1
|
Al Jaberi FM, Alzarzour R, Dewa A, Muhamad A, Zakaria F. Metabolic clues to memory loss: High-fat diets and brain-adipose crosstalk in zebrafish. Behav Brain Res 2025; 486:115559. [PMID: 40164316 DOI: 10.1016/j.bbr.2025.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Obesity is a growing public health concern that significantly impacts cognitive functions, including memory. This research explores how a high-fat diet affects short-term memory, employing the novel object recognition (NOR) test and NMR-based metabolomics to elucidate metabolic alterations in the brain and adipose tissue. The zebrafish were divided into two groups: one receiving a standard diet (SD) and the other a high-fat diet (HFD). Body mass index (BMI) was assessed every two weeks for a period of eight weeks. The NOR test was used to determine the discrimination index (DI) for evaluating the short-term memory of the SD and HFD groups. NMR spectroscopy was employed to investigate the metabolites in brain and adipose tissues, and multivariate data analysis was conducted to discover significant metabolic alterations. The high-fat diet (HFD) resulted in a significant increase in body mass index (BMI) (p < 0.0001) compared to the standard diet (SD) group from week 4 to week 8. A significant reduction in the discrimination index (24.95 %) in the HFD group against the SD group suggests a decline in memory performance among HFD subjects. NMR-based metabolomics of adipose tissue revealed that linoleic acid and caprylic acid were consistently found to exhibit increased levels in the HFD group across all assessments, whereas lauric acid, ALA, EPA, and DHA were consistently present at elevated levels in the adipose tissue of the SD group. NMR-based metabolomics of the brain identified GABA, taurine, and histamine as the key metabolites distinguishing the HFD from the SD group in female zebrafish. For male zebrafish brains, taurine, phenylalanine, and tryptophan were identified as the most significant metabolites for differentiating between HFD and SD. These metabolites demonstrated a notable decrease in the HFD group relative to the SD group. The results of this study align with those of previously reported studies in rodents and humans, indicating that memory impairment associated with obesity may stem from neuroinflammation and changes in synaptic plasticity. This research provides insights into the molecular changes in adipose tissue and the brain that occur when individuals receive a high-fat diet (HFD), which may enhance our understanding of the link between obesity and memory impairment, ultimately leading to a better comprehension of the disease.
Collapse
Affiliation(s)
- Farah Mejbel Al Jaberi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Misan, Amarah, Maysan, Iraq
| | - Ragdha Alzarzour
- Discipline of Pharmacology, School of Pharmacy, Arab International University (AIU), Damascus, Syria
| | - Aidiahmad Dewa
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Azira Muhamad
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia (NIBM), 43000 Bangi, Selangor, Malaysia
| | - Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
2
|
Kim JE, Sonar NS, Thakuri LS, Park JW, Kim KT, Rhyu DY. Mixtures of polystyrene micro and nanoplastics affects fat and glucose metabolism in 3T3-L1 adipocytes and zebrafish larvae. NANOIMPACT 2025; 37:100549. [PMID: 39965748 DOI: 10.1016/j.impact.2025.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are pervasive pollutants that pose a hazard to human health. Although most previous studies have investigated the effects of MPs and NPs on digestion, oxidative stress, and inflammation in diverse models, the combined effect of plastic mixtures (PM) containing MPs and NPs on obesity and type 2 diabetes mellitus (T2DM) remains unknown. The hypothesis of our study is to verify the association between PM exposure and clinical features of metabolic diseases such as lipogenesis and insulin resistance. Therefore, we investigated the effects of PM on fat and glucose metabolism in 3T3-L1 cells and high-fat diet (HFD)-induced zebrafish larvae. PM exposure increased cell viability, differentiation, adipogenesis (PPARγ and C/EBPα), and lipogenesis (FAS and SREBP-1c), while it decreased glucose uptake and inhibited insulin signal (IRS1, PI3K, AKT, and GLUT4) expression 3T3-L1 cells. In zebrafish larvae, PM mainly bioaccumulated in the intestine and pancreatic tissue, reducing glucose uptake and increasing body weight and blood glucose compared to controls. Moreover, PM significantly increased adipogenic differentiation (PPARγ) and synthesis (FASN and FABP), proinflammatory cytokines (TNF-α and IL-6), and gluconeogenesis (PCK1 and G6Pase). Conversely, energy and fat metabolism (AMPKα and adiponectin), insulin production (INSα), signaling pathway (IRS1, AKT, and GLUT2), and anti-inflammatory cytokines (IL-10 and IL-4) were suppressed. Overall, this study sheds light on the mechanisms responsible for the detrimental effects of PM exposure on fat and glucose metabolism, providing insights into metabolic disorders, like type 2 diabetes, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; ROK-Biotech, Hwasun-gun, Jeonnam 58112, Republic of Korea
| | - Narayan Sah Sonar
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Sen Thakuri
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Dong Young Rhyu
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
3
|
Razali K, Kumar J, Mohamed WMY. Characterizing the adult zebrafish model of Parkinson's disease: a systematic review of dynamic changes in behavior and physiology post-MPTP administration. Front Neurosci 2024; 18:1432102. [PMID: 39319314 PMCID: PMC11420122 DOI: 10.3389/fnins.2024.1432102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Adult zebrafish are increasingly used in Parkinson's disease (PD) research due to their well-characterized dopaminergic system. Among the toxin-based models, the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is widely utilized to induce parkinsonism in adult zebrafish. Therefore, this review presents an overview of the procedures and the dynamic changes in behavior and physiology observed in the adult zebrafish PD model following a single intraperitoneal injection of MPTP. Methods A systematic literature search in the PubMed and Google Scholar databases was conducted to identify relevant articles. Of the 165 articles identified, 9 were included in this review. These chosen articles are original works published before March 2024, all of which utilized adult zebrafish induced with MPTP as the model for PD. Other articles were excluded based on factors such as limited relevance, utilization of zebrafish embryos or larvae instead of adults, and variations in MPTP deliveries. Results Studies indicated that the ideal model entails the utilization of mixed gender zebrafish aged between 4 and 6 months from the wild-type strain. The acceptable MPTP doses ranges between 20 μg/g (lowest) and 225 μg/g (highest) and doses above 292 μg/g are lethal. Furthermore, noticeable parkinsonian symptoms appear 1 day after administration and persist for more than 1 week. Discussion Mitochondrial dysfunction precedes dopaminergic neurodegeneration within this experimental regime. A single administration of MPTP effectively induces PD in adult zebrafish. This study aids in crafting the adult zebrafish PD model, outlining the progressive behavioral and physiological changes ensuing from MPTP administration.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
4
|
Erradhouani C, Bortoli S, Aït‐Aïssa S, Coumoul X, Brion F. Metabolic disrupting chemicals in the intestine: the need for biologically relevant models: Zebrafish: what can we learn from this small environment-sensitive fish? FEBS Open Bio 2024; 14:1397-1419. [PMID: 39218795 PMCID: PMC11492336 DOI: 10.1002/2211-5463.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Although the concept of endocrine disruptors first appeared almost 30 years ago, the relatively recent involvement of these substances in the etiology of metabolic pathologies (obesity, diabetes, hepatic steatosis, etc.) has given rise to the concept of Metabolic Disrupting Chemicals (MDCs). Organs such as the liver and adipose tissue have been well studied in the context of metabolic disruption by these substances. The intestine, however, has been relatively unexplored despite its close link with these organs. In vivo models are useful for the study of the effects of MDCs in the intestine and, in addition, allow investigations into interactions with the rest of the organism. In the latter respect, the zebrafish is an animal model which is used increasingly for the characterization of endocrine disruptors and its use as a model for assessing effects on the intestine will, no doubt, expand. This review aims to highlight the importance of the intestine in metabolism and present the zebrafish as a relevant alternative model for investigating the effect of pollutants in the intestine by focusing, in particular, on cytochrome P450 3A (CYP3A), one of the major molecular players in endogenous and MDCs metabolism in the gut.
