1
|
Di Pierro F, Sagheddu V, Galletti S, Casaroli A, Labrini E, Soldi S, Cazzaniga M, Bertuccioli A, Matera M, Cavecchia I, Palazzi CM, Tanda ML, Zerbinati N. Selection, Comparative Genomics, and Potential Probiotic Features of Escherichia coli 5C, a pks-Negative Strain Isolated from Healthy Infant Donor Feces. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10522-5. [PMID: 40238037 DOI: 10.1007/s12602-025-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Among the emerging issues in probiotic safety, the possible presence of pks, a gene cluster synthetizing a genotoxin known as colibactin, is one of the most alarming. Indeed, indigenous E. coli strain pks-positive are found in 60% of patients with colorectal cancer, and the most widely used E. coli-based probiotic, known as E. coli Nissle 1917 (DSM 6601), is pks-positive. Starting from 25 potential candidates selected by screening 25 infant stool samples, we have selected an E. coli strain (named 5C, deposited as LMG S-33222) belonging to the phylotype A and having the serovar O173:H1. Having been previously completely sequenced by our group, we have further characterized this strain, demonstrating that it is (i) devoid of the most known potential pathogenic-related genes, (ii) devoid of possible plasmids, (iii) antibiotic-sensitive according to the EFSA panel, (iv) resistant in gastric and enteric juice, (v) significantly producing acetate, (vi) poorly producing histamine, (vii) endowed with a significant in vitro antipathogenic profile, (viii) promoting a significant in vitro immunological response based on IL-10 and IL-12, and (ix) devoid of the pks genes. A comparative genomics versus E. coli Nissle 1917 is also provided. Considering that the other two most commonly used E. coli-based probiotics (E. coli DSM 17252 and E. coli A0 34/86) are respectively pks-positive and alpha-hemolysin-(hly) and cytotoxic necrotizing factor-1-(cnf1) positive, this novel strain (E. coli 5C) is likely the probiotic E. coli strain with the best safety profile available to date for human use.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Microbiota International Clinical Society, 10123, Turin, Italy
- Scientific & Research Department, Velleja Research, 20125, Milan, Italy
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Valeria Sagheddu
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Serena Galletti
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Alice Casaroli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Edoardo Labrini
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | - Sara Soldi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, 29017, Piacenza, Italy
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122, Urbino, Italy
| | - Mariarosaria Matera
- Microbiota International Clinical Society, 10123, Turin, Italy
- Department of Pediatric Emergencies, Misericordia Hospital, 58100, Grosseto, Italy
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123, Turin, Italy
- Microbiomic Department, Koelliker Hospital, 10134, Turin, Italy
| | | | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| |
Collapse
|
2
|
Cruz Neto JPR, de Oliveira AM, de Oliveira KÁR, Sampaio KB, da Veiga Dutra ML, de Luna Freire MO, de Souza EL, de Brito Alves JL. Safety Evaluation of a Novel Potentially Probiotic Limosilactobacillus fermentum in Rats. Probiotics Antimicrob Proteins 2024; 16:752-762. [PMID: 37119497 DOI: 10.1007/s12602-023-10077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Limosilactobacillus (L) fermentum (strains 139, 263, 296) is a novel probiotic mixture isolated from fruit processing by-products. The use of this formulation has been associated with improvements in cardiometabolic, inflammatory, and oxidative stress parameters. The present study evaluated the safety of a potential multi-strain probiotic by genotoxicity (micronucleus assay) and subchronic toxicity study (13-week repeated dose). In the genotoxicity evaluation, L. fermentum 139, 263, 296 did not increase the frequency of micronuclei in erythrocytes of rats of both sexes at doses up to 1010 CFU/mL. In the subchronic toxicity study, the administration of L. fermentum did not promote adverse health effects, such as behavioral changes, appearance of tumors, changes in hematological and biochemical parameters. In addition, higher doses of L. fermentum 139, 263, 296 have been shown to reduce the levels of pro-inflammatory cytokines. Administration of potentially probiotic L. fermentum did not promote adverse health effects in rats and could be evaluated as a potential probiotic for humans.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Alison Macário de Oliveira
- Department of Biochemistry, Biological Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Maria Letícia da Veiga Dutra
