1
|
Casco-Robles MM, Echigoya T, Shimazaki T, Murakami Y, Hirano M, Maruo F, Mizuno S, Takahashi S, Chiba C. One-step Cre-loxP organism creation by TAx9. Commun Biol 2025; 8:340. [PMID: 40050380 PMCID: PMC11885649 DOI: 10.1038/s42003-025-07759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
The creation of organisms with Cre-loxP conditional gene recombination systems often faces challenges, particularly when creating the initial (F0) generation with both a Cre recombinase and a DNA site flanked by loxP elements (floxed site). The primary reason is that it is difficult to synthesize a single plasmid with both the Cre gene and the floxed site, since Cre-mediated recombination spontaneously occurs when the plasmid is amplified in Escherichia coli bacterial cells. Here, we introduce an artificial nucleic acid sequence TATATATATATATATATA, named TAx9, that enables the integration of both the Cre gene and the floxed site into a single plasmid. TAx9 effectively blocks spontaneous Cre-mediated recombination in E. coli cells. Using this system, we created an F0 generation of transgenic newts and CRISPR-Cas9 knock-in mice with tissue-specific Cre recombination triggered by tamoxifen. TAx9 technology will be a powerful strategy for creating organisms capable of conditional genetic modification in the F0 generation, accelerating various life science research by reducing the time and cost for ultimately establishing and maintaining lines of genetically modified organisms.
Collapse
Affiliation(s)
| | - Tomoki Echigoya
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeaki Shimazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuri Murakami
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaya Hirano
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fumiaki Maruo
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chikafumi Chiba
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Ono Y, Kaku M, Thant L, Iwama H, Arai M, Mizukoshi M, Dobashi A, Kitami M, Taketo M, Ohazama A, Saito I, Uoshima K. Wnt/β-catenin Promotes Cementum Apposition in Periodontal Regeneration. J Dent Res 2025; 104:183-192. [PMID: 39586793 PMCID: PMC11752650 DOI: 10.1177/00220345241286490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Regeneration of periodontal tissue, particularly the cementum-periodontal ligament (PDL)-bone complex, has long been challenging because the differentiation kinetics of cells and the molecular pathways contributing to the regeneration process are largely unknown. We aimed to evaluate the cell behavior and molecular pathways that contribute to periodontal tissue regeneration in vivo. We analyzed the process of periodontal tissue regeneration through subrenal capsule transplantation of immediately extracted molars in mice. We showed that the regenerated periodontal tissue in the subrenal capsule was morphologically comparable to the intact periodontal tissue, with increased cellular cementum thickness in the apical region. Cell tracing analysis revealed that the cells comprising the regenerated periodontal tissue were derived from transplanted teeth and were indispensable for periodontal tissue regeneration, whereas recipient mouse-derived cells partly contributed to angiogenesis. Bioinformatics analysis based on the gene expression profile in the transplanted teeth indicated that Wnt/β-catenin signaling is involved in periodontal tissue regeneration, which was further confirmed through β-catenin immunohistochemistry. Moreover, the constitutive activation of β-catenin in the cells of transplanted teeth was found to promote accelerated cellular cementum apposition, while the conditional knockout of β-catenin in the cells of transplanted teeth suppressed cellular cementum apposition. Notably, the manipulation of Wnt/β-catenin signaling did not interfere with the bone-PDL-cementum complex, while endogenous osteoclast activity was affected in bone. Our results demonstrated the essential roles of endogenous PDL cells in periodontal tissue regeneration and that Wnt/β-catenin signaling is involved in this process, particularly cellular cementum apposition. Hence, controlling this pathway could promote cementum regeneration, which is a critical process for the regeneration of the cementum-PDL-bone complex. This study provides novel insights into cell behavior and signaling pathways that will advance practical periodontal tissue regeneration.
Collapse
Affiliation(s)
- Y. Ono
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - M. Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - L. Thant
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - H. Iwama
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - M. Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - M. Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - A. Dobashi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - M. Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - M.M. Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - A. Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - I. Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - K. Uoshima
- Division of Bio-Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Nguyen CLK, Kuba Y, Le HT, Shawki HH, Mikami N, Aoki M, Yasuhara N, Suzuki H, Mizuno-Iijima S, Ayabe S, Osawa Y, Fujiyama T, Dinh TTH, Ishida M, Daitoku Y, Tanimoto Y, Murata K, Kang W, Ema M, Hirao Y, Ogura A, Takahashi S, Sugiyama F, Mizuno S. Exocyst complex component 1 (Exoc1) loss in dormant oocyte disrupts c-KIT and growth differentiation factor (GDF9) subcellular localization and causes female infertility in mice. Cell Death Discov 2025; 11:17. [PMID: 39833146 PMCID: PMC11747099 DOI: 10.1038/s41420-025-02291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes. The oocyte expresses c-KIT and growth differentiation factor-9 (GDF-9), which are major factors in this crosstalk. The downstream signalling pathways of c-KIT and GDF-9 have been well-documented; however, their intra-oocyte trafficking pathway remains unclear. Our study reveals that the exocyst complex, a heterotetrameric protein complex important for tethering in vesicular transport, is important for proper intra-oocyte trafficking of c-KIT and GDF9 in mice. We found that depletion of oocyte-specific EXOC1, a component of the exocyst complex, impaired oocyte re-awakening and cyst breakdown, and inhibited granulosa cell proliferation during follicle growth. The c-KIT receptor is localised on the oocyte plasma membrane. The oocyte-specific Kit conditional knockout mice were reported to exhibit impaired oocyte re-awakening and reduced oocyte cyst breakdown. GDF9 is a protein secreted extracellularly in the oocyte. Previous studies have shown that Gdf9 knockout mice impaired proliferation and granulosa cell multilayering in growing follicles. We found that both c-KIT and GDF9 abnormally stuck in the EXOC1-depleted oocyte cytoplasm. These abnormal phenotypes were also observed in oocytes depleted of exocyst complex members EXOC3 and EXOC7. These results clearly show that the exocyst complex is essential for proper intra-oocyte trafficking of c-KIT and GDF9. Inhibition of this complex causes complete loss of female fertility in mice. Our findings build a platform for research related to trafficking mechanisms of vital crosstalk factors for oogenesis.
Collapse
Affiliation(s)
- Chi Lieu Kim Nguyen
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yumeno Kuba
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hoai Thu Le
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hossam Hassan Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Natsuki Mikami
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Madoka Aoki
- College of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nanako Yasuhara
- College of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hayate Suzuki
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yuki Osawa
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Woojin Kang
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yuji Hirao
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
4
|
Kim SE, Noda R, Liu YC, Nakajima Y, Kameoka S, Motooka D, Mizuno S, Takahashi S, Takaya K, Murase T, Ikematsu K, Tratsiakova K, Motoyama T, Nakashima M, Kishi K, Martin P, Seno S, Okuzaki D, Mori R. Novel integrated multiomics analysis reveals a key role for integrin beta-like 1 in wound scarring. EMBO Rep 2025; 26:122-152. [PMID: 39558136 PMCID: PMC11724056 DOI: 10.1038/s44319-024-00322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Exacerbation of scarring can originate from a minority fibroblast population that has undergone inflammatory-mediated genetic changes within the wound microenvironment. The fundamental relationship between molecular and spatial organization of the repair process at the single-cell level remains unclear. We have developed a novel, high-resolution spatial multiomics method that integrates spatial transcriptomics with scRNA-Seq; we identified new characteristic features of cell-cell communication and signaling during the repair process. Data from PU.1-/- mice, which lack an inflammatory response, combined with scRNA-Seq and Visium transcriptomics, led to the identification of nine genes potentially involved in inflammation-related scarring, including integrin beta-like 1 (Itgbl1). Transgenic mouse experiments confirmed that Itgbl1-expressing fibroblasts are required for granulation tissue formation and drive fibrogenesis during skin repair. Additionally, we detected a minority population of Acta2high-expressing myofibroblasts with apparent involvement in scarring, in conjunction with Itgbl1 expression. IL1β signaling inhibited Itgbl1 expression in TGFβ1-treated primary fibroblasts from humans and mice. Our novel methodology reveal molecular mechanisms underlying fibroblast-inflammatory cell interactions that initiate wound scarring.
Collapse
Affiliation(s)
- Sang-Eun Kim
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Ryota Noda
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukari Nakajima
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shoichiro Kameoka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kento Takaya
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takehiko Murase
- Department of Forensic Pathology and Science, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kita, Kagawa, 761-0793, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Science, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Katsiaryna Tratsiakova
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takahiro Motoyama
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Paul Martin
- Department of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ryoichi Mori
- Department of Pathology, School of Medicine, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Tissue Repair and Regenerative Medical Science, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.
- Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
5
|
Morikawa K, Nagasaki A, Sun L, Kawase E, Ebihara T, Shirayoshi Y. Optogenetic control of early embryos labeling using photoactivatable Cre recombinase 3.0. FEBS Open Bio 2024; 14:1888-1898. [PMID: 39223831 PMCID: PMC11532978 DOI: 10.1002/2211-5463.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Establishing a highly efficient photoactivatable Cre recombinase PA-Cre3.0 can allow spatiotemporal control of Cre recombinase activity. This technique may help to elucidate cell lineages, as well as facilitate gene and cell function analysis during development. This study examined the blue light-mediated optical regulation of Cre-loxP recombination using PA-Cre3.0 transgenic early mouse pre-implantation embryos. We found that inducing PA-Cre3.0 expression in the heterozygous state did not show detectable recombination activation with blue light. Conversely, in homozygous embryos, DNA recombination by PA-Cre3.0 was successfully induced by blue light and resulted in the activation of the red fluorescent protein reporter gene, while almost no leaks of Cre recombination activity were detected in embryos without light illumination. Thus, we characterize the conditions under which the PA-Cre3.0 system functions efficiently in early mouse embryos. These results are expected to provide a new optogenetic tool for certain biological studies, such as developmental process analysis and lineage tracing in early mouse embryos.