Collapse
Affiliation(s)
- Chedi Erradhouani
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
- Université Paris CitéFrance
- Inserm UMR‐S 1124ParisFrance
| | | | - Selim Aït‐Aïssa
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| | | | - François Brion
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| |
Collapse
|
5
|
Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, Parhar IS, Ogawa S, Hwa WE. 1H NMR metabolomics insights into comparative diabesity in male and female zebrafish and the antidiabetic activity of DL-limonene. Sci Rep 2024; 14:3823. [PMID: 38360784 PMCID: PMC10869695 DOI: 10.1038/s41598-023-45608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 02/17/2024] Open
Abstract
Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University, 65779-7738, Alaqiq, Saudi Arabia
| | - Norazlan Mohmad Misnan
- Institute for Medical Research Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, UiTM Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Feng WW, Chen HC, Audira G, Suryanto ME, Saputra F, Kurnia KA, Vasquez RD, Casuga FP, Lai YH, Hsiao CD, Hung CH. Evaluation of Tacrolimus' Adverse Effects on Zebrafish in Larval and Adult Stages by Using Multiple Physiological and Behavioral Endpoints. BIOLOGY 2024; 13:112. [PMID: 38392330 PMCID: PMC10886482 DOI: 10.3390/biology13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Tacrolimus (FK506) is a common immunosuppressant that is used in organ transplantation. However, despite its importance in medical applications, it is prone to adverse side effects. While some studies have demonstrated its toxicities to humans and various animal models, very few studies have addressed this issue in aquatic organisms, especially zebrafish. Here, we assessed the adverse effects of acute and chronic exposure to tacrolimus in relatively low doses in zebrafish in both larval and adult stages, respectively. Based on the results, although tacrolimus did not cause any cardiotoxicity and respiratory toxicity toward zebrafish larvae, it affected their locomotor activity performance in light-dark locomotion tests. Meanwhile, tacrolimus was also found to slightly affect the behavior performance, shoaling formation, circadian rhythm locomotor activity, and color preference of adult zebrafish in a dose-dependent manner. In addition, alterations in the cognitive performance of the fish were also displayed by the treated fish, indicated by a loss of short-term memory. To help elucidate the toxicity mechanism of tacrolimus, molecular docking was conducted to calculate the strength of the binding interaction between tacrolimus to human FKBP12. The results showed a relatively normal binding affinity, indicating that this interaction might only partly contribute to the observed alterations. Nevertheless, the current research could help clinicians and researchers to further understand the toxicology of tacrolimus, especially to zebrafish, thus highlighting the importance of considering the toxicity of tacrolimus prior to its usage.
Collapse
Affiliation(s)
- Wen-Wei Feng
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Dr. Feng's Dermatology Clinic, Kaohsiung 82445, Taiwan
| | - Hsiu-Chao Chen
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Dr. Feng's Dermatology Clinic, Kaohsiung 82445, Taiwan
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Ferry Saputra
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Kevin Adi Kurnia
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Ross D Vasquez
- Research Center for Natural and Applied Sciences, Department of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
- The Graduate School, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Franelyne P Casuga
- Research Center for Natural and Applied Sciences, Department of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
- The Graduate School, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|
7
|
Chahardehi AM, Hosseini Y, Mahdavi SM, Naseh I. The Zebrafish Model as a New Discovery Path for Medicinal Plants in the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:306-314. [PMID: 36999188 DOI: 10.2174/1871527322666230330111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
Parkinson's disease (PD) is one of the most frequent degenerative central nervous system disorders affecting older adults. Dopaminergic neuron failure in the substantia nigra is a pathological sign connected with the motor shortfall of PD. Due to their low teratogenic and adverse effect potential, medicinal herbs have emerged as a promising therapy option for preventing and curing PD and other neurodegenerative disorders. However, the mechanism through which natural compounds provide neuroprotection against PD remains unknown. While testing compounds in vertebrates such as mice is prohibitively expensive and time-consuming, zebrafish (Danio rerio) may offer an appealing alternative because they are vertebrates and share many of the same characteristics as humans. Zebrafish are commonly used as animal models for studying many human diseases, and their molecular history and bioimaging properties are appropriate for the study of PD. However, a literature review indicated that only six plants, including Alpinia oxyhylla, Bacopa monnieri, Canavalia gladiate, Centella asiatica, Paeonia suffruticosa, and Stachytarpheta indica had been investigated as potential PD treatments using the zebrafish model. Only C. asiatica and B. monnieri were found to have potential anti-PD activity. In addition to reviewing the current state of research in this field, these plants' putative mechanisms of action against PD are explored, and accessible assays for investigation are made.
Collapse
Affiliation(s)
| | - Yasaman Hosseini
- Cognitive Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mahdavi
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology (MUT), Tehran, Iran
| | - Iman Naseh
- Cognitive Neuroscience Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Syed Mohamad SNA, Khatib A, So’ad SZM, Ahmed QU, Ibrahim Z, Nipun TS, Humaryanto H, AlAjmi MF, Khalifa SAM, El-Seedi HR. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals (Basel) 2023; 16:1692. [PMID: 38139818 PMCID: PMC10747829 DOI: 10.3390/ph16121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Siti Zaiton Mat So’ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
9
|
Wang Y, Pan Y, Hou M, Luo R, He J, Lin F, Xia X, Li P, He C, He P, Cheng S, Song Z. Danggui Shaoyao San ameliorates the lipid metabolism via the PPAR signaling pathway in a Danio rerio (zebrafish) model of hyperlipidemia. Biomed Pharmacother 2023; 168:115736. [PMID: 37852100 DOI: 10.1016/j.biopha.2023.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
The escalating prevalence of hyperlipidemia has a profound impact on individuals' daily physiological well-being. The traditional Chinese medicine (TCM) prescription Danggui Shaoyao San (DSS) has demonstrated significant clinical efficacy and promising prospects for clinical application. Leveraging network pharmacology and bioinformatics, we hypothesize that DSS can ameliorate lipid metabolic disorders in hyperlipidemia by modulating the PPAR signaling pathway. In this study, we employed a zebrafish model to investigate the impact of DSS on lipid metabolism in hyperlipidemia. Body weight alterations were monitored by pre- and postmodeling weight measurements. Behavioral assessments and quantification of liver biochemical markers were conducted using relevant assay kits. Pathways associated with lipid metabolism were identified through network pharmacology and GEO analysis, while PCR was utilized to assess genes linked to lipid metabolism. Western blotting was employed to analyze protein expression levels, and liver tissue underwent Oil Red O and immunofluorescence staining to evaluate liver lipid deposition. Our findings demonstrate that DSS effectively impedes weight gain and reduces liver lipid accumulation in zebrafish models with elevated lipid levels. The therapeutic effects of DSS on lipid metabolism are mediated through its modulation of the PPAR signaling pathway, resulting in a significant reduction in lipid accumulation within the body and alleviation of certain hyperlipidemia-associated symptoms.