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
3
|
Falzone L, Lavoro A, Candido S, Salmeri M, Zanghì A, Libra M. Benefits and concerns of probiotics: an overview of the potential genotoxicity of the colibactin-producing Escherichia coli Nissle 1917 strain. Gut Microbes 2024; 16:2397874. [PMID: 39229962 PMCID: PMC11376418 DOI: 10.1080/19490976.2024.2397874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Recently, the mounting integration of probiotics into human health strategies has gathered considerable attention. Although the benefits of probiotics have been widely recognized in patients with gastrointestinal disorders, immune system modulation, and chronic-degenerative diseases, there is a growing need to evaluate their potential risks. In this context, new concerns have arisen regarding the safety of probiotics as some strains may have adverse effects in humans. Among these strains, Escherichia coli Nissle 1917 (EcN) exhibited traits of concern due to a pathogenic locus in its genome that produces potentially genotoxic metabolites. As the use of probiotics for therapeutic purposes is increasing, the effects of potentially harmful probiotics must be carefully evaluated. To this end, in this narrative review article, we reported the findings of the most relevant in vitro and in vivo studies investigating the expanding applications of probiotics and their impact on human well-being addressing concerns arising from the presence of antibiotic resistance and pathogenic elements, with a focus on the polyketide synthase (pks) pathogenic island of EcN. In this context, the literature data here discussed encourages a thorough profiling of probiotics to identify potential harmful elements as done for EcN where potential genotoxic effects of colibactin, a secondary metabolite, were observed. Specifically, while some studies suggest EcN is safe for gastrointestinal health, conflicting findings highlight the need for further research to clarify its safety and optimize its use in therapy. Overall, the data here presented suggest that a comprehensive assessment of the evolving landscape of probiotics is essential to make evidence-based decisions and ensure their correct use in humans.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonino Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology 'G.F. Ingrassia', University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Effendi SSW, Ng IS. Prospective and challenges of live bacterial therapeutics from a superhero Escherichia coli Nissle 1917. Crit Rev Microbiol 2023; 49:611-627. [PMID: 35947523 DOI: 10.1080/1040841x.2022.2109405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Escherichia coli Nissle 1917 (EcN), the active component of Mutaflor(R), is a notable probiotic from Gram-negative to treat Crohn's disease and irritable bowel syndrome. Therefore, a comprehensive genomic database maximizes the systemic probiotic assessment to discover EcN's role in human health. Recently, advanced synthetic and genetic tools have opened up a rich area to execute EcN as "living medicines" with controllable functions. Incorporating unique biomarkers allows the engineered EcN to switch genes on and off in response to environmental cues. Since EcN holds promise as a safe nature vehicle, more studies are desired to fully realize a wide range of probiotic potential for disease treatment. This review aims to deliver a historical origin of EcN, discuss the recent promising genetic toolbox in the rational design of probiotics, and pinpoint the clinical translation and evaluation of engineered EcN in vitro and in vivo. The summary of safety concerns, strategies of biotherapeutics development, and the challenges and prospects of engineered EcN is also concluded.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Haranahalli Nataraj B, Behare PV, Yadav H, Srivastava AK. Emerging pre-clinical safety assessments for potential probiotic strains: a review. Crit Rev Food Sci Nutr 2023; 64:8155-8183. [PMID: 37039078 DOI: 10.1080/10408398.2023.2197066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Probiotics are amply studied and applied dietary supplements of greater consumer acceptance. Nevertheless, the emerging evidence on probiotics-mediated potential risks, especially among immunocompromised individuals, necessitates careful and in-depth safety studies. The traditional probiotic safety evaluation methods investigate targeted phenotypic traits, such as virulence factors and antibiotic resistance. However, the rapid innovation in omics technologies has offered an impactful means to ultimately sequence and unknot safety-related genes or their gene products at preliminary levels. Further validating the genome features using an array of phenotypic tests would provide an absolute realization of gene expression dynamics. For safety studies in animal models, the in vivo toxicity evaluation guidelines of chemicals proposed by the Organization for Economic Co-operation and Development (OECD) have been meticulously adopted in probiotic research. Future research should also focus on coupling genome-scale safety analysis and establishing a link to its transcriptome, proteome, or metabolome for a fine selection of safe probiotic strains. Considering the studies published over the years, it can be inferred that the safety of probiotics is strain-host-dose-specific. Taken together, an amalgamation of in silico, in vitro, and in vivo approaches are necessary for a fine scale selection of risk-free probiotic strain for use in human applications.