Collapse
Affiliation(s)
- Kumi Morikawa
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Akira Nagasaki
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Lue Sun
- Health and Medical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Eihachiro Kawase
- Institute for Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Tatsuhiko Ebihara
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Department of Genomic Medicine and Regenerative Therapy, Faculty of MedicineTottori UniversityYonagoJapan
| |
Collapse
|
6
|
Ubogu EE, Conner JA, Wang Y, Yadav D, Saunders TL. Development of a major histocompatibility complex class II conditional knockout mouse to study cell-specific and time-dependent adaptive immune responses in peripheral nerves. Muscle Nerve 2024; 70:420-433. [PMID: 38922958 DOI: 10.1002/mus.28193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION/AIMS The precise relationship between molecular mimicry and tissue-specific autoimmunity is unknown. Major histocompatibility complex (MHC) class II antigen presenting cell-CD4+ T-cell receptor complex interactions are necessary for adaptive immunity. This study aimed to determine the role of endoneurial endothelial cell MHC class II in autoimmune polyneuropathy. METHODS Cryopreserved Guillain-Barré syndrome (GBS) patient sural nerve biopsies and sciatic nerves from the severe murine experimental autoimmune neuritis (sm-EAN) GBS model were studied. Cultured conditional ready MHC Class II antigen A-alpha chain (H2-Aa) embryonic stem cells were used to generate H2-Aaflox/+ C57BL/6 mice. Mice were backcrossed and intercrossed to the SJL background to generate H2-Aaflox/flox SJL mice, bred with hemizygous Tamoxifen-inducible von Willebrand factor Cre recombinase (vWF-iCre/+) SJL mice to generate H2-Aaflox/flox; vWF-iCre/+ mice to study microvascular endothelial cell adaptive immune responses. Sm-EAN was induced in Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+, H2-Aaflox/flox; +/+, H2-Aa+/+; vWF-iCre/+ and untreated H2-Aaflox/flox; vWF-iCre/+ adult female SJL mice. Neurobehavioral, electrophysiological and histopathological assessments were performed at predefined time points. RESULTS Endoneurial endothelial cell MHC class II expression was observed in normal and inflamed human and mouse peripheral nerves. Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+ mice were resistant to sm-EAN despite extensive MHC class II expression in lymphoid and non-lymphoid tissues. DISCUSSION A conditional MHC class II knockout mouse to study cell- and time-dependent adaptive immune responses in vivo was developed. Initial studies show microvascular endothelial cell MHC class II expression is necessary for peripheral nerve specific autoimmunity, as advocated by human in vitro adaptive immunity and ex vivo transplant rejection studies.
Collapse
Affiliation(s)
- Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama, Birmingham, Alabama, USA
| | - Jeremy A Conner
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama, Birmingham, Alabama, USA
| | - Yimin Wang
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama, Birmingham, Alabama, USA
| | - Dinesh Yadav
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama, Birmingham, Alabama, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Yadav D, Conner JA, Wang Y, Saunders TL, Ubogu EE. A novel inducible von Willebrand Factor Cre recombinase mouse strain to study microvascular endothelial cell-specific biological processes in vivo. Vascul Pharmacol 2024; 155:107369. [PMID: 38554988 DOI: 10.1016/j.vph.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Mouse models are invaluable to understanding fundamental mechanisms in vascular biology during development, in health and different disease states. Several constitutive or inducible models that selectively knockout or knock in genes in vascular endothelial cells exist; however, functional and phenotypic differences exist between microvascular and macrovascular endothelial cells in different organs. In order to study microvascular endothelial cell-specific biological processes, we developed a Tamoxifen-inducible von Willebrand Factor (vWF) Cre recombinase mouse in the SJL background. The transgene consists of the human vWF promoter with the microvascular endothelial cell-selective 734 base pair sequence to drive Cre recombinase fused to a mutant estrogen ligand-binding domain [ERT2] that requires Tamoxifen for activity (CreERT2) followed by a polyadenylation (polyA) signal. We initially observed Tamoxifen-inducible restricted bone marrow megakaryocyte and sciatic nerve microvascular endothelial cell Cre recombinase expression in offspring of a mixed strain hemizygous C57BL/6-SJL founder mouse bred with mT/mG mice, with >90% bone marrow megakaryocyte expression efficiency. Founder mouse offspring were backcrossed to the SJL background by speed congenics, and intercrossed for >10 generations to develop hemizygous Tamoxifen-inducible vWF Cre recombinase (vWF-iCre/+) SJL mice with stable transgene insertion in chromosome 1. Microvascular endothelial cell-specific Cre recombinase expression occurred in the sciatic nerves, brains, spleens, kidneys and gastrocnemius muscles of adult vWF-iCre/+ SJL mice bred with Ai14 mice, with retained low level bone marrow and splenic megakaryocyte expression. This novel mouse strain would support hypothesis-driven mechanistic studies to decipher the role(s) of specific genes transcribed by microvascular endothelial cells during development, as well as in physiologic and pathophysiologic states in an organ- and time-dependent manner.
Collapse
Affiliation(s)
- Dinesh Yadav
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy A Conner
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yimin Wang
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Katayama T, Takechi M, Murata Y, Chigi Y, Yamaguchi S, Okamura D. Development of a chemically disclosed serum-free medium for mouse pluripotent stem cells. Front Bioeng Biotechnol 2024; 12:1390386. [PMID: 38812912 PMCID: PMC11134454 DOI: 10.3389/fbioe.2024.1390386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Mouse embryonic stem cells (mESCs) have been widely used as a model system to study the basic biology of pluripotency and to develop cell-based therapies. Traditionally, mESCs have been cultured in a medium supplemented with fetal bovine serum (FBS). However, serum with its inconsistent chemical composition has been problematic for reproducibility and for studying the role of specific components. While some serum-free media have been reported, these media contain commercial additives whose detailed components have not been disclosed. Recently, we developed a serum-free medium, DA-X medium, which can maintain a wide variety of adherent cancer lines. In this study, we modified the DA-X medium and established a novel serum-free condition for both naïve mESCs in which all components are chemically defined and disclosed (DA-X-modified medium for robust growth of pluripotent stem cells: DARP medium). The DARP medium fully supports the normal transcriptome and differentiation potential in teratoma and the establishment of mESCs from blastocysts that retain the developmental potential in all three germ layers, including germ cells in chimeric embryos. Utility of chemically defined DA-X medium for primed mouse epiblast stem cells (mEpiSCs) revealed that an optimal amount of cholesterol is required for the robust growth of naïve-state mESCs, but is dispensable for the maintenance of primed-state mEpiSCs. Thus, this study provides reliable and reproducible culture methods to investigate the role of specific components regulating self-renewal and pluripotency in a wide range of pluripotent states.
Collapse
Affiliation(s)
- Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Marina Takechi
- Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yamato Murata
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shinpei Yamaguchi
- Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Here, we discuss the origin of chondrocytes, their destiny, and their plasticity in relationship to bone growth, articulation, and formation of the trabeculae. We also consider these processes from a biological, clinical, and evolutionary perspective. RECENT FINDINGS Chondrocytes, which provide the template for the formation of most bones, are responsible for skeletal growth and articulation during postnatal life. In recent years our understanding of the fate of these cells has changed dramatically. Current evidence indicates a paradoxical situation during skeletogenesis, with some cells of mesenchymal condensation differentiating directly into osteoblasts, whereas others of the same kind give rise to highly similar osteoblasts via a complex process of differentiation involving several chondrocyte intermediates. The situation becomes even more paradoxical during postnatal growth when stem cells in the growth plate produce differentiated, functional progenies, which thereafter presumably dedifferentiate into another type of stem cell. Such a remarkable transition from one cell type to another under postnatal physiological conditions provides a fascinating example of cellular plasticity that may have valuable clinical implications.
Collapse
Affiliation(s)
- Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | - Tsz Long Chu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Gogoleva N, Shahri ZJ, Noda A, Liao CW, Wakimoto A, Inoue Y, Jeon H, Takahashi S, Hamada M. Intraplacental injection of AAV9-CMV-iCre results in the widespread transduction of multiple organs in double-reporter mouse embryos. Exp Anim 2023; 72:460-467. [PMID: 37183025 PMCID: PMC10658086 DOI: 10.1538/expanim.23-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Adeno-associated virus serotype 9 (AAV9) has become a popular tool for gene transfer because of its ability to cross the blood-brain barrier and efficiently transduce genetic material into a variety of cell types. The study utilized GRR (Green-to-Red Reporter) mouse embryos, in which the expression of iCre results in the disappearance of Green Fluorescent Protein (GFP) expression and the detection of Discosoma sp. Red Fluorescent Protein (DsRed) expression by intraplacental injection. Our results demonstrate that AAV9-CMV-iCre can transduce multiple organs in embryos at developmental stages E9.5-E11.5, including the liver, heart, brain, thymus, and intestine. These findings suggest that intraplacental injection of AAV9-CMV-iCre is a viable method for the widespread transduction of GRR mouse embryos.
