1
|
Abboud S, Ouni A, Ben Abdallah RA, Bchir A, Ben Abdelwaheb S, Tlili D, Dbara S. Unraveling the effect of phenolic extract derived from olive mill solid wastes on agro-physiological and biochemical traits of pomegranate and its associated rhizospheric soil properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134234. [PMID: 38608584 DOI: 10.1016/j.jhazmat.2024.134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.
Collapse
Affiliation(s)
- Samia Abboud
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia; LR16IO02 Laboratory of sustainability of olive and fruit growing in semi-arid and arid environments, Olive Tree Institute, University of Sfax, Tunisia.
| | - Azhar Ouni
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | - Rania Aydi Ben Abdallah
- LR21AGR03-Production and Protection for a Sustainable Horticulture (2PHD), Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | | | - Sahar Ben Abdelwaheb
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | - Darine Tlili
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia
| | - Soumaya Dbara
- Regional Research Centre on Horticulture and Organic Agriculture, IRESA-University of Sousse, Chott mariem-Sousse, Tunisia; LR16IO02 Laboratory of sustainability of olive and fruit growing in semi-arid and arid environments, Olive Tree Institute, University of Sfax, Tunisia
| |
Collapse
|
2
|
Possible Utilization of Two-Phase Olive Pomace (TPOP) to Formulate Potential Functional Beverages: A Preliminary Study. BEVERAGES 2022. [DOI: 10.3390/beverages8030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The demand for functional beverages is expanding over the world. In this work, a rapid, easy and low-cost procedure was followed to prepare a functional beverage (FB) by directly using two-phase olive pomace (TPOP). Liquid ingredients (water and 6% citric acid), extraction systems (heat and ultrasonic treatment), treatment time (30, 60, 90 min) and drying techniques (freeze and air-dried) were studied. Experimented TPOP had a total phenol content of 7.5 mg/g CAE (caffeic acid equivalent), composed majorly of o-diphenols. Air drying of TPOP caused a 50% depletion of total phenols compared to freeze drying. Conversely, no substantial differences were found in the FB, neither for liquid ingredients nor treatment/time adopted. Both 6% citric acid and water were revealed to be profitable liquid ingredients. A 30-min heating treatment was enough to produce a satisfactory beverage, whereas ultrasound treatment caused a loss of total phenols, especially in the water FB. All FBs appeared just limpid after a simple filtration; the citric acid beverage showed reddish color, while water ones were brownish. Finally, the prepared FBs had an average total phenol of about 600 mg/L CAE (by using 300 g/L fresh pomace), with hydroxytyrosol and related compounds being well represented, which confirmed their potential functionality.
Collapse
|
3
|
De Leonardis A, Macciola V, Iftikhar A, Lopez F. Antioxidant effect of traditional and new vinegars on functional oil/vinegar dressing-based formulations. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03986-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Antioxidant and Antimicrobial Activity of Polyphenols Extracted after Adsorption onto Natural Clay “Ghassoul”. J CHEM-NY 2020. [DOI: 10.1155/2020/8736721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural polyphenols contained in olive mill wastewaters (OMW) have been usually associated with great bioactive properties as “antioxidants”. In this work, we recovered the polyphenols after adsorption onto natural clay “ghassoul” by different solvents: water, ethyl acetate, and methanol (PPW, PPA, and PPM, respectively) to avoid environmental pollution. Also, we tested the antioxidant activity of the extracted polyphenols by two methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC). Then, we analyzed antimicrobial activity by the microdilution technique to determine at the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The OMW of the Fez-Meknes region has a very acidic pH, considerable amounts of mineral matter, and a high concentration of polyphenols and organic content. The results of the test from DPPH showed good antiradical potential for polyphenols extracted with water, but the TAC showed an important capacity for all extracts unless PPA. The antibacterial activity is not the same on the four bacteria studied (Escherichia coli, Salmonella sp, Staphylococcus aureus, and Enterococcus faecalis), and all extracts inhibit most tested germs that do not have the same MIC and the same sensitivity. Only the PPW showed the minimum bactericidal concentration (MBC) that is equal to 0.290 mg/mL for Salmonella sp and Staphylococcus aureus, which confirms that the extraction by water of the adsorbed polyphenols is an original solution to recover the polyphenols and also to obtain a natural phenolic antioxidant which can be used in the pharmaceutical, nourishment, and cosmetic industry.
