress sensor inositol-requiring enzyme 1 alpha (IRE1α) was first activated in the process of liver fibrosis. STF-083010 was an IRE1α RNase specific inhibitor. This study aimed to explore the effects of STF-083010 on carbon tetrachloride (CCl4)-induced liver injury and subsequent liver fibrosis. Mice were intraperitoneally (i.p.) injected with CCl4 (0.15 ml/kg) for 8 weeks. In STF-083010+CCl4 group, mice were injected with STF-083010 (30 mg/kg, i.p.), twice a week, beginning from the 6th week after CCl4 injection. CCl4 treatment markedly enhanced the levels of serum ALT, TBIL, DBIL and TBA, and STF-083010 had obviously extenuated CCl4-induced exaltation of ALT, DBIL, and TBA levels. CCl4-induced hepatic hydroxyproline and collagen I, major indicators of liver fibrosis, were alleviated by STF-083010. Additionally, CCl4-induced α-smooth muscle actin, a marker for hepatic stellate cells activation, was obviously attenuated in STF-083010-treated mice. Moreover, CCl4-induced upregulation of inflammatory cytokines was suppressed by STF-083010. Mechanistic exploration found that hepatic miR-122 was downregulated in CCl4-treated mice. Hepatic MCP1, CTGF, P4HA1, Col1α1, and Mmp9, target genes of miR-122, were upregulated in CCl4-treated mice. Interestingly, STF-083010 reversed CCl4-induced hepatic miR-122 downregulation. Correspondingly, STF-083010 inhibited CCl4-induced upregulation of miR-122 target genes. This study provides partial evidence that STF-083010 alleviated CCl4-induced liver injury and thus protected against liver fibrosis associated with hepatic miR-122.
Collapse
Affiliation(s)
- Qian-Qian Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Ming-Qiang Qin
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Jian-Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|