Collapse
Affiliation(s)
- Natalia Gogoleva
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Zeynab Javanfekr Shahri
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsushi Noda
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ching-Wei Liao
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Arata Wakimoto
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri Inoue
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
Nakashiba T, Ogoh K, Iwano S, Sugiyama T, Mizuno-Iijima S, Nakashima K, Mizuno S, Sugiyama F, Yoshiki A, Miyawaki A, Abe K. Development of two mouse strains conditionally expressing bright luciferases with distinct emission spectra as new tools for in vivo imaging. Lab Anim (NY) 2023; 52:247-257. [PMID: 37679611 PMCID: PMC10533401 DOI: 10.1038/s41684-023-01238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023]
Abstract
In vivo bioluminescence imaging (BLI) has been an invaluable noninvasive method to visualize molecular and cellular behaviors in laboratory animals. Bioluminescent reporter mice harboring luciferases for general use have been limited to a classical luciferase, Luc2, from Photinus pyralis, and have been extremely powerful for various in vivo studies. However, applicability of reporter mice for in vivo BLI could be further accelerated by increasing light intensity through the use of other luciferases and/or by improving the biodistribution of their substrates in the animal body. Here we created two Cre-dependent reporter mice incorporating luciferases oFluc derived from Pyrocoeli matsumurai and Akaluc, both of which had been reported previously to be brighter than Luc2 when using appropriate substrates; we then tested their bioluminescence in neural tissues and other organs in living mice. When expressed throughout the body, both luciferases emitted an intense yellow (oFluc) or far-red (Akaluc) light easily visible to the naked eye. oFluc and Akaluc were similarly bright in the pancreas for in vivo BLI; however, Akaluc was superior to oFluc for brain imaging, because its substrate, AkaLumine-HCl, was distributed to the brain more efficiently than the oFluc substrate, D-luciferin. We also demonstrated that the lights produced by oFluc and Akaluc were sufficiently spectrally distinct from each other for dual-color imaging in a single living mouse. Taken together, these novel bioluminescent reporter mice are an ideal source of cells with bright bioluminescence and may facilitate in vivo BLI of various tissues/organs for preclinical and biomedical research in combination with a wide variety of Cre-driver mice.
Collapse
Affiliation(s)
- Toshiaki Nakashiba
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan.
| | - Katsunori Ogoh
- Corporate Research and Development Center, Olympus Corporation, Hachioji, Japan
| | - Satoshi Iwano
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Wako, Japan
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Japan
| | - Takashi Sugiyama
- Corporate Research and Development Center, Olympus Corporation, Hachioji, Japan
- R&D Division, Evident Corporation, Hachioji, Japan
| | - Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kenichi Nakashima
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Wako, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|
12
|
Yoshihara M, Takahashi S. Recent advances in in situ Notch signaling measurement. Front Cell Dev Biol 2023; 11:1244105. [PMID: 37576594 PMCID: PMC10416437 DOI: 10.3389/fcell.2023.1244105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Notch signaling is necessary for the development of many organ systems, including the nervous system, biliary system, and visual and auditory sensory systems. This signaling pathway is composed of DSL ligands and Notch receptors. Upon the interaction of those components between neighboring cells, the intracellular domain of the Notch receptor is cleaved from the cell membrane to act as a transcription factor. To date, many mechanistic insights, including lateral inhibition and lateral induction, have been proposed from observation of patterning morphogenesis and expression profiles of Notch signaling-associated molecules. The lack of a direct measurement method for Notch signaling, however, has impeded the examination of those mechanistic insights. In this mini-review, recent advances in the direct measurement of Notch signaling are introduced with a focus on the application of genetic modification of Notch receptors with the components of the Cre/loxP system and Gal4/UAS system. The combination of such conventional genetic techniques is opening a new era in Notch signaling biology by direct visualization of Notch "signaling" in addition to Notch signaling-associated molecules.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Ubogu EE, Conner JA, Wang Y, Yadav D, Saunders TL. Development of a major histocompatibility complex class II conditional knockout mouse to study cell-specific and time-dependent adaptive immune responses in peripheral nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550421. [PMID: 37546875 PMCID: PMC10402085 DOI: 10.1101/2023.07.24.550421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Introduction Major histocompatibility complex (MHC) class II professional antigen presenting cell-naïve CD4+ T cell interactions via the T-cell receptor complex are necessary for adaptive immunity. MHC class II upregulation in multiple cell types occurs in human autoimmune polyneuropathy patient biopsies, necessitating studies to ascertain cellular signaling pathways required for tissue-specific autoimmunity. Methods Cryopreserved Guillain-Barré syndrome (GBS) patient sural nerve biopsies and sciatic nerves from the severe murine experimental autoimmune neuritis (sm-EAN) GBS model were studied. Cultured conditional ready MHC Class II antigen A-alpha chain (H2-Aa) embryonic stem cells were used to generate H2-Aa flox/+ C57BL/6 mice. Mice were backcrossed and intercrossed to the SJL background to generate H2-Aa flox/flox SJL mice, bred with hemizygous Tamoxifen-inducible von Willebrand factor Cre recombinase (vWF-iCre/+) SJL mice to generate H2-Aa flox/flox ; vWF-iCre/+ to study microvascular endothelial cell adaptive immune responses. Sm-EAN was induced in adult female SJL Tamoxifen-treated H2-Aa flox/flox ; vWF-iCre/+ mice and H2-Aa flox/flox ; +/+ littermate controls. Neurobehavioral, electrophysiological and histopathological assessments were performed at predefined time points. Results Endoneurial endothelial cell MHC class II expression was observed in normal and inflamed human and mouse peripheral nerves. Adult female Tamoxifen-treated H2-Aa flox/flox ; vWF-iCre/+ did not develop sm-EAN despite extensive MHC class II expression in lymphoid and non-lymphoid tissues. Discussion A conditional MHC class II knockout mouse to study cell- and time-dependent adaptive immune responses in vivo is developed. Initial studies show microvascular endothelial cell MHC class II expression is necessary for peripheral nerve specific autoimmunity, as advocated by human in vitro adaptive immunity and ex vivo transplant rejection studies.
Collapse
|
14
|
Sambe N, Yoshihara M, Nishino T, Sugiura R, Nakayama T, Louis C, Takahashi S. Analysis of Notch1 signaling in mammalian sperm development. BMC Res Notes 2023; 16:108. [PMID: 37337280 DOI: 10.1186/s13104-023-06378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE A mammalian Delta-Notch signaling component, Notch1, has been suggested for its expression during the normal sperm development although its conditional deletion caused no apparent abnormalities. Since we established our original transgenic mouse system that enabled labeling of past and ongoing Notch1 signaling at a cellular level, we tried to validate that observation in vivo. Our transgenic mouse system used Cre/loxP system to induce tandem dsRed expression upon Notch1 signaling. RESULTS To our surprise, we were unable to observe tandem dsRed expression in the seminiferous tubules where the sperms developed. In addition, tandem dsRed expression was lacking in the somatic cells of the next generation in our transgenic mouse system, suggesting that sperms received no Notch1 signaling during their development. To validate this result, we conducted re-analysis of four single-cell RNA-seq datasets from mouse and human testes and showed that Notch1 expression was little in the sperm cell lineage. Collectively, our results posed a question into the involvement of Notch1 in the normal sperm development although this observation may help the interpretation of the previous result that Notch1 conditional deletion caused no apparent abnormalities in murine spermatogenesis.
Collapse
Affiliation(s)
- Naoto Sambe
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masaharu Yoshihara
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1- 1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Teppei Nishino
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Medical Education and Training, Tsukuba Medical Center Hospital, 1-3-1 Amakubo, Tsukuba, Ibaraki, 305-8558, Japan
| | - Ryosuke Sugiura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takahiro Nakayama
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Chandra Louis
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
15
|
Sugiura R, Nakayama T, Nishino T, Sambe N, Radtke F, Yoshihara M, Takahashi S. Notch1 signaling is limited in healthy mature kidneys in vivo. BMC Res Notes 2023; 16:54. [PMID: 37069662 PMCID: PMC10111784 DOI: 10.1186/s13104-023-06326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
OBJECTIVE A Delta-Notch signaling component, Notch1, is involved in the normal development and multiple disorders of the kidney. Although the increase in Notch1 signaling is crucial to these pathogeneses, the basal signaling level in 'healthy' mature kidneys is still unclear. To address this question, we used an artificial Notch1 receptor fused with Gal4/UAS components in addition to the Cre/loxP system and fluorescent proteins in mice. This transgenic reporter mouse system enabled labeling of past and ongoing Notch1 signaling with tdsRed or Cre recombinase, respectively. RESULTS We confirmed that our transgenic reporter mouse system mimicked the previously reported Notch1 signaling pattern. Using this successful system, we infrequently observed cells with ongoing Notch1 signaling only in Bowman's capsule and tubules. We consider that Notch1 activation in several lines of disease model mice was pathologically significant itself.
Collapse
Affiliation(s)
- Ryosuke Sugiura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Takahiro Nakayama
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Teppei Nishino
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
- Department of Medical Education and Training, Tsukuba Medical Center Hospital, 1-3-1 Amakubo, Tsukuba, Ibaraki, 305-8558 Japan
| | - Naoto Sambe
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Freddy Radtke
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), SV 2534 (Bâtiment SV) Station 19, Lausanne, CH-1015 Switzerland
| | - Masaharu Yoshihara
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1- 1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 Japan
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| |
Collapse
|
16
|
Monteiro CJ, Heery DM, Whitchurch JB. Modern Approaches to Mouse Genome Editing Using the CRISPR-Cas Toolbox and Their Applications in Functional Genomics and Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:13-40. [PMID: 37486514 DOI: 10.1007/978-3-031-33325-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mice have been used in biological research for over a century, and their immense contribution to scientific breakthroughs can be seen across all research disciplines, with some of the main beneficiaries being the fields of medicine and life sciences. Genetically engineered mouse models (GEMMs), along with other model organisms, are fundamentally important research tools frequently utilised to enhance our understanding of pathophysiology and biological mechanisms behind disease. In the 1980s, it became possible to precisely edit the mouse genome to create gene knockout and knock-in mice, although with low efficacy. Recent advances utilising CRISPR-Cas technologies have considerably improved our ability to do this with ease and precision, while also allowing the generation of desired genetic variants from single nucleotide substitutions to large insertions/deletions. It is now quick and relatively easy to genetically edit somatic cells which were previously more recalcitrant to traditional approaches. Further refinements have created a 'CRISPR toolkit' that has expanded the use of CRISPR-Cas beyond gene knock-ins and knockouts. In this chapter, we review some of the latest applications of CRISPR-Cas technologies in GEMMs, including nuclease-dead Cas9 systems for activation or repression of gene expression, base editing and prime editing. We also discuss improvements in Cas9 specificity, targeting efficacy and delivery methods in mice. Throughout, we provide examples wherein CRISPR-Cas technologies have been applied to target clinically relevant genes in preclinical GEMMs, both to generate humanised models and for experimental gene therapy research.