Collapse
Affiliation(s)
- Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Ying Pan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Fan Lin
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Xiaofang Xia
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Pan He
- Research Institute of Zhong Nan Grain and Oil Foods, Changsha 410208, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, Hunan, China.
| |
Collapse
|
10
|
Zhang L, Tong Y, Fang Y, Pei J, Wang Q, Li G. Exploring the hypolipidemic effects of bergenin from Saxifraga melanocentra Franch: mechanistic insights and potential for hyperlipidemia treatment. Lipids Health Dis 2023; 22:203. [PMID: 38001454 PMCID: PMC10668478 DOI: 10.1186/s12944-023-01973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE The goal of this study was to explore the hypolipidemic effects of bergenin extracted from Saxifraga melanocentra Franch (S. melanocentra), which is a frequently utilized Tibetan medicinal plant known for its diverse bioactivities. Establishing a quality control system for black stem saxifrage is crucial to ensure the rational utilization of its medicinal resources. METHODS A one-step polyamide medium-pressure liquid chromatography technique was applied to isolate and prepare bergenin from a methanol extract of S. melanocentra. A zebrafish model of hyperlipidemia was used to investigate the potential hypolipidemic effects of bergenin. RESULTS The results revealed that bergenin exhibited substantial hypo efficacy in vivo. Specifically, bergenin significantly reduced the levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) while simultaneously increasing high-density lipoprotein cholesterol (HDL-c) levels. At the molecular level, bergenin exerted its effects by inhibiting the expression of FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-1β, and TNF while promoting the expression of IL-4 at the transcriptional level. Molecular docking analysis further demonstrated the strong binding affinity of bergenin to proteins such as FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-4, IL-1β, and TNF. CONCLUSIONS Findings indicate that bergenin modulates lipid metabolism by regulating lipid and cholesterol synthesis as well as inflammatory responses through signaling pathways associated with FASN, SREBF1, and RORα. These results position bergenin as a potential candidate for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Li Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China
| | - Yingying Tong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Yan Fang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Jinjin Pei
- Qinba State Key Laboratory of biological resources and ecological environment, Province Key Laboratory of Bioresources, College of Bioscience and bioengineering, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China.
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China.
| |
Collapse
|
11
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
12
|
Alnassar N, Hillman C, Fontana BD, Robson SC, Norton WHJ, Parker MO. angptl4 gene expression as a marker of adaptive homeostatic response to social isolation across the lifespan in zebrafish. Neurobiol Aging 2023; 131:209-221. [PMID: 37690345 DOI: 10.1016/j.neurobiolaging.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.
Collapse
Affiliation(s)
- Nancy Alnassar
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK
| | | | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK.
| |
Collapse
|
13
|
Nam YH, Kim EB, Kang JE, Kim JS, Jeon Y, Shin SW, Kang TH, Kwak JH. Ameliorative Effects of Flavonoids from Platycodon grandiflorus Aerial Parts on Alloxan-Induced Pancreatic Islet Damage in Zebrafish. Nutrients 2023; 15:nu15071798. [PMID: 37049638 PMCID: PMC10096680 DOI: 10.3390/nu15071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Platycodon grandiflorus (balloon flower), used as a food reserve as well as in traditional herbal medicine, is known for its multiple beneficial effects. In particular, this plant is widely used as a vegetable in Republic of Korea. We examined the ameliorative effects of P. grandiflorus on alloxan-induced pancreatic islet damage in zebrafish. The aerial part treatment led to a significant recovery in pancreatic islet size and glucose uptake. The efficacy of the aerial part was more potent than that of the root. Eight flavonoids (1-8) were isolated from the aerial part. Structures of two new flavone glycosides, designated dorajiside I (1) and II (2), were elucidated to be luteolin 7-O-α-L-rhamno-pyranosyl (1 → 2)-(6-O-acetyl)-β-D-glucopyranoside and apigenin 7-O-α-L-rhamnopyranosyl (1 → 2)-(6-O-acetyl)-β-D-glucopyranoside, respectively, by spectroscopic analysis. Compounds 1, 3, 4 and 6-8 yielded the recovery of injured pancreatic islets in zebrafish. Among them, compound 7 blocked KATP channels in pancreatic β-cells. Furthermore, compounds 3, 4, 6 and 7 showed significant changes with respect to the mRNA expression of GCK, GCKR, GLIS3 and CDKN2B compared to alloxan-induced zebrafish. In conclusion, the aerial part of P. grandiflorus and its constituents conferred a regenerative effect on injured pancreatic islets.
Collapse
Affiliation(s)
- Youn Hee Nam
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea
| | - Eun Bin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Eun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ju Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yukyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Woo Shin
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
14
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
15
|
Zebrafish, a biological model for pharmaceutical research for the management of anxiety. Mol Biol Rep 2023; 50:3863-3872. [PMID: 36757551 DOI: 10.1007/s11033-023-08263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
The zebrafish (Danio rerio) is a valuable animal model rapidly becoming more commonly used in pharmaceutical studies. Due to its low-cost maintenance and high breeding potential, the zebrafish is a suitable substitute for most adult rodents (mice and rats) in neuroscience research. It is widely used in various anxiety models. This species has been used to develop a conceptual framework for anxiety behavior studies with broad applications in the laboratory, including the study of herbal and chemical drugs. This review discusses the latest studies of anxiety-related behavior in the zebrafish model.
Collapse
|
16
|
Qosimah D, Santoso S, Maftuch M, Khotimah H, Fitri LE, Aulanni'am A, Suwanti LT. Aeromonas hydrophila induction method in adult zebrafish (Danio rerio) as animal infection models. Vet World 2023; 16:250-257. [PMID: 37042012 PMCID: PMC10082706 DOI: 10.14202/vetworld.2023.250-257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Background and Aim: Zebrafish are frequently used as model organisms in scientific research as their genes mirror those of humans. Aeromonas hydrophila bacteria can infect humans and animals, mainly fish. This study aimed to identify the concentration and route of A. hydrophila infection in adult zebrafish. Zebrafish had been used as a challenge test by analyzing their hematological profiles, blood glucose levels, and survival rates.