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anil Kumar Srivastava
- U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University, Mathura, India
- Probiotic Association of India, Karnal, India
| |
Collapse
|
6
|
Sarnelli G, Del Re A, Pesce M, Lu J, Esposito G, Sanseverino W, Corpetti C, Basili Franzin S, Seguella L, Palenca I, Rurgo S, De Palma FDE, Zilli A, Esposito G. Oral Immunization with Escherichia coli Nissle 1917 Expressing SARS-CoV-2 Spike Protein Induces Mucosal and Systemic Antibody Responses in Mice. Biomolecules 2023; 13:biom13030569. [PMID: 36979504 PMCID: PMC10046078 DOI: 10.3390/biom13030569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As of October 2022, the COVID-19 pandemic continues to pose a major public health conundrum, with increased rates of symptomatic infections in vaccinated individuals. An ideal vaccine candidate for the prevention of outbreaks should be rapidly scalable, easy to administer, and able to elicit a potent mucosal immunity. Towards this aim, we proposed an engineered Escherichia coli (E. coli) Nissle 1917 (EcN) strain with SARS-CoV-2 spike protein (SP)-coding plasmid, which was able to expose SP on its cellular surface by a hybridization with the adhesin involved in diffuse adherence 1 (AIDA1). In this study, we presented the effectiveness of a 16-week intragastrically administered, engineered EcN in producing specific systemic and mucosal immunoglobulins against SARS-CoV-2 SP in mice. We observed a time-dependent increase in anti-SARS-CoV-2 SP IgG antibodies in the sera at week 4, with a titre that more than doubled by week 12 and a stable circulating titre by week 16 (+309% and +325% vs. control; both p < 0.001). A parallel rise in mucosal IgA antibody titre in stools, measured via intestinal and bronchoalveolar lavage fluids of the treated mice, reached a plateau by week 12 and until the end of the immunization protocol (+300, +47, and +150%, at week 16; all p < 0.001 vs. controls). If confirmed in animal models of infection, our data indicated that the engineered EcN may be a potential candidate as an oral vaccine against COVID-19. It is safe, inexpensive, and, most importantly, able to stimulate the production of both systemic and mucosal anti-SARS-CoV-2 spike-protein antibodies.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Jie Lu
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China
| | - Giovanni Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Walter Sanseverino
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Chiara Corpetti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Palenca
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Aurora Zilli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Plitt T, Faith JJ. Seminars in immunology special issue: Nutrition, microbiota and immunity The unexplored microbes in health and disease. Semin Immunol 2023; 66:101735. [PMID: 36857892 PMCID: PMC10049858 DOI: 10.1016/j.smim.2023.101735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Functional characterization of the microbiome's influence on host physiology has been dominated by a few characteristic example strains that have been studied in detail. However, the extensive development of methods for high-throughput bacterial isolation and culture over the past decade is enabling functional characterization of the broader microbiota that may impact human health. Characterizing the understudied majority of human microbes and expanding our functional understanding of the diversity of the gut microbiota could enable new insights into diseases with unknown etiology, provide disease-predictive microbiome signatures, and advance microbial therapeutics. We summarize high-throughput culture-dependent platforms for characterizing bacterial strain function and host-interactions. We elaborate on the importance of these technologies in facilitating mechanistic studies of previously unexplored microbes, highlight new opportunities for large-scale in vitro screens of host-relevant microbial functions, and discuss the potential translational applications for microbiome science.