Collapse
Affiliation(s)
- Cintia J Monteiro
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
17
|
Ito Y, Sun R, Yagimuma H, Taki K, Mizoguchi A, Kobayashi T, Sugiyama M, Onoue T, Tsunekawa T, Takagi H, Hagiwara D, Iwama S, Suga H, Konishi H, Kiyama H, Arima H, Banno R. Protein Tyrosine Phosphatase 1B Deficiency Improves Glucose Homeostasis in Type 1 Diabetes Treated With Leptin. Diabetes 2022; 71:1902-1914. [PMID: 35748319 PMCID: PMC9862406 DOI: 10.2337/db21-0953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/19/2022] [Indexed: 02/05/2023]
Abstract
Leptin, a hormone secreted by adipocytes, exhibits therapeutic potential for the treatment of type 1 diabetes (T1D). Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme that negatively regulates leptin receptor signaling. Here, the role of PTP1B in the treatment of T1D was investigated using PTP1B-deficient (knockout [KO]) mice and a PTP1B inhibitor. T1D wild-type (WT) mice induced by streptozotocin showed marked hyperglycemia compared with non-T1D WT mice. KO mice displayed significantly improved glucose metabolism equivalent to non-T1D WT mice, whereas peripheral or central administration of leptin partially improved glucose metabolism in T1D WT mice. Peripheral combination therapy of leptin and a PTP1B inhibitor in T1D WT mice improved glucose metabolism to the same level as non-T1D WT mice. Leptin was shown to act on the arcuate nucleus in the hypothalamus to suppress gluconeogenesis in liver and enhance glucose uptake in both brown adipose tissue and soleus muscle through the sympathetic nervous system. These effects were enhanced by PTP1B deficiency. Thus, treatment of T1D with leptin, PTP1B deficiency, or a PTP1B inhibitor was shown to enhance leptin activity in the hypothalamus to improve glucose metabolism. These findings suggest a potential alternative therapy for T1D.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yagimuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Corresponding author: Ryoichi Banno,
| |
Collapse
|
18
|
Shinga K, Iwata T, Murata K, Daitoku Y, Michibata J, Arafiles JVV, Sakamoto K, Akishiba M, Takatani-Nakase T, Mizuno S, Sugiyama F, Imanishi M, Futaki S. L17ER4: A cell-permeable attenuated cationic amphiphilic lytic peptide. Bioorg Med Chem 2022; 61:116728. [PMID: 35395514 DOI: 10.1016/j.bmc.2022.116728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
We have developed a series of attenuated cationic amphiphilic lytic (ACAL) peptides that can efficiently bring immunoglobulin G (IgG) and other functional proteins into cells. Delivery is generally achieved through the coadministration of ACAL peptides with cargo proteins. However, conjugation of ACAL peptides with cargos may be a promising approach for in vivo application to link in vivo outcomes of ACAL peptides and cargos. This study describes the creation of a new cell-permeable ACAL peptide, L17ER4. L17E is an optimized prototype of ACAL peptides previously developed in our laboratory for efficient delivery of IgGs into cells. Delivery was improved by functionalizing L17E with a tetra-arginine (R4) tag. Compared to the use of R8, a representative cell-penetrating peptide with high intracellular delivery efficacy, conjugation with L17ER4 afforded approximately four-fold higher cellular uptake of model small-molecule cargos (fluorescein isothiocyanate and HiBiT peptide). L17ER4 was also able to deliver proteins to cells. Fused with L17ER4, Cre recombinase was delivered into cells. Intracerebroventricular injection of Cre-L17ER4 into green red reporter mice, R26GRR, led to significant in vivo gene recombination in ependymal cells, suggesting that L17ER4 may be used as a cell-penetrating peptide for delivering protein therapeutics into cells in vivo.
Collapse
Affiliation(s)
- Kenta Shinga
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takahiro Iwata
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Junya Michibata
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | | | - Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomoka Takatani-Nakase
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
19
|
Yoshihara M, Nishino T, Sambe N, Nayakama T, Radtke F, Mizuno S, Takahashi S. Generation of a Gal4-dependent gene recombination and illuminating mouse. Exp Anim 2022; 71:385-390. [PMID: 35444103 PMCID: PMC9388339 DOI: 10.1538/expanim.21-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell labeling technologies, including the Cre/loxP system, are powerful tools in developmental biology. Although the conventional Cre/loxP system has been extensively used to label the
expression of specific genes, it is less frequently used for labeling protein-protein interactions owing to technical difficulties. In the present study, we generated a new Gal4-dependent
transgenic reporter mouse line that expressed Cre recombinase and a near-infrared fluorescent protein, miRFP670. To examine whether this newly generated transgenic mouse line is applicable
in labeling of protein-protein interaction, we used a previously reported transgenic mouse lines that express Notch1 receptor with its intracellular domain replaced with a yeast
transcription factor, Gal4. Upon the binding of this artificial Notch1 receptor and endogenous Notch1 ligands, Gal4 would be cleaved from the cell membrane to induce expression of Cre
recombinase and miRFP670. Indeed, we observed miRFP670 signal in the mouse embryos (embryonic day 14.5). In addition, we examined whether our Cre recombinase was functional by using another
transgenic mouse line that express dsRed after Cre-mediated recombination. We observed dsRed signal in small intestine epithelial cells where Notch1 signal was suggested to be involved in
the crypt stem cell maintenance, suggesting that our Cre recombinase was functional. As our newly generated mouse line required only the functioning of Gal4, it could be useful for labeling
several types of molecular activities in vivo.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba
| | - Teppei Nishino
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba
| | - Naoto Sambe
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba
| | - Takahiro Nayakama
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
20
|
Nakahashi-Oda C, Fujiyama S, Nakazawa Y, Kanemaru K, Wang Y, Lyu W, Shichita T, Kitaura J, Abe F, Shibuya A. CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke. Sci Immunol 2021; 6:eabe7915. [PMID: 34652960 DOI: 10.1126/sciimmunol.abe7915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Fujiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuta Nakazawa
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazumasa Kanemaru
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yaqiu Wang
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Wenxin Lyu
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Jiro Kitaura
- The Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Fumie Abe
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,TNAX Biopharma Corporation, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
21
|
Nakagawa Y, Kumagai K, Han SI, Mizunoe Y, Araki M, Mizuno S, Ohno H, Matsuo K, Yamada Y, Kim JD, Miyamoto T, Sekiya M, Konishi M, Itoh N, Matsuzaka T, Takahashi S, Sone H, Shimano H. Starvation-induced transcription factor CREBH negatively governs body growth by controlling GH signaling. FASEB J 2021; 35:e21663. [PMID: 34042217 DOI: 10.1096/fj.202002784rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
cAMP responsive element-binding protein H (CREBH) is a hepatic transcription factor to be activated during fasting. We generated CREBH knock-in flox mice, and then generated liver-specific CREBH transgenic (CREBH L-Tg) mice in an active form. CREBH L-Tg mice showed a delay in growth in the postnatal stage. Plasma growth hormone (GH) levels were significantly increased in CREBH L-Tg mice, but plasma insulin-like growth factor 1 (IGF1) levels were significantly decreased, indicating GH resistance. In addition, CREBH overexpression significantly increased hepatic mRNA and plasma levels of FGF21, which is thought to be as one of the causes of growth delay. However, the additional ablation of FGF21 in CREBH L-Tg mice could not correct GH resistance at all. CREBH L-Tg mice sustained GH receptor (GHR) reduction and the increase of IGF binding protein 1 (IGFBP1) in the liver regardless of FGF21. As GHR is a first step in GH signaling, the reduction of GHR leads to impairment of GH signaling. These data suggest that CREBH negatively regulates growth in the postnatal growth stage via various pathways as an abundant energy response by antagonizing GH signaling.
Collapse
Affiliation(s)
- Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Kae Kumagai
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaya Araki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Matsuo
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yasunari Yamada
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Jun-Dal Kim
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hirohito Sone
- Faculty of Medicine, Department of Hematology, Endocrinology and Metabolism, Niigata University, Niigata, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Mizoguchi A, Banno R, Sun R, Yaginuma H, Taki K, Kobayashi T, Sugiyama M, Tsunekawa T, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Suga H, Nagai T, Yamada K, Arima H. Glucocorticoid receptor signaling in ventral tegmental area neurons increases the rewarding value of a high-fat diet in mice. Sci Rep 2021; 11:12873. [PMID: 34145364 PMCID: PMC8213822 DOI: 10.1038/s41598-021-92386-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
The reward system, which consists of dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens and caudate-putamen in the striatum, has an important role in the pathogenesis of not only drug addiction but also diet-induced obesity. In the present study, we examined whether signaling through glucocorticoid receptors (GRs) in the reward system affects the rewarding value of a high-fat diet (HFD). To do so, we generated mice that lack functional GRs specifically in dopaminergic neurons (D-KO mice) or corticostriatal neurons (CS-KO mice), subjected the mice to caloric restriction stress conditions, and evaluated the rewarding value of a HFD by conditioned place preference (CPP) test. Caloric restriction induced increases in serum corticosterone to similar levels in all genotypes. While CS-KO as well as WT mice exhibited a significant preference for HFD in the CPP test, D-KO mice exhibited no such preference. There were no differences between WT and D-KO mice in consumption of HFD after fasting or cognitive function evaluated by a novel object recognition test. These data suggest that glucocorticoid signaling in the VTA increases the rewarding value of a HFD under restricted caloric stress.