Materials and Methods: Induction of cell supernatant free (CSF) from A. hydrophila bacteria in adult zebrafish was carried out via bath immersion (BI), intraperitoneal injection (IPI), intramuscular injection (IMI), and healthy zebrafish as a control (C). The bacterial concentrations were 107, 109, and 1011 colony-forming units (CFU)/mL. At 24 h post-infection, the outcomes of infection were evaluated based on survival rates, hematological profiles, and blood glucose levels. A one-way analysis of variance with a confidence level of 95% was employed to examine the data.
Results: In the BI, IPI, and IMI treatment groups, the survival rate of the fish reached a peak of 100%, 22%–100%, and 16%–63%, respectively, compared with the injection technique. In the IMI2 group, a 109 CFU/mL bacterial concentration was determined to correspond to the lethal dosage 50. All infection groups had lower erythrocyte and hemoglobin counts but higher leukocyte counts than the control group. The blood sugar levels of the healthy and infected groups were not significantly different.
Conclusion: The route of A. hydrophila infection through Intramuscular injection with a concentration of 109 CFU/mL indicated a high performance compared to other techniques. This method could be developed as a reproducible challenge test.
Collapse
Affiliation(s)
- Dahliatul Qosimah
- Doctoral Study Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; Laboratory of Microbiology and Immunology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Sanarto Santoso
- Laboratory of Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Maftuch Maftuch
- Laboratory of Fish Diseases, Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Husnul Khotimah
- Laboratory of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar Fitri
- Laboratory of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aulanni'am Aulanni'am
- Department of Chemistry, Faculty of Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Lucia Tri Suwanti
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
17
|
Grepper D, Tabasso C, Aguettaz AKF, Martinotti A, Ebrahimi A, Lagarrigue S, Amati F. Methodological advancements in organ-specific ectopic lipid quantitative characterization: Effects of high fat diet on muscle and liver intracellular lipids. Mol Metab 2023; 68:101669. [PMID: 36642092 PMCID: PMC9938329 DOI: 10.1016/j.molmet.2023.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Ectopic lipid accumulation is a hallmark of metabolic diseases, linking obesity to non-alcoholic fatty liver disease, insulin resistance and diabetes. The use of zebrafish as a model of obesity and diabetes is raising due to the conserved properties of fat metabolism between humans and zebrafish, the homologous genes regulating lipid uptake and transport, the implementation of the '3R's principle and their cost-effectiveness. To date, a method allowing the conservation of lipid droplets (LDs) and organs in zebrafish larvae to image ectopic lipids is not available. Our objectives were to develop a novel methodology to quantitatively evaluate organ-specific LDs, in skeletal muscle and liver, in response to a nutritional perturbation. METHODS We developed a novel embedding and cryosectioning protocol allowing the conservation of LDs and organs in zebrafish larvae. To establish the quantitative measures, we used a three-arm parallel nutritional intervention design. Zebrafish larvae were fed a control diet containing 14% of nutritional fat or two high fat diets (HFDs) containing 25 and 36% of dietary fats. In muscle and liver, LDs were characterized using immunofluorescence confocal microscopy. In liver, intrahepatocellular lipids were discriminated from intrasinusoid lipids. To complete liver characteristics, fibrosis was identified with Masson's Trichrome staining. Finally, to confirm the conservation and effect of HFD, molecular players of fat metabolism were evaluated by RT-qPCR. RESULTS The cryosections obtained after setting up the embedding and cryopreservation method were of high quality, preserving tissue morphology and allowing the visualization of ectopic lipids. Both HFDs were obesogenic, without modifying larvae survival or development. Neutral lipid content increased with time and augmented dietary fat. Intramuscular LD volume density increased and was explained by an increase in LDs size but not in numbers. Intrahepatocellular LD volume density increased and was explained by an increased number of LDs, not by their increased size. Sinusoid area and lipid content were both increased. Hepatic fibrosis appeared with both HFDs. We observed alterations in the expression of genes associated with LD coating proteins, LD dynamics, lipogenesis, lipolysis and fatty acid oxidation. CONCLUSIONS In this study, we propose a reproducible and fast method to image zebrafish larvae without losing LD quality and organ morphology. We demonstrate the impact of HFD on LD characteristics in liver and skeletal muscle accompanied by alterations of key players of fat metabolism. Our observations confirm the evolutionarily conserved mechanisms in lipid metabolism and reveal organ specific adaptations. The methodological advancements proposed in this work open the doors to study organelle adaptations in obesity and diabetes related research such as lipotoxicity, organelle contacts and specific lipid depositions.
Collapse
Affiliation(s)
- Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Cassandra Tabasso
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Axel K F Aguettaz
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adrien Martinotti
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Zhang L, Deng M, Wang SY, Ding Q, Liu JH, Xie X, Huang YH, Tu ZC. Mitigation of Paeoniae Radix Alba extracts on H 2O 2-induced oxidative damage in HepG2 cells and hyperglycemia in zebrafish, and identification of phytochemical constituents. Front Nutr 2023; 10:1135759. [PMID: 36908919 PMCID: PMC9995737 DOI: 10.3389/fnut.2023.1135759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Paeoniae Radix Alba (PRA), as a Traditional Chinese Medicine, is widely used in Chinese cuisine due to high health-benefits and nutrition, but the effect of different polarity of solvents on the extraction of antioxidant and hypoglycemic constituents, as well as the major active compounds remain unclear. In this research, 40, 70, and 95% ethanol were firstly applied to extract the polyphenols from PRA, the extraction yields, total phenolics, and total flavonoids content, free radical scavenging ability, α-glucosidase inhibition ability, and anti-glycation ability of extracts were evaluated spectroscopically. The oxidative damage protection, hypoglycemic activity, and alleviation on peripheral nerve damage were evaluated by H2O2-induced HepG2 cells and hyperglycemic zebrafish models. UPLC-QTOF-MS/MS was used to identify the major chemical constituents. The results showed that 40, 70, and 95% ethanol exhibited insignificant difference on the extraction of phenolics and flavonoids from PRA. All extracts showed promising DPPH⋅ and ABTS⋅+ scavenging ability, α-glucosidase inhibition and anti-glycation ability. In addition, PRA extracts could restore the survival rate of HepG2 cells induced by H2O2, and alleviate the oxidative stress by reducing the content of MDA and increasing the levels of SOD, CAT, and GSH-Px. The 70% ethanol extract could also mitigate the blood glucose level and peripheral motor nerve damage of hyperglycemic zebrafish. Thirty-five compounds were identified from 70% ethanol extract, gallotannins, gallic acid and its derivatives, and paeoniflorin and its derivatives were the dominant bioactive compounds. Above results could provide important information for the value-added application of PRA in functional food and medicinal industry.