Collapse
Affiliation(s)
- Tamar Plitt
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
8
|
Kalantari A, James MJ, Renaud LA, Perreault M, Monahan CE, McDonald MN, Hava DL, Isabella VM. Robust performance of a live bacterial therapeutic chassis lacking the colibactin gene cluster. PLoS One 2023; 18:e0280499. [PMID: 36730255 PMCID: PMC9894410 DOI: 10.1371/journal.pone.0280499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
E. coli Nissle (EcN) is a non-pathogenic probiotic bacterium of the Enterobacteriaceae family that has been used for over a century to promote general gut health. Despite the history of safe usage of EcN, concerns have been raised regarding the presence of the pks gene cluster, encoding the genotoxin colibactin, due to its association with colorectal cancer. Here, we sought to determine the effect of pks island removal on the in vitro and in vivo robustness and activity of EcN and EcN-derived strains. A deletion of the pks island (Δpks) was constructed in wild type and engineered strains of EcN using lambda red recombineering. Mass spectrometric measurement of N-myristoyl-D-asparagine, released during colibactin maturation, confirmed that the pks deletion abrogated colibactin production. Growth curves were comparable between Δpks strains and their isogenic parents, and wild type EcN displayed no competitive advantage to the Δpks strain in mixed culture. Deletion of pks also had no effect on the activity of strains engineered to degrade phenylalanine (SYNB1618 and SYNB1934) or oxalate (SYNB8802). Furthermore, 1:1 mixed dosing of wild type and Δpks EcN in preclinical mouse and nonhuman primate models demonstrated no competitive disadvantage for the Δpks strain with regards to transit time or colonization. Importantly, there was no significant difference on in vivo strain performance between the clinical-stage strain SYNB1934 and its isogenic Δpks variant with regards to recovery of the quantitative strain-specific biomarkers d5- trans-cinnamic acid, and d5-hippuric acid. Taken together, these data support that the pks island is dispensable for Synthetic Biotic fitness and activity in vivo and that its removal from engineered strains of EcN will not have a deleterious effect on strain efficacy.
Collapse
Affiliation(s)
- Aida Kalantari
- Synlogic, Inc., Cambridge, Massachusetts, United States of America
- * E-mail: (VMI); (AK)
| | - Michael J. James
- Synlogic, Inc., Cambridge, Massachusetts, United States of America
| | - Lauren A. Renaud
- Synlogic, Inc., Cambridge, Massachusetts, United States of America
| | - Mylene Perreault
- Synlogic, Inc., Cambridge, Massachusetts, United States of America
| | | | - Mary N. McDonald
- Synlogic, Inc., Cambridge, Massachusetts, United States of America
| | - David L. Hava
- Synlogic, Inc., Cambridge, Massachusetts, United States of America
| | - Vincent M. Isabella
- Synlogic, Inc., Cambridge, Massachusetts, United States of America
- * E-mail: (VMI); (AK)
| |
Collapse
|
9
|
Lynch JP, Goers L, Lesser CF. Emerging strategies for engineering Escherichia coli Nissle 1917-based therapeutics. Trends Pharmacol Sci 2022; 43:772-786. [PMID: 35232591 PMCID: PMC9378478 DOI: 10.1016/j.tips.2022.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
Engineered microbes are rapidly being developed for the delivery of therapeutic modalities to sites of disease. Escherichia coli Nissle 1917 (EcN), a genetically tractable probiotic with a well-established human safety record, is emerging as a favored chassis. Here, we summarize the latest progress in rationally engineered variants of EcN for the treatment of infectious diseases, metabolic disorders, and inflammatory bowel diseases (IBDs) when administered orally, as well as cancers when injected directly into tumors or the systemic circulation. We also discuss emerging studies that raise potential safety concerns regarding these EcN-based strains as therapeutics due to their secretion of a genotoxic colibactin that can promote the formation of DNA double-stranded breaks in mammalian DNA.