Collapse
|
5
|
Delivery Systems for Hydroxytyrosol Supplementation: State of the Art. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review aims to highlight the benefits and limitations of the main colloid-based available delivery systems for hydroxytyrosol. Hydroxytyrosol is a phenolic compound with clear biological activities for human wellness. Olive fruits, leaves and extra-virgin oil are the main food sources of hydroxytyrosol. Moreover, olive oil mill wastewaters are considered a potential source to obtain hydroxytyrosol to use in the food industry. However, recovered hydroxytyrosol needs adequate formulations and delivery systems to increase its chemical stability and bioavailability. Therefore, the application of hydroxytyrosol delivery systems in food sector is still a fascinating challenge. Principal delivery systems are based on the use of colloids, polymers able to perform gelling, thickening and stabilizing functions in various industrial sectors, including food manufacturing. Here, we review the recipes for the available hydroxytyrosol systems and their relative production methods, as well as aspects relative to system characteristics and hydroxytyrosol effectiveness.
Collapse
|
6
|
A study on acetification process to produce olive vinegar from oil mill wastewaters. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03323-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Palumbo G, Schiavon M, Nardi S, Ertani A, Celano G, Colombo CM. Biostimulant Potential of Humic Acids Extracted From an Amendment Obtained via Combination of Olive Mill Wastewaters (OMW) and a Pre-treated Organic Material Derived From Municipal Solid Waste (MSW). FRONTIERS IN PLANT SCIENCE 2018; 9:1028. [PMID: 30079073 PMCID: PMC6062822 DOI: 10.3389/fpls.2018.01028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/25/2018] [Indexed: 05/10/2023]
Abstract
Olive mill wastewaters (OMW) contain significant levels of phenolic compounds with antimicrobial/phytotoxic activity and high amounts of undecomposed organic matter that may exert negative effects on soil biology. Among OMW detoxification techniques, those focusing on oxidative degradation of phenolic compounds are relevant. The composting (bio-oxidation) process in particular, exploits exothermic oxidation reactions by microorganisms to transform the organic matrix of OMW into an amendment biologically stable and feasible to use in agriculture. This process consists of an active phase during which organic compounds are rapidly decomposed, and a curing phase characterized by a slow breakdown of the remaining materials with the formation of humic substances (HS) as by-products. In this study, bio-oxidation of OMW was performed using a pre-treated organic material derived from municipal solid waste (MSW). The obtained amendment (OMWF) was stable and in accordance with the legislative parameters of mixed organic amendments. HS were then extracted from OMWF and MSW (control amendment, Amd-C), and differences in structural properties of their humic acid (HA) fraction were highlighted via spectroscopy (Fourier Transform Infrared) and Dynamic Light Scattering. To assay a potential use of HA as biostimulants for crops, 12-day old Zea Mays L. plants were supplied with HA at 0.5 mg and 1 mg C L-1 for 2 days. HA from both amendments increased plant growth, but HA from OMWF was more effective at both dosages (plus 35-37%). Also, HA from OMWF enhanced both nitrogen assimilation and glycolysis by increasing the activity of nitrate reductase (∼1.8-1.9 fold), phosphoglucose isomerase (PGI) (∼1.8-2 fold) and pyruvate kinase (PK) (∼1.5-1.8 fold), while HA from Amd-C targeted glycolysis preferentially. HA from OMWF, however, significantly stimulated plant nutrition only at lower dosage, perhaps because certain undetermined compounds from detoxified OMW and incorporated in HA altered the root membrane permeability, thus preventing the increase of nutrient uptake. Conversely, HA from Amd-C increased nutrient accumulation in maize at both dosages. In conclusion, our results indicate that the amendment obtained via OMW composting using MSW had a reduced pollution load in terms of phenolic compounds, and HA extracted from OMWF could be used as valuable biostimulants during maize cultivation.