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China.,Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi, China
| | - Mei Deng
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Si-Yu Wang
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Qiao Ding
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jia-Hui Liu
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xing Xie
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yun-Hong Huang
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Kulkarni A, Muralidharan C, May SC, Tersey SA, Mirmira RG. Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis. Endocrinology 2022; 164:bqac184. [PMID: 36317483 PMCID: PMC9667558 DOI: 10.1210/endocr/bqac184] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/05/2022]
Abstract
The pathogeneses of the 2 major forms of diabetes, type 1 and type 2, differ with respect to their major molecular insults (loss of immune tolerance and onset of tissue insulin resistance, respectively). However, evidence suggests that dysfunction and/or death of insulin-producing β-cells is common to virtually all forms of diabetes. Although the mechanisms underlying β-cell dysfunction remain incompletely characterized, recent years have witnessed major advances in our understanding of the molecular pathways that contribute to the demise of the β-cell. Cellular and environmental factors contribute to β-cell dysfunction/loss through the activation of molecular pathways that exacerbate endoplasmic reticulum stress, the integrated stress response, oxidative stress, and impaired autophagy. Whereas many of these stress responsive pathways are interconnected, their individual contributions to glucose homeostasis and β-cell health have been elucidated through the development and interrogation of animal models. In these studies, genetic models and pharmacological compounds have enabled the identification of genes and proteins specifically involved in β-cell dysfunction during diabetes pathogenesis. Here, we review the critical stress response pathways that are activated in β cells in the context of the animal models.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah C May
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah A Tersey
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
Mawed SA, Centoducati G, Farag MR, Alagawany M, Abou-Zeid SM, Elhady WM, El-Saadony MT, Di Cerbo A, Al-Zahaby SA. Dunaliella salina Microalga Restores the Metabolic Equilibrium and Ameliorates the Hepatic Inflammatory Response Induced by Zinc Oxide Nanoparticles (ZnO-NPs) in Male Zebrafish. BIOLOGY 2022; 11:biology11101447. [PMID: 36290351 PMCID: PMC9598141 DOI: 10.3390/biology11101447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Microalgae are rich in bioactive compounds including pigments, proteins, lipids, polyunsaturated fatty acids, carbohydrates, and vitamins. Due to their non-toxic and nutritious characteristics, these are suggested as important food for many aquatic animals. Dunaliella salina is a well-known microalga that accumulates valuable amounts of carotenoids. We investigated whether it could restore the metabolic equilibrium and mitigate the hepatic inflammation induced by zinc oxide nanoparticles (ZnO-NPs) using male zebrafish which were exposed to 1/5th 96 h-LC50 for 4 weeks, followed by dietary supplementation with D. salina at two concentrations (15% and 30%) for 2 weeks. Collectively, ZnO-NPs affected fish appetite, whole body composition, hepatic glycogen and lipid contents, intestinal bacterial and Aeromonas counts, as well as hepatic tumor necrosis factor- α (TNF-α). In addition, the mRNA expression of genes related to gluconeogenesis (pck1, gys2, and g6pc3), lipogenesis (srepf1, acaca, fasn, and cd36), and inflammatory response (tnf-α, tnf-β, nf-kb2) were modulated. D. salina reduced the body burden of zinc residues, restored the fish appetite and normal liver architecture, and mitigated the toxic impacts of ZnO-NPs on whole-body composition, intestinal bacteria, energy metabolism, and hepatic inflammatory markers. Our results revealed that the administration of D. salina might be effective in neutralizing the hepatotoxic effects of ZnO-NPs in the zebrafish model.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (S.A.M.); (G.C.)
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, Casamassima km 3, 70010 Valenzano, Italy
- Correspondence: (S.A.M.); (G.C.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 6012201, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
21
|
Abdullah NR, Mohd Nasir MH, Azizan NH, Wan-Mohtar WAAQI, Sharif F. Bioreactor-grown exo- and endo-β-glucan from Malaysian Ganoderma lucidum: An in vitro and in vivo study for potential antidiabetic treatment. Front Bioeng Biotechnol 2022; 10:960320. [PMID: 36091430 PMCID: PMC9452895 DOI: 10.3389/fbioe.2022.960320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to identify the roles of exo-β-glucan (EPS-BG) and endo-β-glucan (ENS-BG) extracted from Ganoderma lucidum (GL) in inhibiting the alpha-glucosidase enzyme, a target mechanism for postprandial hyperglycaemia regulation. Upscale production of GL was carried out using a 10 L bioreactor. The zebrafish embryo toxicity test (ZFET) was carried out based on OECD guidelines. The hatching rate, survival rate, heart rate, morphological malformation, and teratogenic defects were observed and determined every 24 h from 0–120 h of post-exposure (hpe). For diabetes induction, adult zebrafish (3–4 months of age) were overfed and induced with three doses of 350 mg/kg streptozotocin (STZ) by intraperitoneal injection (IP) on three different days (days 1, 3, and 5). The oral sucrose tolerance test (OSTT) and anti-diabetic activity of EPS-BG and ENS-BG were evaluated (day 7) using the developed model (n = 15). This study showed that EPS is the most potent compound with the highest inhibitory effect toward the alpha-glucosidase enzyme with an IC50 value of 0.1575 mg/ml compared to ENS extracts (IC50 = 0.3479 mg/ml). Both EPS-BG and ENS-BG demonstrated a strong inhibition of alpha-glucosidase activity similar to the clinically approved alpha-glucosidase inhibitor, acarbose (IC50 = 0.8107 mg/ml). ENS-BG is non-toxic toward zebrafish embryos with LC50 of 0.92 mg/ml and showed no significant changes in ZE hatching and normal heart rate as compared to untreated embryos (161 beats/min). Teratogenic effects of ENS-BG (<1.0 mg/ml) on zebrafish embryonic development were not observed. The DM model of zebrafish was acquired after the third dose of STZ with a fasting BGL of 8.98 ± 0.28 mmol/L compared to the normal healthy group (4.23 ± 0.62 mmol/L). The BGL of DM zebrafish after 30 min treated with EPS-BG and ENS-BG showed a significant reduction (p < 0.0001). Both EPS-BG and ENS-BG significantly reduced DM zebrafish’s peak blood glucose and the area under the curve (AUC) in OSTT. Hence, EPS-BG and ENS-BG extracted from GL showed promising inhibition of the alpha-glucosidase enzyme and are considered non-toxic in ZE. Moreover, EPS-BG and ENS-BG reduced blood glucose levels and inhibited hyperglycemia in DM zebrafish.