Collapse
Affiliation(s)
- Jason P Lynch
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Goers
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Zhao L, Yin G, Zhang Y, Duan C, Wang Y, Kang Z. A comparative study on the genomes, transcriptomes, and metabolic properties of Escherichia coli strains Nissle 1917, BL21(DE3), and MG1655. ENGINEERING MICROBIOLOGY 2022; 2:100012. [PMID: 39628614 PMCID: PMC11610980 DOI: 10.1016/j.engmic.2022.100012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/06/2024]
Abstract
Escherichia coli is the most well-studied model prokaryote and has become an indispensable host for the biotechnological production of proteins and biochemicals. In particular, the probiotic status of one E. coli strain, E. coli Nissle 1917 (EcN) has helped it become a new favorite amongst synthetic biologists. To broaden its potential applications, here we assemble a comparative study on the genomes, transcriptomes, and metabolic properties of E. coli strains EcN, BL21(DE3), and MG1655. Comparative genomics data suggests that EcN possesses 1404 unique CDSs. In particular, EcN has additional iron transport systems which endow EcN with a higher tolerance to iron scarcity when compared to two other E. coli strains. EcN transcriptome data demonstrates that E. coli strains EcN, BL21(DE3), and MG1655 all have comparable activities of the central metabolic pathway, however only EcN inherits the arginine deiminase pathway. Additionally, we found that EcN displayed a lower expression of ribosomal proteins compared to BL21(DE3) and MG1655. This comparative study on E. coli strains EcN, BL21(DE3), and MG1655 aims to provide a reference for further engineering EcN as a biotechnological tool.
Collapse
Affiliation(s)
- Linlin Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yonglin Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chaofan Duan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
|
12
|
Nougayrède JP, Oswald E. Reply to Dubbert and von Bünau, "A Probiotic Friend". mSphere 2021; 6:e0090621. [PMID: 34935449 PMCID: PMC8694103 DOI: 10.1128/msphere.00906-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Eric Oswald
- IRSD, INSERM, INRAE, Université de Toulouse, ENVT, Toulouse, France
| |
Collapse
|
13
|
Abstract
The probiotic Escherichia coli strain Nissle 1917 (DSM 6601, Mutaflor), generally considered beneficial and safe, has been used for a century to treat various intestinal diseases. However, Nissle 1917 hosts in its genome the pks pathogenicity island that codes for the biosynthesis of the genotoxin colibactin. Colibactin is a potent DNA alkylator, suspected to play a role in colorectal cancer development. We show in this study that Nissle 1917 is functionally capable of producing colibactin and inducing interstrand cross-links in the genomic DNA of epithelial cells exposed to the probiotic. This toxicity was even exacerbated with lower doses of the probiotic, when the exposed cells started to divide again but exhibited aberrant anaphases and increased gene mutation frequency. DNA damage was confirmed in vivo in mouse models of intestinal colonization, demonstrating that Nissle 1917 produces the genotoxin in the gut lumen. Although it is possible that daily treatment of adult humans with their microbiota does not produce the same effects, administration of Nissle 1917 as a probiotic or as a chassis to deliver therapeutics might exert long-term adverse effects and thus should be considered in a risk-versus-benefit evaluation. IMPORTANCE Nissle 1917 is sold as a probiotic and considered safe even though it has been known since 2006 that it harbors the genes for colibactin synthesis. Colibactin is a potent genotoxin that is now linked to causative mutations found in human colorectal cancer. Many papers concerning the use of this strain in clinical applications ignore or elude this fact or misleadingly suggest that Nissle 1917 does not induce DNA damage. Here, we demonstrate that Nissle 1917 produces colibactin in vitro and in vivo and induces mutagenic DNA damage. This is a serious safety concern that must not be ignored in the interests of patients, the general public, health care professionals, and ethical probiotic manufacturers.
Collapse
|
14
|
Dougherty MW, Jobin C. Shining a Light on Colibactin Biology. Toxins (Basel) 2021; 13:346. [PMID: 34065799 PMCID: PMC8151066 DOI: 10.3390/toxins13050346] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this biosynthetic gene cluster cause DNA damage and tumorigenesis in cell lines and pre-clinical models, yet fundamental knowledge regarding colibactin function is lacking. To accurately assess the role of pks+ E. coli in cancer etiology, the biological mechanisms governing production and delivery of colibactin by these bacteria must be elucidated. In this review, we will focus on recent advances in our understanding of colibactin's structural mode-of-action and mutagenic potential with consideration for how this activity may be regulated by physiologic conditions within the intestine.
Collapse
Affiliation(s)
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Infectious Diseases and Inflammation, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|