Collapse
Affiliation(s)
- Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan. .,Physical Fitness and Sports, Research Center of Health, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-0814, Japan.
| | - Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.,Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.,Division of Behavioral Neuropharmacology, Project Office for Neuropsychological Research Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
23
|
Hashimoto M, Kimura S, Kanno C, Yanagawa Y, Watanabe T, Okabe J, Takahashi E, Nagano M, Kitamura H. Macrophage ubiquitin-specific protease 2 contributes to motility, hyperactivation, capacitation, and in vitro fertilization activity of mouse sperm. Cell Mol Life Sci 2021; 78:2929-2948. [PMID: 33104844 PMCID: PMC11073191 DOI: 10.1007/s00018-020-03683-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are innate immune cells that contribute to classical immune functions and tissue homeostasis. Ubiquitin-specific protease 2 (USP2) controls cytokine production in macrophages, but its organ-specific roles are still unknown. In this study, we generated myeloid-selective Usp2 knockout (msUsp2KO) mice and specifically explored the roles of testicular macrophage-derived USP2 in reproduction. The msUsp2KO mice exhibited normal macrophage characteristics in various tissues. In the testis, macrophage Usp2 deficiency negligibly affected testicular macrophage subpopulations, spermatogenesis, and testicular organogenesis. However, frozen-thawed sperm derived from msUsp2KO mice exhibited reduced motility, capacitation, and hyperactivation. In addition, macrophage Usp2 ablation led to a decrease in the sperm population exhibiting high intracellular pH, calcium influx, and mitochondrial membrane potential. Interrupted pronuclei formation in eggs was observed when using frozen-thawed sperm from msUsp2KO mice for in vitro fertilization. Administration of granulocyte macrophage-colony stimulating factor (GM-CSF), whose expression was decreased in testicular macrophages derived from msUsp2KO mice, restored mitochondrial membrane potential and total sperm motility. Our observations demonstrate a distinct role of the deubiquitinating enzyme in organ-specific macrophages that directly affect sperm function.
Collapse
Affiliation(s)
- Mayuko Hashimoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Chihiro Kanno
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Jun Okabe
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Eiki Takahashi
- Research Resources Centre, RIKEN Brain Science Institute, Wako, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
24
|
Yoshimi K, Yamauchi Y, Tanaka T, Shimada T, Sato M, Mashimo T. Photoactivatable Cre knock-in mice for spatiotemporal control of genetic engineering in vivo. J Transl Med 2021; 101:125-135. [PMID: 32892213 DOI: 10.1038/s41374-020-00482-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Although the Cre-loxP recombination system has been extensively used to analyze gene function in vivo, spatiotemporal control of Cre activity is a critical limitation for easy and precise recombination. Here, we established photoactivatable-Cre (PA-Cre) knock-in (KI) mice at a safe harbor locus for the spatial and temporal regulation of Cre recombinase activity. The mice showed whole-body Cre recombination activity following light exposure for only 1 h. Almost no leaks of Cre recombination activity were detected in the KI mice under natural light conditions. Spot irradiation could induce locus-specific recombination noninvasively, enabling us to compare phenotypes on the left and right sides in the same mouse. Furthermore, long-term irradiation using an implanted wireless LED substantially improved Cre recombination activity, especially in the brain. These results demonstrate that PA-Cre KI mice can facilitate the spatiotemporal control of genetic engineering and provide a useful resource to elucidate gene function in vivo with Cre-loxP.
Collapse
Affiliation(s)
- Kazuto Yoshimi
- Laboratory Animal Research Center, Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Center for Experimental Medicine and Systems Biology, Division of Genome Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yuko Yamauchi
- Laboratory Animal Research Center, Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Center for Experimental Medicine and Systems Biology, Division of Genome Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Gene-Editing Technologies and Applications for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Yu H, Enayati S, Chang K, Cho K, Lee SW, Talib M, Zihlavnikova K, Xie J, Achour H, Fried SI, Utheim TP, Chen DF. Noninvasive Electrical Stimulation Improves Photoreceptor Survival and Retinal Function in Mice with Inherited Photoreceptor Degeneration. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 32271885 PMCID: PMC7401948 DOI: 10.1167/iovs.61.4.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Neurons carry electrical signals and communicate via electrical activities. The therapeutic potential of electrical stimulation (ES) for the nervous system, including the retina, through improvement of cell survival and function has been noted. Here we investigated the neuroprotective and regenerative potential of ES in a mouse model of inherited retinal degeneration. Methods Rhodopsin-deficient (Rho−/−) mice received one or two sessions of transpalpebral ES or sham treatments for 7 consecutive days. Intraperitoneal injection of 5-ethynyl-2′-deoxyuridine was used to label proliferating cells. Weekly electroretinograms were performed to monitor retinal function. Retinal morphology, photoreceptor survival, and regeneration were evaluated in vivo using immunohistochemistry and genetic fate-mapping techniques. Müller cell (MC) cultures were employed to further define the optimal conditions of ES application. Results Noninvasive transpalpebral ES in Rho−/− mice improved photoreceptor survival and electroretinography function in vivo. ES also triggered residential retinal progenitor-like cells such as MCs to reenter the cell cycle, possibly producing new photoreceptors, as shown by immunohistochemistry and genetic fate-mapping techniques. ES directly stimulated cell proliferation and the expression of progenitor cell markers in MC cultures, at least partially through bFGF signaling. Conclusions Our study showed that transpalpebral ES improved photoreceptor survival and retinal function and induced the proliferation, probably photoreceptor regeneration, of MCs; this occurs via stimulation of the bFGF pathways. These results suggest the exciting possibility of applying noninvasive ES as a versatile tool for preventing photoreceptor loss and mobilizing endogenous progenitors for reversing vision loss in patients with photoreceptor degeneration.
Collapse
|
27
|
Sakamoto K, Akishiba M, Iwata T, Murata K, Mizuno S, Kawano K, Imanishi M, Sugiyama F, Futaki S. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Misao Akishiba
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Takahiro Iwata
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center Transborder Medical Research Center Faculty of Medicine University of Tsukuba Tennodai 1-1-1 Tsukuba Ibaraki 305-8575 Japan
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
28
|
Sakamoto K, Akishiba M, Iwata T, Murata K, Mizuno S, Kawano K, Imanishi M, Sugiyama F, Futaki S. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angew Chem Int Ed Engl 2020; 59:19990-19998. [PMID: 32557993 DOI: 10.1002/anie.202005887] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo.
Collapse
Affiliation(s)
- Kentarou Sakamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahiro Iwata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
29
|
Akai R, Saito M, Kohno K, Iwawaki T. Transgenic mouse model exhibiting weak red fluorescence before and strong green fluorescenceafter Cre/loxP-mediated recombination. Exp Anim 2020; 69:306-318. [PMID: 32115549 PMCID: PMC7445058 DOI: 10.1538/expanim.19-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Cre/loxP system is an indispensable tool for temporal and spatial control of gene function in mice. Many mice that express Cre and carry loxP sites in their genomes have been bred for functional analysis of various genes in vivo. Also, several reporter mice have been generated for monitoring of recombination by the Cre/loxP system. We have developed a Cre reporter gene with DsRed1 and Venus that exhibits a strong red fluorescence before and a strong green fluorescence after Cre/loxP-mediated recombination in experiments using NIH3T3 cells. However, a transgenic mouse introduced with the same reporter gene exhibits a weak red fluorescence before and a strong green fluorescence after Cre/loxP-mediated recombination. This property manifested ubiquitously in this mouse model and was maintained stably in mouse-derived fibroblasts. Use of the mouse model exhibiting the stronger red fluorescence might result in confusion of the Cre-dependent signal with false signals, because the Venus signal includes some fluorescence in the red region of the spectrum and the DsRed1 signal includes some fluorescence in the green region. However, we fortuitously obtained reporter mice that exhibit a weaker red fluorescence before Cre/loxP-mediated recombination. The use of this mouse model would decrease concern regarding errors in the identification of signals and should increase certainty in the detection of Cre activity in vivo.
Collapse
Affiliation(s)
- Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Michiko Saito
- Bio-science Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina, Kyoto 607-8412, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| |
Collapse
|
30
|
Deng Z, Matsumoto Y, Kuno A, Ojima M, Xiafukaiti G, Takahashi S. An Inducible Diabetes Mellitus Murine Model Based on MafB Conditional Knockout under MafA-Deficient Condition. Int J Mol Sci 2020; 21:ijms21165606. [PMID: 32764399 PMCID: PMC7460626 DOI: 10.3390/ijms21165606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus is an increasingly severe chronic metabolic disease that is occurring at an alarming rate worldwide. Various diabetic models, including non-obese diabetic mice and chemically induced diabetic models, are used to characterize and explore the mechanism of the disease’s pathophysiology, in hopes of detecting and identifying novel potential therapeutic targets. However, this is accompanied by disadvantages, such as specific conditions for maintaining the incidence, nonstable hyperglycemia induction, and potential toxicity to other organs. Murine MAFA and MAFB, two closely-linked islet-enriched transcription factors, play fundamental roles in glucose sensing and insulin secretion, and maintenance of pancreatic β-cell, respectively, which are highly homologous to human protein orthologs. Herein, to induce the diabetes mellitus model at a specific time point, we generated Pdx1-dependent Mafb-deletion mice under Mafa knockout condition (A0BΔpanc), via tamoxifen-inducible Cre-loxP system. After 16 weeks, metabolic phenotypes were characterized by intraperitoneal glucose tolerance test (IPGTT), urine glucose test, and metabolic parameters analysis. The results indicated that male A0BΔpanc mice had obvious impaired glucose tolerance, and high urine glucose level. Furthermore, obvious renal lesions, impaired islet structure and decreased proportion of insulin positive cells were observed. Collectively, our results indicate that A0BΔpanc mice can be an efficient inducible model for diabetes research.