Collapse
Affiliation(s)
- Nur Raihan Abdullah
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Nur Hafizah Azizan
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faez Sharif
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- *Correspondence: Faez Sharif,
| |
Collapse
|
22
|
Ghaddar B, Gence L, Veeren B, Bringart M, Bascands JL, Meilhac O, Diotel N. Aqueous Extract of Psiloxylon mauritianum, Rich in Gallic Acid, Prevents Obesity and Associated Deleterious Effects in Zebrafish. Antioxidants (Basel) 2022; 11:antiox11071309. [PMID: 35883799 PMCID: PMC9312056 DOI: 10.3390/antiox11071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating metabolic disorders because of its traditional lipid-lowering and “anti-diabetic” use. However, scientific data are lacking regarding its toxicity and its real benefits on metabolic diseases. In this study, we aim to determine the toxicity of an aqueous extract of P. mauritianum on zebrafish eleutheroembryos following the OECD toxicity assay (Organization for Economic Cooperation and Development, guidelines 36). After defining a non-toxic dose, we determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) that this extract is rich in gallic acid but contains also caffeoylquinic acid, kaempferol and quercetin, as well as their respective derivatives. We also showed that the non-toxic dose exhibits lipid-lowering effects in a high-fat-diet zebrafish larvae model. In a next step, we demonstrated its preventive effects on body weight gain, hyperglycemia and liver steatosis in a diet-induced obesity model (DIO) performed in adults. It also limited the deleterious effects of overfeeding on the central nervous system (i.e., cerebral oxidative stress, blood-brain barrier breakdown, neuro-inflammation and blunted neurogenesis). Interestingly, adult DIO fish treated with P. mauritianum display normal feeding behavior but higher feces production. This indicates that the “anti-weight-gain” effect is probably due to the action of P. mauritianum on the intestinal lipid absorption and/or on the microbiota, leading to the increase in feces production. Therefore, in our experimental conditions, the aqueous extract of P. mauritianum exhibited “anti-weight-gain” properties, which prevented the development of obesity and its deleterious effects at the peripheral and central levels. These effects should be further investigated in preclinical models of obese/diabetic mice, as well as the impact of P. mauritianum on the gut microbiota.
Collapse
Affiliation(s)
- Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Matthieu Bringart
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- CHU de La Réunion, 97400 Saint-Denis, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- Correspondence:
| |
Collapse
|
23
|
da Silva KM, Iturrospe E, van den Boom R, van de Lavoir M, Robeyns R, Vergauwen L, Knapen D, Cuykx M, Covaci A, van Nuijs ALN. Lipidomics profiling of zebrafish liver through untargeted liquid chromatography-high resolution mass spectrometry. J Sep Sci 2022; 45:2935-2945. [PMID: 35716100 DOI: 10.1002/jssc.202200214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Lipidomics analysis of zebrafish tissues has shown promising results to understand disease-related outcomes of exposure to toxic substances at molecular level. However, knowledge about their lipidome is limited, as most untargeted studies only identify the lipids that are statistically significant in their setup. In this work, liquid chromatography-high resolution mass spectrometry was used to study different aspects of the analytical workflow, i.e., extraction solvents (methanol/chloroform/water (3/2/2, v/v/v), methanol/dichloromethane/water (2/3/2, v/v/v) and methanol/methyl-tert-butyl ether/water (3/10/2.5, v/v/v), instrumental response, and strategies used for lipid annotation. The number of high-quality features (relative standard deviation of the intensity values ≤ 10% in the range 103 -107 counts) was affected by the dilution of lipid extracts, indicating that it is an important parameter for developing untargeted methods. The workflows used allowed the selection of a dilution factor to annotate 712 lipid species (507 bulk lipids) in zebrafish liver using four software (LipidMatch, LipidHunter, MS-DIAL and Lipostar). Retention time mapping was a valuable tool to filter lipid annotations obtained from automatic software annotations. The lipid profiling of zebrafish livers will help in a better understanding of the true constitution of their lipidome at the species level, as well as in the use of zebrafish in toxicological studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Katyeny Manuela da Silva
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Elias Iturrospe
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Campus Jette, Vrije Universiteit Brussels, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Maria van de Lavoir
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Rani Robeyns
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Matthias Cuykx
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,Department of Laboratory Medicine AZ Turnhout, Rubenslaan 166, Turnhout, 2300, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| |
Collapse
|
24
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
25
|
Kassotis CD, Vom Saal FS, Babin PJ, Lagadic-Gossmann D, Le Mentec H, Blumberg B, Mohajer N, Legrand A, Munic Kos V, Martin-Chouly C, Podechard N, Langouët S, Touma C, Barouki R, Kim MJ, Audouze K, Choudhury M, Shree N, Bansal A, Howard S, Heindel JJ. Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochem Pharmacol 2022; 199:115014. [PMID: 35393121 PMCID: PMC9050906 DOI: 10.1016/j.bcp.2022.115014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in both humans and animals. Despite a growing need for well-understood models for evaluating adipogenic and potential obesogenic contaminants, there has been a reliance on decades-old in vitro models that have not been appropriately managed by cell line providers. There has been a quick rise in available in vitro models in the last ten years, including commercial availability of human mesenchymal stem cell and preadipocyte models; these models require more comprehensive validation but demonstrate real promise in improved translation to human metabolic health. There is also progress in developing three-dimensional and co-culture techniques that allow for the interrogation of a more physiologically relevant state. While diverse rodent models exist for evaluating putative obesogenic and/or adipogenic chemicals in a physiologically relevant context, increasing capabilities have been identified for alternative model organisms such as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These models have several appreciable advantages, including most notably their size, rapid development, large brood sizes, and ease of high-resolution lipid accumulation imaging throughout the organisms. They are anticipated to expand the capabilities of metabolic health research, particularly when coupled with emerging obesogen evaluation techniques as described herein.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States.
| | - Frederick S Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, United States
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Helene Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Nicole Mohajer
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Charbel Touma
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, Paris, France
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Nitya Shree
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, ACT, 2611, Australia
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| |
Collapse
|
26
|
Chackal R, Eng T, Rodrigues EM, Matthews S, Pagé-Lariviére F, Avery-Gomm S, Xu EG, Tufenkji N, Hemmer E, Mennigen JA. Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish. Front Pharmacol 2022; 13:822111. [PMID: 35250570 PMCID: PMC8888882 DOI: 10.3389/fphar.2022.822111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Single-use plastic production is higher now than ever before. Much of this plastic is released into aquatic environments, where it is eventually weathered into smaller nanoscale plastics. In addition to potential direct biological effects, nanoplastics may also modulate the biological effects of hydrophobic persistent organic legacy contaminants (POPs) that absorb to their surfaces. In this study, we test the hypothesis that developmental exposure (0–7 dpf) of zebrafish to the emerging contaminant polystyrene (PS) nanoplastics (⌀100 nm; 2.5 or 25 ppb), or to environmental levels of the legacy contaminant and flame retardant 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47; 10 ppt), disrupt organismal energy metabolism. We also test the hypothesis that co-exposure leads to increased metabolic disruption. The uptake of nanoplastics in developing zebrafish was validated using fluorescence microscopy. To address metabolic consequences at the organismal and molecular level, metabolic phenotyping assays and metabolic gene expression analysis were used. Both PS and BDE-47 affected organismal metabolism alone and in combination. Individually, PS and BDE-47 exposure increased feeding and oxygen consumption rates. PS exposure also elicited complex effects on locomotor behaviour with increased long-distance and decreased short-distance movements. Co-exposure of PS and BDE-47 significantly increased feeding and oxygen consumption rates compared to control and individual compounds alone, suggesting additive or synergistic effects on energy balance, which was further supported by reduced neutral lipid reserves. Conversely, molecular gene expression data pointed to a negative interaction, as co-exposure of high PS generally abolished the induction of gene expression in response to BDE-47. Our results demonstrate that co-exposure to emerging nanoplastic contaminants and legacy contaminants results in cumulative metabolic disruption in early development in a fish model relevant to eco- and human toxicology.