Collapse
Affiliation(s)
- Giuseppe Palumbo
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Andrea Ertani
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Giuseppe Celano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Claudio M. Colombo
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
8
|
Effective assay for olive vinegar production from olive oil mill wastewaters. Food Chem 2018; 240:437-440. [DOI: 10.1016/j.foodchem.2017.07.159] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022]
|
9
|
Abdallah IB, Macciola V, Boukhchina S, de La Torre Fornell R, De Leonardis A. The negligible role of ellagic acid in preventing fat oxidation of Tunisian walnuts (Juglans regia L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9519-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M. Olive Biophenols as New Antioxidant Additives in Food and Beverage. ChemistrySelect 2017. [DOI: 10.1002/slct.201601900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati; CNR; via U. La Malfa 153 90146 Palermo Italy
| | | | - Riccardo Delisi
- Renovo Bioindustry; via Pietro Verri 1, Centro direzionale Boma 46100 Mantova Italy
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati; CNR; via U. La Malfa 153 90146 Palermo Italy
| |
Collapse
|
11
|
Yu XM, Zhu P, Zhong QP, Li MY, Ma HR. Subcritical water extraction of antioxidant phenolic compounds from XiLan olive fruit dreg. Journal of Food Science and Technology 2014; 52:5012-20. [PMID: 26243921 DOI: 10.1007/s13197-014-1551-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Olive fruit dreg (OFD), waste from olive softdrink processing, has caused disposal problems. Nevertheless, OFD is a good source of functional ingredients, such as phenolic compounds. This study investigated the extraction conditions of phenolic compounds from OFD by using subcritical water (SCW) extraction method, antioxidant activity of SCW extracts, and components of phenolic compounds by LC-MS. SCW extraction experiments were performed in a batch stainless steel reactor at temperatures ranging from 100 to 180 °C at residence time of 5 to 60 min, and at solid-to-liquid ratio of 1:20 to 1:60. Higher recoveries of phenolic compounds [37.52 ± 0.87 mg gallic acid equivalents (GAE)/g, dry weight (DW)] were obtained at 160 °C, solid-to-liquid ratio of 1:50, and extract time of 30 min than at 2 h extraction with methanol (1.21 ± 0.16 mg GAE/g DW), ethanol (0.24 ± 0.07 mg GAE/g DW), and acetone (0.34 ± 0.01 mg GAE/g DW). The antioxidant activities of the SCW extracts were significantly stronger than those in methanol extracts at the same concentration of total phenolic contents. LC-MS analysis results indicated that SCW extracts contained higher amounts of phenolic compounds, such as chlorogenic acid, homovanillic acid, gallic acid, hydroxytyrosol, quercetin, and syringic acid. SCW at 160 °C, 30 min, and solid-to-liquid ratio of 1:50 may be a good substitute of organic solvents, such as methanol, ethanol, and acetone to recover phenolic compounds from OFD.
Collapse
Affiliation(s)
- Xue-Mei Yu
- College of Food Science and Technology, Hainan University, Haikou, 570228 China
| | - Ping Zhu
- College of Horticulture and Landscape Architecture, Hainan University, Haikou, 570228 China
| | - Qiu-Ping Zhong
- College of Food Science and Technology, Hainan University, Haikou, 570228 China
| | - Meng-Ying Li
- College of Food Science and Technology, Hainan University, Haikou, 570228 China
| | - Han-Ruo Ma
- College of Food Science and Technology, Hainan University, Haikou, 570228 China
| |
Collapse
|
12
|
Gentile L, Uccella NA. Selected bioactives from callus cultures of olives (Olea europaea L. Var. Coratina) by LC-MS. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
|
14
|
Treatment of olive mill wastewater by membrane distillation using polytetrafluoroethylene membranes. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.06.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
El-Abbassi A, Kiai H, Hafidi A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem 2011; 132:406-12. [PMID: 26434308 DOI: 10.1016/j.foodchem.2011.11.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 09/25/2011] [Accepted: 11/02/2011] [Indexed: 11/25/2022]
Abstract
Olive trees play an important role in the Moroccan agro-economy, providing both employment and export revenue. However, the olive oil industry generates large amounts of wastes and wastewaters. The disposal of these polluting by-products is a significant environmental problem that needs an adequate solution. On one hand, the phytotoxic and antimicrobial effects of olive mill wastewaters are mainly due to their phenolic content. The hydrophilic character of the polyphenols results in the major proportion of natural phenols being separated into the water phase during the olive processing. On other hand, the health benefits arising from a diet containing olive oil have been attributed to its richness in phenolic compounds that act as natural antioxidants and are thought to contribute to the prevention of heart diseases and cancers. Olive mill wastewater (OMW) samples have been analysed in terms of their phenolic constituents and antioxidant activities. The total phenolic content, flavonoids, flavanols, and proanthocyanidins were determined. The antioxidant and radical scavenging activity of phenolic extracts and microfiltred samples was evaluated using different tests (iron(II) chelating activity, total antioxidant capacity, DPPH assays and lipid peroxidation test). The obtained results reveal the considerable antioxidant capacity of the OMW, that can be considered as an inexpensive potential source of high added value powerful natural antioxidants comparable to some synthetic antioxidants commonly used in the food industry.
Collapse
Affiliation(s)
- Abdelilah El-Abbassi
- Food Science Laboratory, Department of Biology, Faculty of Sciences-Semalia, Cadi Ayyad University, P.O. Box 2390, 40090 Marrakech, Morocco
| | - Hajar Kiai
- Food Science Laboratory, Department of Biology, Faculty of Sciences-Semalia, Cadi Ayyad University, P.O. Box 2390, 40090 Marrakech, Morocco
| | - Abdellatif Hafidi
- Food Science Laboratory, Department of Biology, Faculty of Sciences-Semalia, Cadi Ayyad University, P.O. Box 2390, 40090 Marrakech, Morocco.
| |
Collapse
|