Collapse
Affiliation(s)
- Zhaobin Deng
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuka Matsumoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (A.K.); (S.T.)
| | - Masami Ojima
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Gulibaikelamu Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (A.K.); (S.T.)
| |
Collapse
|
31
|
Le HT, Hasegawa Y, Daitoku Y, Kato K, Miznuo-Iijima S, Dinh TTH, Kuba Y, Osawa Y, Mikami N, Morimoto K, Ayabe S, Tanimoto Y, Murata K, Yagami KI, Takahashi S, Mizuno S, Sugiyama F. Generation of B6-Ddx4 em1(CreERT2)Utr , a novel CreERT2 knock-in line, for germ cell lineage by CRISPR/Cas9. Genesis 2020; 58:e23367. [PMID: 32293787 DOI: 10.1002/dvg.23367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
Germ cell development is essential for maintaining reproduction in animals. In postpubertal females, oogenesis is a highly complicated event for producing fertilizable oocytes. It starts when dormant primordial oocytes undergo activation to become growing oocytes. In postpubertal males, spermatogenesis is a differentiation process for producing sperm from spermatogonial stem cells. To obtain full understanding of the molecular mechanisms underlying germ cell development, the Cre/loxP system has been widely applied for conditional knock-out mouse studies. In this study, we established a novel knock-in mouse line, B6-Ddx4 em1(CreERT2)Utr , which expresses CreERT2 recombinase under the control of the endogenous DEAD-box helicase 4 (Ddx4) gene promoter. Ddx4 was specifically expressed in both female and male germ cell lineages. We mated the CreERT2 mice with R26GRR mice, expressing enhanced green fluorescent protein (EGFP) and tDsRed before and after Cre recombination. We found tDsRed signals in the testes and ovaries of tamoxifen-treated B6-Ddx4 em1(CreERT2)Utr ::R26GRR mice, but not in untreated mice. Immunostaining of their ovaries clearly showed that Cre recombination occurred in all oocytes at every follicle stage. We also found 100% Cre recombination efficiency in male germ cells via the progeny test. In summary, our results indicate that B6-Ddx4 em1(CreERT2)Utr is beneficial for studying female and male germ cell development.
Collapse
Affiliation(s)
- Hoai Thu Le
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Yoshikazu Hasegawa
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Daitoku
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Saori Miznuo-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Tra Thi Huong Dinh
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yumeno Kuba
- Master's Program in Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuki Osawa
- Master's Program in Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Natsuki Mikami
- School of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kento Morimoto
- Master's Program in Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Yoko Tanimoto
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Matsuda M, Terai K. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Pathol Int 2020; 70:379-390. [PMID: 32270554 PMCID: PMC7383902 DOI: 10.1111/pin.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
The invention of two‐photon excitation microscopes widens the potential application of intravital microscopy (IVM) to the broad field of experimental pathology. Moreover, the recent development of fluorescent protein‐based, genetically encoded biosensors provides an ideal tool to visualize the cell function in live animals. We start from a brief review of IVM with two‐photon excitation microscopes and genetically encoded biosensors based on the principle of Förster resonance energy transfer (FRET). Then, we describe how IVM using biosensors has revealed the pathogenesis of several disease models.
Collapse
Affiliation(s)
- Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Chang YH, Katoh MC, Abdellatif AM, Xiafukaiti G, Elzeftawy A, Ojima M, Mizuno S, Kuno A, Takahashi S. Uncovering the role of MAFB in glucagon production and secretion in pancreatic α-cells using a new α-cell-specific Mafb conditional knockout mouse model. Exp Anim 2019; 69:178-188. [PMID: 31787710 PMCID: PMC7220711 DOI: 10.1538/expanim.19-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cre/loxP is a site-specific recombination system extensively used to enable the conditional deletion or activation of target genes in a spatial- and/or temporal-specific manner. A number of pancreatic-specific Cre driver mouse lines have been broadly established for studying the development, function and pathology of pancreatic cells. However, only a few models are currently available for glucagon-producing α-cells. Disagreement exists over the role of the MAFB transcription factor in glucagon expression during postnatal life, which might be due to the lack of α-cell-specific Cre driver mice. In the present study, we established a novel Gcg-Cre knock-in mouse line with the Cre transgene expressed under the control of the preproglucagon (Gcg) promoter without disrupting the endogenous Gcg gene expression. Then, we applied this newly developed Gcg-Cre mouse line to generate a new α-cell-specific Mafb conditional knockout mouse model (MafbΔGcg). Not only α-cell number but also glucagon production were significantly decreased in MafbΔGcg mice compared to control littermates, suggesting an indispensable role of MAFB in both α-cell development and function. Taken together, our newly developed Gcg-Cre mouse line, which was successfully utilized to uncover the role of MAFB in α-cells, is a useful tool for genetic manipulation in pancreatic α-cells, providing a new platform for future studies in this field.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Megumi C Katoh
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, 60 Elgomhoria st, Mansoura 35516, Egypt
| | - Guli Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Abdelaziz Elzeftawy
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masami Ojima
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
34
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
35
|
Tsunekawa T, Banno R, Yaginuma H, Taki K, Mizoguchi A, Sugiyama M, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Goto M, Suga H, Bettler B, Arima H. GABA B Receptor Signaling in the Mesolimbic System Suppresses Binge-like Consumption of a High-Fat Diet. iScience 2019; 20:337-347. [PMID: 31610370 PMCID: PMC6817655 DOI: 10.1016/j.isci.2019.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/13/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
Binge eating could contribute to the development of obesity, and previous studies suggest that gamma-aminobutyric acid (GABA) type B receptor (GABABR) signaling is involved in the regulation of binge eating. Here, we show that time-restricted access to a high-fat diet (HFD) induces binge-like eating behavior in wild-type mice. HFD consumption during restricted time was significantly increased in corticostriatal neuron-specific GABABR-deficient mice compared with wild-type mice. Furthermore, the GABABR agonist baclofen suppressed HFD intake during restricted time in wild-type mice but not in corticostriatal or dopaminergic neuron-specific GABABR-deficient mice. In contrast, there were no significant differences in food consumption among genotypes under ad libitum access to HFD. Thus, our data show that the mesolimbic system regulates food consumption under time-restricted but not ad libitum access to HFD and have identified a mechanism by which GABABR signaling suppresses binge-like eating of HFD. GABABR KO in corticostriatal neurons enhances binge-like feeding of HFD Baclofen suppresses binge-like feeding of HFD via the mesolimbic system GABABR signaling in mesolimbic system does not affect energy balance
Collapse
Affiliation(s)
- Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan.
| | - Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan; Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan; Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel 4056, Switzerland
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan.
| |
Collapse
|
36
|
Hashimoto M, Sasaki H. Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive Elimination of Unspecified Cells. Dev Cell 2019; 50:139-154.e5. [PMID: 31204175 DOI: 10.1016/j.devcel.2019.05.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/15/2023]
Abstract
The epiblast is a pluripotent cell population first formed in preimplantation embryos, and its quality is important for proper development. Here, we examined the mechanisms of epiblast formation and found that the Hippo pathway transcription factor TEAD and its coactivator YAP regulate expression of pluripotency factors. After specification of the inner cell mass, YAP accumulates in the nuclei and activates TEAD. TEAD activity is required for strong expression of pluripotency factors and is variable in the forming epiblast. Cells showing low TEAD activity are eliminated from the epiblast through cell competition. Pluripotency factor expression and MYC control cell competition downstream of TEAD activity. Cell competition eliminates unspecified cells and is required for proper organization of the epiblast. These results suggest that induction of pluripotency factors by TEAD activity and elimination of unspecified cells via cell competition ensure the production of an epiblast with naive pluripotency.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
37
|
Maimaiti S, Koshida R, Ojima M, Kulathunga K, Oishi H, Takahashi S. Neuron-specific Mafb knockout causes growth retardation accompanied by an impaired growth hormone/insulin-like growth factor I axis. Exp Anim 2019; 68:435-442. [PMID: 31092767 PMCID: PMC6842794 DOI: 10.1538/expanim.18-0182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mammalian postnatal growth is regulated primarily by the growth hormone (GH)/insulin-like
growth factor I (IGF-I) axis. MafB is a basic leucine zipper (bZip) transcription factor
that has pleiotropic functions. Although MafB plays a critical role in fetal brain
development, such as in guidance for hindbrain segmentation, its postnatal role in neurons
remains to be elucidated. To investigate this, we used neuron-specific
Mafb conditional knockout (cKO) mice. In addition to an approximately
50% neonatal viability, the Mafb cKO mice exhibited growth retardation
without apparent signs of low energy intake. Notably, serum IGF-I levels of these mice in
the postnatal stage were lower than those of control mice. They seemed to have a
neuroendocrine dysregulation, as shown by the upregulation of serum GH levels in the
resting state and an inconsistent secretory response of GH upon administration of growth
hormone-releasing hormone. These findings reveal that neuronal MafB plays an important
role in postnatal development regulated by the GH/IGF-I axis.