Collapse
Affiliation(s)
- Raphaël Chackal
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tyler Eng
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Emille M Rodrigues
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sara Matthews
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Florence Pagé-Lariviére
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Stephanie Avery-Gomm
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Gu L, Wang X, Shao X, Ding Y, Li Y. Study on chemical constituents of Folium Artemisiae argyi Carbonisatum, toxicity evaluation on zebrafish and intestinal hemostasis. Saudi Pharm J 2022; 30:532-543. [PMID: 35693441 PMCID: PMC9177460 DOI: 10.1016/j.jsps.2022.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/27/2022] [Indexed: 01/08/2023] Open
Abstract
Folium Artemisiae argyi Carbonisatum (FAAC) is a traditional medicine widely used in clinic. It has the effect of hemostasis by warming meridians. In order to further explore the chemical composition and biological activity of FAAC, the methanol extract of FAAC was isolated and purified by open column and high- performance liquid chromatography. and the complete structure was characterized by nuclear magnetic resonance (NMR) and LREI-MS for the first time, namely rutin, quercetin and octacosanol respectively. Initially the toxic effect of methanol extract of FAAC on zebrafish was evaluated by observing the phenotypic characteristics, spontaneous twitch times, heart rate, hatching rate, the distance of SV-BA and cardiomyocyte apoptosis of zebrafish. The results showed that FAAC has embryonic development toxicity and cardiotoxicity when it was higher than 62.5 μg/mL. Meanwhile, the hemostatic effect of methanol extract of FAAC was compared with FAA (Folium Artemisia argyi) by zebrafish intestinal bleeding model originally. The results showed that the hemostatic effect of the medium and high concentration dose groups (3.0 and 30.0 μg/mL) was enhanced for both FAAC and FAA. This study provided an experimental basis for the clinical application of FAAC.
Collapse
|
28
|
Merola C, Vremere A, Fanti F, Iannetta A, Caioni G, Sergi M, Compagnone D, Lorenzetti S, Perugini M, Amorena M. Oxysterols Profile in Zebrafish Embryos Exposed to Triclocarban and Propylparaben-A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031264. [PMID: 35162288 PMCID: PMC8834710 DOI: 10.3390/ijerph19031264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Oxysterols have long been considered as simple by-products of cholesterol metabolism, but they are now fully designed as bioactive lipids that exert their multiple effects through their binding to several receptors, representing endogenous mediators potentially involved in several metabolic diseases. There is also a growing concern that metabolic disorders may be linked with exposure to endocrine-disrupting chemicals (EDCs). To date, there are no studies aimed to link EDCs exposure to oxysterols perturbation-neither in vivo nor in vitro studies. The present research aimed to evaluate the differences in oxysterols levels following exposure to two metabolism disrupting chemicals (propylparaben (PP) and triclocarban (TCC)) in the zebrafish model using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Following exposure to PP and TCC, there were no significant changes in total and individual oxysterols compared with the control group; however, some interesting differences were noticed: 24-OH was detected only in treated zebrafish embryos, as well as the concentrations of 27-OH, which followed a different distribution, with an increase in TCC treated embryos and a reduction in zebrafish embryos exposed to PP at 24 h post-fertilization (hpf). The results of the present study prompt the hypothesis that EDCs can modulate the oxysterol profile in the zebrafish model and that these variations could be potentially involved in the toxicity mechanism of these emerging contaminants.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Anton Vremere
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—ISS, 00161 Rome, Italy;
| | - Federico Fanti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Annamaria Iannetta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—ISS, 00161 Rome, Italy;
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
- Correspondence:
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.M.); (A.V.); (F.F.); (A.I.); (M.S.); (D.C.); (M.A.)
| |
Collapse
|
29
|
Muñiz-Ramirez A, Garcia-Campoy AH, Pérez Gutiérrez RM, Garcia Báez EV, Mota Flores JM. Evaluation of the Antidiabetic and Antihyperlipidemic Activity of Spondias purpurea Seeds in a Diabetic Zebrafish Model. PLANTS (BASEL, SWITZERLAND) 2021; 10:1417. [PMID: 34371620 PMCID: PMC8309283 DOI: 10.3390/plants10071417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Diabetes mellitus (DM) is a serious chronic degenerative disease characterized by high levels of glucose in the blood. It is associated with an absolute or relative deficiency in the production and/or action of insulin. Some of the complications associated with DM are heart disease, retinopathy, kidney disease, and neuropathy; therefore, new natural alternatives are being sought to control the disease. In this work, we evaluate the antidiabetic effect of Spondias purpurea seed methanol extract (CSM) in vitro and in a glucose-induced diabetic zebrafish model. CSM is capable of lowering blood glucose and cholesterol levels, as well as forming advanced glycation end-products, while not presenting toxic effects at the concentrations evaluated. These data show that CSM has a promising antidiabetic effect and may be useful in reducing some of the pathologies associated with diabetes mellitus.
Collapse
Affiliation(s)
- Alethia Muñiz-Ramirez
- CONACYT-IPICYT/CIIDZA, Camino a la Presa de San José 2055, Colonia, Lomas 4 Sección, San Luis Potosí CP 78216, Mexico
| | - Abraham Heriberto Garcia-Campoy
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| | - Rosa Martha Pérez Gutiérrez
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| | - Efrén Venancio Garcia Báez
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional, Acueducto S/N, Barrio la laguna Ticomán, Ciudad de México CP 07340, Mexico;
| | - José María Mota Flores
- Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico; (R.M.P.G.); (J.M.M.F.)
| |
Collapse
|
30
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
31
|
Zebrafish and Flavonoids: Adjuvants against Obesity. Molecules 2021; 26:molecules26103014. [PMID: 34069388 PMCID: PMC8158719 DOI: 10.3390/molecules26103014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is a pathological condition, defined as an excessive accumulation of fat, primarily caused by an energy imbalance. The storage of excess energy in the form of triglycerides within the adipocyte leads to lipotoxicity and promotes the phenotypic switch in the M1/M2 macrophage. These changes induce the development of a chronic state of low-grade inflammation, subsequently generating obesity-related complications, commonly known as metabolic syndromes. Over the past decade, obesity has been studied in many animal models. However, due to its competitive aspects and unique characteristics, the use of zebrafish has begun to gain traction in experimental obesity research. To counteract obesity and its related comorbidities, several natural substances have been studied. One of those natural substances reported to have substantial biological effects on obesity are flavonoids. This review summarizes the results of studies that examined the effects of flavonoids on obesity and related diseases and the emergence of zebrafish as a model of diet-induced obesity.
Collapse
|
32
|
Migocka-Patrzałek M, Elias M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021; 10:cells10040883. [PMID: 33924466 PMCID: PMC8070155 DOI: 10.3390/cells10040883] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches.
Collapse
|
33
|
Montalbano G, Maugeri A, Guerrera MC, Miceli N, Navarra M, Barreca D, Cirmi S, Germanà A. A White Grape Juice Extract Reduces Fat Accumulation through the Modulation of Ghrelin and Leptin Expression in an In Vivo Model of Overfed Zebrafish. Molecules 2021; 26:molecules26041119. [PMID: 33672773 PMCID: PMC7924606 DOI: 10.3390/molecules26041119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
A caloric surplus and a sedentary lifestyle are undoubtedly known to be the leading causes of obesity. Natural products represent valuable allies to face this problematic issue. This study was planned to assess the effect of a white grape (Vitis vinifera) juice extract (WGJe) in diet-induced obese zebrafish (Danio rerio). Fish were divided into four different diet groups: (i) normally fed (NF); (ii) overfed (OF); (iii) WGJe-supplemented NF (5 mL/L in fish water); (iv) WGJe-supplemented OF. Body mass index (BMI) was extrapolated each week. After the fourth week, euthanized zebrafish were processed for both microscopic evaluations and gene expression analyses. OF zebrafish showed higher BMI values with respect to NF counterparts, an effect that was hindered by WGJe treatment. Moreover, histological analyses showed that the area of the adipose tissue, as well as the number, size, and density of adipocytes was significantly higher in OF fish. On the other hand, WGJe was able to avoid these outcomes both at the subcutaneous and visceral levels, albeit to different extents. At the gene level, WGJe restored the altered levels of ghrelin and leptin of OF fish both in gut and brain. Overall, our results support the anti-obesity property of WGJe, suggesting its potential role in weight management.
Collapse
Affiliation(s)
- Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.M.); (M.C.G.); (A.G.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.M.); (M.C.G.); (A.G.)
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence: or
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.M.); (M.C.G.); (A.G.)
| |
Collapse
|
34
|
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish. Biomolecules 2020; 10:biom10091352. [PMID: 32971894 PMCID: PMC7564250 DOI: 10.3390/biom10091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of metabolism cause abnormal synthesis, recycling, or breakdown of amino acids, neurotransmitters, and other various metabolites. This aberrant homeostasis commonly causes the accumulation of toxic compounds or depletion of vital metabolites, which has detrimental consequences for the patients. Efficient and rapid intervention is often key to survival. Therefore, it requires useful animal models to understand the pathomechanisms and identify promising therapeutic drug targets. Zebrafish are an effective tool to investigate developmental mechanisms and understanding the pathophysiology of disorders. In the past decades, zebrafish have proven their efficiency for studying genetic disorders owing to the high degree of conservation between human and zebrafish genes. Subsequently, several rare inherited metabolic disorders have been successfully investigated in zebrafish revealing underlying mechanisms and identifying novel therapeutic targets, including methylmalonic acidemia, Gaucher’s disease, maple urine disorder, hyperammonemia, TRAPPC11-CDGs, and others. This review summarizes the recent impact zebrafish have made in the field of inborn errors of metabolism.
Collapse
|
35
|
Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1253710. [PMID: 31828085 PMCID: PMC6886339 DOI: 10.1155/2019/1253710] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Danio rerio (zebrafish) is an elective model organism for the study of vertebrate development because of its high degree of homology with human genes and organs, including bone. Zebrafish embryos, because of the optical clarity, small size, and fast development, can be easily used in large-scale mutagenesis experiments to isolate mutants with developmental skeletal defects and in high-throughput screenings to find new chemical compounds for the ability to revert the pathological phenotype. On the other hand, the adult zebrafish represents another powerful resource for pathogenic and therapeutic studies about adult human bone diseases. In fish, some characteristics such as bone turnover, reparation, and remodeling of the adult bone tissue cannot be found at the embryonic stage. Several pathological models have been established in adult zebrafish such as bone injury models, osteoporosis, and genetic diseases such as osteogenesis imperfecta. Given the growing interest for metabolic diseases and their complications, adult zebrafish models of type 2 diabetes and obesity have been recently generated and analyzed for bone complications using scales as model system. Interestingly, an osteoporosis-like phenotype has been found to be associated with metabolic alterations suggesting that bone complications share the same mechanisms in humans and fish. Embryo and adult represent powerful resources in rapid development to study bone physiology and pathology from different points of view.
Collapse
|
36
|
A novel zebrafish model to emulate lung injury by folate deficiency-induced swim bladder defectiveness and protease/antiprotease expression imbalance. Sci Rep 2019; 9:12633. [PMID: 31477754 PMCID: PMC6718381 DOI: 10.1038/s41598-019-49152-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
Lung injury is one of the pathological hallmarks of most respiratory tract diseases including asthma, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). It involves progressive pulmonary tissue damages which are usually irreversible and incurable. Therefore, strategies to facilitate drug development against lung injury are needed. Here, we characterized the zebrafish folate-deficiency (FD) transgenic line that lacks a fully-developed swim bladder. Whole-mount in-situ hybridization revealed comparable distribution patterns of swim bladder tissue markers between wild-type and FD larvae, suggesting a proper development of swim bladder in early embryonic stages. Unexpectedly, neutrophils infiltration was not observed in the defective swim bladder. Microarray analysis revealed a significant increase and decrease of the transcripts for cathepsin L and a cystatin B (CSTB)-like (zCSTB-like) proteins, respectively, in FD larvae. The distribution of cathepsin L and the zCSTB-like transcripts was spatio-temporally specific in developing wild-type embryos and, in appropriate measure, correlated with their potential roles in maintaining swim bladder integrity. Supplementing with 5-formyltetrahydrofolate successfully prevented the swim bladder anomaly and the imbalanced expression of cathepsin L and the zCSTB-like protein induced by folate deficiency. Injecting the purified recombinant zebrafish zCSTB-like protein alleviated FD-induced swim bladder anomaly. We concluded that the imbalanced expression of cathepsin L and the zCSTB-like protein contributed to the swim bladder malformation induced by FD and suggested the potential application of this transgenic line to model the lung injury and ECM remodeling associated with protease/protease inhibitor imbalance.
Collapse
|