Collapse
Affiliation(s)
- Shayida Maimaiti
- Department of Anatomy and Embryology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Present address: Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| | - Ryusuke Koshida
- Department of Anatomy and Neuroscience, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
38
|
Abstract
Cell-type-specific gene targeting with the Cre/loxP system has become an indispensable technique in experimental neuroscience, particularly for the study of late-born glial cells that make myelin. A plethora of conditional mutants and Cre-expressing mouse lines is now available to the research community that allows laboratories to readily engage in in vivo analyses of oligodendrocytes and their precursor cells. This chapter summarizes concepts and strategies in targeting myelinating glial cells in mice for mutagenesis or imaging, and provides an overview of the most important Cre driver lines successfully used in this rapidly growing field.
Collapse
Affiliation(s)
- Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
39
|
Matsumoto L, Hirota Y, Saito-Fujita T, Takeda N, Tanaka T, Hiraoka T, Akaeda S, Fujita H, Shimizu-Hirota R, Igaue S, Matsuo M, Haraguchi H, Saito-Kanatani M, Fujii T, Osuga Y. HIF2α in the uterine stroma permits embryo invasion and luminal epithelium detachment. J Clin Invest 2018; 128:3186-3197. [PMID: 29911998 DOI: 10.1172/jci98931] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/01/2018] [Indexed: 01/21/2023] Open
Abstract
Although it has been reported that hypoxia inducible factor 2 α (Hif2a), a major transcriptional factor inducible by low oxygen tension, is expressed in the mouse uterus during embryo implantation, its role in pregnancy outcomes remains unclear. This study aimed to clarify functions of uterine HIF using transgenic mouse models. Mice with deletion of Hif2a in the whole uterus (Hif2a-uKO mice) showed infertility due to implantation failure. Supplementation with progesterone (P4) and leukemia inhibitory factor (LIF) restored decidual growth arrest and aberrant position of implantation sites in Hif2a-uKO mice, respectively, but did not rescue pregnancy failure. Histological analyses in Hif2a-uKO mice revealed persistence of the intact luminal epithelium, which blocked direct contact between stroma and embryo, inactivation of PI3K-AKT pathway (embryonic survival signal), and failed embryo invasion. Mice with stromal deletion of Hif2a (Hif2a-sKO mice) showed infertility with impaired embryo invasion and those with epithelial deletion of Hif2a (Hif2a-eKO mice) showed normal fertility, suggesting the importance of stromal HIF2α in embryo invasion. This was reflected in reduced expression of membrane type 2 metalloproteinase (MT2-MMP), lysyl oxidase (LOX), VEGF, and adrenomedullin (ADM) in Hif2a-uKO stroma at the attachment site, suggesting that stromal HIF2α regulates these mediators to support blastocyst invasion. These findings provide new insight that stromal HIF2α allows trophoblast invasion through detachment of the luminal epithelium and activation of an embryonic survival signal.
Collapse
Affiliation(s)
- Leona Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Bunkyo-ku, Tokyo, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Fujita
- Department of Future Medical Science, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center of Preventive Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Shota Igaue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mayuko Saito-Kanatani
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
40
|
Novel reporter and deleter mouse strains generated using VCre/VloxP and SCre/SloxP systems, and their system specificity in mice. Transgenic Res 2018; 27:193-201. [PMID: 29546522 DOI: 10.1007/s11248-018-0067-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
DNA site-specific recombination by Cre/loxP is a powerful tool for gene manipulation in experimental animals. VCre/VloxP and SCre/SloxP are novel site-specific recombination systems, consisting of a recombinase and its specific recognition sequences, which function in a manner similar to Cre/loxP. Previous reports using Escherichia coli and Oryzias latipes demonstrated the existence of stringent specificity between each recombinase and its target sites; VCre/VloxP, SCre/SloxP, and Cre/loxP have no cross-reactivity with each other. In this study, we established four novel knock-in (KI) mouse strains in which VloxP-EGFP, SloxP-tdTomato, CAG-VCre, and CAG-SCre genes were inserted into the ROSA26 locus. VloxP-EGFP and SloxP-tdTomato KI mice were reporter mice carrying EGFP or tdTomato genes posterior to the stop codon, which was floxed by VloxP or SloxP fragments, respectively. CAG-VCre and CAG-SCre KI mice carried VCre or SCre genes that were expressed ubiquitously. These two reporter mice were crossed with three different deleter mice, CAG-VCre KI, CAG-SCre KI, and Cre-expressing transgenic mice. Through these matings, we found that VCre/VloxP and SCre/SloxP systems were functional in mice similar to Cre/loxP, and that the recombinases showed tight specificity for their recognition sequences. Our results suggest that these novel recombination systems allow highly sophisticated genome manipulations and will be useful for tracing the fates of multiple cell lineages or elucidating complex spatiotemporal regulations of gene expression.
Collapse
|
41
|
Hayata T, Chiga M, Ezura Y, Asashima M, Katabuchi H, Nishinakamura R, Noda M. Dullard deficiency causes hemorrhage in the adult ovarian follicles. Genes Cells 2018. [PMID: 29521016 DOI: 10.1111/gtc.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In mammals, the ovarian follicles are regulated at least in part by bone morphogenetic protein (BMP) family members. Dullard (also known as Ctdnep1) gene encodes a phosphatase that suppresses BMP signaling by inactivating or degrading BMP receptors. Here we report that the Col1a1-Cre-induced Dullard mutant mice displayed hemorrhagic ovarian cysts, with red blood cells accumulated in the follicles, resulting in infertility. Cells expressing Cre driven by Col1a1 2.3-kb promoter and their descendants were found in granulosa cells in the ovary and in Sertoli cells in the testis. DullardmRNA was localized to granulosa cells in the ovary. Genes involved in steroid hormone genesis including Cyp11a1, Hsd3b1 and Star were reduced, whereas expression of Smad6 and Smad7, BMP-inducible inhibitory Smads, was up-regulated in the Dullard mutant ovaries. Tamoxifen-inducible Dullard deletion in the whole body using Rosa26-CreER mice also resulted in hemorrhagic ovarian cysts in 2 weeks, which was rescued by administration of LDN-193189, a chemical inhibitor of BMP receptor kinase, suggesting that the hemorrhage in the Dullard-deficient ovarian follicles might be caused by increased BMP signaling. Thus, we conclude that Dullard is essential for ovarian homeostasis at least in part via suppression of BMP signaling.
Collapse
Affiliation(s)
- Tadayoshi Hayata
- Department of Biological Signaling and Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan
| | - Masahiko Chiga
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan.,Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan
| | | | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan.,Department of Orthopedic Surgery, School of Medicine, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan.,Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
42
|
MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS One 2018; 13:e0190800. [PMID: 29324782 PMCID: PMC5764304 DOI: 10.1371/journal.pone.0190800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
The transcription factor MAFB is an important regulator of the development and differentiation of various organs and tissues. Previous studies have shown that MAFB is expressed in embryonic and adult mouse testes and is expected to act as the downstream target of retinoic acid (RA) to initiate spermatogenesis. However, its exact localization and function remain unclear. Here, we localized MAFB expression in embryonic and adult testes and analyzed its gene function using Mafb-deficient mice. We found that MAFB and c-MAF are the only large MAF transcription factors expressed in testes, while MAFA and NRL are not. MAFB was localized in Leydig and Sertoli cells at embryonic day (E) 18.5 but in Leydig cells, Sertoli cells, and pachytene spermatocytes in adults. Mafb-deficient testes at E18.5 showed fully formed seminiferous tubules with no abnormal structure or differences in testicular somatic cell numbers compared with those of control wild-type mice. Additionally, the expression levels of genes related to development and function of testicular cells were unchanged between genotypes. In adults, the expression of MAFB in Sertoli cells was shown to be stage specific and induced by RA. By generating Mafbfl/fl CAG-CreER™ (Mafb-cKO) mice, in which Cre recombinase was activated upon tamoxifen treatment, we found that the neonatal cKO mice died shortly upon Mafb deletion, but adult cKO mice were alive upon deletion. Adult cKO mice were fertile, and spermatogenesis maintenance was normal, as indicated by histological analysis, hormone levels, and germ cell stage-specific markers. Moreover, there were no differences in the proportion of seminiferous stages between cKO mice and controls. However, RNA-Seq analysis of cKO Sertoli cells revealed that the down-regulated genes were related to immune function and phagocytosis activity but not spermatogenesis. In conclusion, we found that MAFB is dispensable for fetal testis morphogenesis and spermatogenesis maintenance in adult mice, despite the significant gene expression in different cell types, but MAFB might be critical for phagocytosis activity of Sertoli cells.
Collapse
|
43
|
Imanishi A, Murata T, Sato M, Hotta K, Imayoshi I, Matsuda M, Terai K. A Novel Morphological Marker for the Analysis of Molecular Activities at the Single-cell Level. Cell Struct Funct 2018; 43:129-140. [DOI: 10.1247/csf.18013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ayako Imanishi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
| | | | - Masaya Sato
- Graduate School of Science and Technology, Meijo University
| | - Kazuhiro Hotta
- Graduate School of Science and Technology, Meijo University
| | - Itaru Imayoshi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
| | - Michiyuki Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
44
|
Arf6 in lymphatic endothelial cells regulates lymphangiogenesis by controlling directional cell migration. Sci Rep 2017; 7:11431. [PMID: 28900118 PMCID: PMC5595869 DOI: 10.1038/s41598-017-11240-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/21/2017] [Indexed: 11/08/2022] Open
Abstract
The small GTPase Arf6 plays pivotal roles in a wide variety of cellular events such as endocytosis, exocytosis, and actin cytoskeleton reorganization. However, the physiological functions of Arf6 at the whole animal level have not yet been thoroughly understood. Here, we show that Arf6 regulates developmental and tumor lymphangiogenesis in mice. Lymphatic endothelial cell (LEC)-specific Arf6 conditional knockout (LEC-Arf6 cKO) mouse embryos exhibit severe skin edema and impairment in the formation of lymphatic vessel network at the mid-gestation stage. Knockdown of Arf6 in human LECs inhibits in vitro capillary tube formation and directed cell migration induced by vascular endothelial growth factor-C (VEGF-C) by inhibiting VEGF-C-induced internalization of β1 integrin. Finally, we found that LEC-Arf6 cKO mice transplanted with B16 melanoma cells attenuated tumor lymphangiogenesis and progression. Collectively, these results demonstrate that Arf6 in LECs plays a crucial role in physiological and pathological lymphangiogenesis.
Collapse
|
45
|
Ishimaru T, Ishida J, Kim JD, Mizukami H, Hara K, Hashimoto M, Yagami KI, Sugiyama F, Fukamizu A. Angiodysplasia in embryo lacking protein arginine methyltransferase 1 in vascular endothelial cells. J Biochem 2017; 161:255-258. [PMID: 28003433 DOI: 10.1093/jb/mvw095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/13/2016] [Indexed: 01/29/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is involved in multiple cellular functions including proliferation and differentiation. Although PRMT1 is expressed in vascular endothelial cells (ECs), which are responsible for angiogenesis during embryonic development, its role has remained elusive. In this study, we generated endothelial-specific prmt1-knockout (Prmt1-ECKO) mice, and found that they died before embryonic day 15. The superficial temporal arteries in these embryos were poorly perfused with blood, and whole-mount 3D imaging revealed dilated and segmentalized luminal structures in Prmt1-ECKO fetuses in comparison with those of controls. Our findings provide evidence that PRMT1 is important for embryonic vascular formation.
Collapse
Affiliation(s)
- Tomohiro Ishimaru
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Junji Ishida
- Life science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jun-Dal Kim
- Life science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hayase Mizukami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kanako Hara
- Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Misuzu Hashimoto
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Life science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
46
|
Tomimatsu K, Kokura K, Nishida T, Yoshimura Y, Kazuki Y, Narita M, Oshimura M, Ohbayashi T. Multiple expression cassette exchange via TP901-1, R4, and Bxb1 integrase systems on a mouse artificial chromosome. FEBS Open Bio 2017; 7:306-317. [PMID: 28286726 PMCID: PMC5337897 DOI: 10.1002/2211-5463.12169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023] Open
Abstract
The site-specific excision of a target DNA sequence for genetic knockout or lineage tracing is a powerful tool for investigating biological systems. Currently, site-specific recombinases (SSRs), such as Cre or Flp recombination target cassettes, have been successfully excised or inverted by a single SSR to regulate transgene expression. However, the use of a single SSR might restrict the complex control of gene expression. This study investigated the potential for expanding the multiple regulation of transgenes using three different integrase systems (TP901-1, R4, and Bxb1). We designed three excision cassettes that expressed luciferase, where the luciferase expression could be exchanged to a fluorescent protein by site-specific recombination. Individual cassettes that could be regulated independently by a different integrase were connected in tandem and inserted into a mouse artificial chromosome (MAC) vector in Chinese hamster ovary cells. The transient expression of an integrase caused the targeted luciferase activity to be lost and fluorescence was activated. Additionally, the integrase system enabled the specific excision of targeted DNA sequences without cross-reaction with the other recombination targets. These results suggest that the combined use of these integrase systems in a defined locus on a MAC vector permits the multiple regulation of transgene expression and might contribute to genomic or cell engineering.
Collapse
Affiliation(s)
- Kosuke Tomimatsu
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Kenji Kokura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Division of Human Genome ScienceDepartment of Molecular and Cellular BiologySchool of Life SciencesFaculty of MedicineTottori UniversityYonagoJapan
| | - Tadashi Nishida
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
| | - Yuki Yoshimura
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
- Central Institute for Experimental AnimalsKawasakiJapan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeUK
| | - Mitsuo Oshimura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
| | - Tetsuya Ohbayashi
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
| |
Collapse
|
47
|
Hiraoka T, Hirota Y, Saito-Fujita T, Matsuo M, Egashira M, Matsumoto L, Haraguchi H, Dey SK, Furukawa KS, Fujii T, Osuga Y. STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation. JCI Insight 2016; 1:87591. [PMID: 27358915 PMCID: PMC4922514 DOI: 10.1172/jci.insight.87591] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Although a close connection between uterine regeneration and successful pregnancy in both humans and mice has been consistently observed, its molecular basis remains unclear. We here established a mouse model of decellularized uterine matrix (DUM) transplantation. Resected mouse uteri were processed with SDS to make DUMs without any intact cells. DUMs were transplanted into the mouse uteri with artificially induced defects, and all the uterine layers were recovered at the DUM transplantation sites within a month. In the regenerated uteri, normal hormone responsiveness in early pregnancy was observed, suggesting the regeneration of functional uteri. Uterine epithelial cells rapidly migrated and formed a normal uterine epithelial layer within a week, indicating a robust epithelial-regenerating capacity. Stromal and myometrial regeneration occurred following epithelial regeneration. In ovariectomized mice, uterine regeneration of the DUM transplantation was similarly observed, suggesting that ovarian hormones are not essential for this regeneration process. Importantly, the regenerating epithelium around the DUM demonstrated heightened STAT3 phosphorylation and cell proliferation, which was suppressed in uteri of Stat3 conditional knockout mice. These data suggest a key role of STAT3 in the initial step of the uterine regeneration process. The DUM transplantation model is a powerful tool for uterine regeneration research.
Collapse
Affiliation(s)
- Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mahiro Egashira
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Leona Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Katsuko S Furukawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Al-Soudy AS, Nakanishi T, Mizuno S, Hasegawa Y, Shawki HH, Katoh MC, Basha WA, Ibrahim AE, El-Shemy HA, Iseki H, Yoshiki A, Hiromori Y, Nagase H, Takahashi S, Oishi H, Sugiyama F. Germline recombination in a novel Cre transgenic line, Prl3b1-Cre mouse. Genesis 2016; 54:389-97. [PMID: 27124574 DOI: 10.1002/dvg.22944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/12/2016] [Accepted: 04/24/2016] [Indexed: 11/09/2022]
Abstract
Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1-cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL-2) protein in placenta along with increased expression toward the end of pregnancy. PL-2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1-cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1-cre;R26GRR mice revealed that tdsRed-positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1-cre;R26GRR testes suggested that Cre-mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1-cre mice line provides a unique resource to understand testicular germ-cell development. genesis 54:389-397, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Al-Sayed Al-Soudy
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Animal Genetic Resource Department, National Gene Bank, Giza, Egypt.,Department of Anatomy and Embryology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshikazu Hasegawa
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hossam H Shawki
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Animal Genetic Resource Department, National Gene Bank, Giza, Egypt.,Department of Anatomy and Embryology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Megumi C Katoh
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anatomy and Embryology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Walaa A Basha
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anatomy and Embryology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdelaziz E Ibrahim
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hany A El-Shemy
- Cairo University Research Park, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hiroyoshi Iseki
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, Riken BioResource Center, Tsukuba, Japan
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan.,Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anatomy and Embryology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hisashi Oishi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anatomy and Embryology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
49
|
Hasegawa Y, Hoshino Y, Ibrahim AE, Kato K, Daitoku Y, Tanimoto Y, Ikeda Y, Oishi H, Takahashi S, Yoshiki A, Yagami KI, Iseki H, Mizuno S, Sugiyama F. Generation of CRISPR/Cas9-mediated bicistronic knock-in ins1-cre driver mice. Exp Anim 2016; 65:319-27. [PMID: 27053096 PMCID: PMC4976246 DOI: 10.1538/expanim.16-0016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the present study, we generated novel cre driver mice for gene
manipulation in pancreatic β cells. Using the CRISPR/Cas9 system, stop codon sequences of
Ins1 were targeted for insertion of cre, including
2A sequences. A founder of C57BL/6J-Ins1em1 (cre)
Utr strain was produced from an oocyte injected with
pX330 containing the sequences encoding gRNA and Cas9 and a DNA donor
plasmid carrying 2A-cre. (R26GRR x C57BL/6J-Ins1em1 (cre)
Utr) F1 mice were histologically characterized for cre-loxP
recombination in the embryonic and adult stages; cre-loxP recombination was observed in
all pancreatic islets examined in which almost all insulin-positive cells showed tdsRed
fluorescence, suggesting β cell-specific recombination. Furthermore, there were no
significant differences in results of glucose tolerance test among genotypes
(homo/hetero/wild). Taken together, these observations indicated that
C57BL/6J-Ins1em1 (cre) Utr is useful for studies of
glucose metabolism and the strategy of bicistronic cre knock-in using the
CRISPR/Cas9 system could be useful for production of cre driver mice.
Collapse
Affiliation(s)
- Yoshikazu Hasegawa
- Laborarory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shibata M, Banno R, Sugiyama M, Tominaga T, Onoue T, Tsunekawa T, Azuma Y, Hagiwara D, Lu W, Ito Y, Goto M, Suga H, Sugimura Y, Oiso Y, Arima H. AgRP Neuron-Specific Deletion of Glucocorticoid Receptor Leads to Increased Energy Expenditure and Decreased Body Weight in Female Mice on a High-Fat Diet. Endocrinology 2016; 157:1457-66. [PMID: 26889940 DOI: 10.1210/en.2015-1430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions.
Collapse
Affiliation(s)
- Miyuki Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Tominaga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Azuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Wenjun Lu
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|