1
|
Shayya NW, Bandick R, Busmann LV, Mousavi S, Bereswill S, Heimesaat MM. Metabolomic signatures of intestinal colonization resistance against Campylobacter jejuni in mice. Front Microbiol 2023; 14:1331114. [PMID: 38164399 PMCID: PMC10757985 DOI: 10.3389/fmicb.2023.1331114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Campylobacter jejuni stands out as one of the leading causes of bacterial enteritis. In contrast to humans, specific pathogen-free (SPF) laboratory mice display strict intestinal colonization resistance (CR) against C. jejuni, orchestrated by the specific murine intestinal microbiota, as shown by fecal microbiota transplantation (FMT) earlier. Methods Murine infection models, comprising SPF, SAB, hma, and mma mice were employed. FMT and microbiota depletion were confirmed by culture and culture-independent analyses. Targeted metabolome analyses of fecal samples provided insights into the associated metabolomic signatures. Results In comparison to hma mice, the murine intestinal microbiota of mma and SPF mice (with CR against C. jejuni) contained significantly elevated numbers of lactobacilli, and Mouse Intestinal Bacteroides, whereas numbers of enterobacteria, enterococci, and Clostridium coccoides group were reduced. Targeted metabolome analysis revealed that fecal samples from mice with CR contained increased levels of secondary bile acids and fatty acids with known antimicrobial activities, but reduced concentrations of amino acids essential for C. jejuni growth as compared to control animals without CR. Discussion The findings highlight the role of microbiota-mediated nutrient competition and antibacterial activities of intestinal metabolites in driving murine CR against C. jejuni. The study underscores the complex dynamics of host-microbiota-pathogen interactions and sets the stage for further investigations into the mechanisms driving CR against enteric infections.
Collapse
|
2
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Effects of Sublethally Injured Campylobacter jejuni in Mice. Microbiol Spectr 2022; 10:e0069022. [PMID: 35862957 PMCID: PMC9431606 DOI: 10.1128/spectrum.00690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Globally, Campylobacter spp. are the most common food-associated bacterial cause of human gastrointestinal disease. Campylobacteriosis is primarily associated with the consumption of contaminated chicken meat. Chemical decontamination of chicken carcasses during processing is one of the most effective interventions to mitigate Campylobacter contamination. Following exposure to sanitizers, however, sublethally injured populations of bacteria may persist. The risk that sublethally injured Campylobacter pose for public health is unknown. Furthermore, the virulence potential of sublethally injured Campylobacter jejuni during prolonged storage in relation to host pathogenesis and the host immune response has not been well established. Therefore, we evaluated the effects of sublethally injured C. jejuni on the host, after storage in chicken meat juice. C57BL/6 mice were infected with two C. jejuni chicken meat isolates or the ATCC 33291 strain that had been stored in the chicken meat juice, after exposure to chlorine or acidified sodium chlorite (ASC). Although chlorine exposure was unable to reduce intestinal colonization by C. jejuni, exposure to ASC significantly reduced the intestinal colonization and tissue translocation in mice. The expression of pro- and anti-inflammatory cytokine genes for interleukin-6 (IL-6), IL23a, and IL-10, Toll-like receptor 2 (TLR2) and TLR4 genes, and host stress response genes (CRP, MBL1, and NF-κB1) were significantly reduced following the exposure to ASC. Our results demonstrated that sublethally injured C. jejuni has reduced virulence potential and colonization in mice. The data contribute toward clarification of the importance of chemical decontamination during processing to minimize human campylobacteriosis. IMPORTANCECampylobacter is the most common cause of bacterial gastrointestinal disease, and consumption of contaminated poultry is frequently identified as the source of bacteria. The survivability and virulence potential of sublethally injured Campylobacter following exposure to chemicals which are commonly used to eliminate Campylobacter during the poultry meat processing are of concern to the food industry, government health officials, and consumers. Here, we demonstrate that sublethally injured Campylobacter jejuni has reduced bacterial virulence and colonization potential in mice.
Collapse
|
4
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
5
|
Heimesaat MM, Backert S, Alter T, Bereswill S. Human Campylobacteriosis-A Serious Infectious Threat in a One Health Perspective. Curr Top Microbiol Immunol 2021; 431:1-23. [PMID: 33620646 DOI: 10.1007/978-3-030-65481-8_1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zoonotic Campylobacter species-mainly C. jejuni and C. coli-are major causes of food-borne bacterial infectious gastroenteritis worldwide. Symptoms of intestinal campylobacteriosis include abdominal pain, diarrhea and fever. The clinical course of enteritis is generally self-limiting, but some infected individuals develop severe post-infectious sequelae including autoimmune disorders affecting the nervous system, the joints and the intestinal tract. Moreover, in immunocompromised individuals, systemic spread of the pathogens may trigger diseases of the circulatory system and septicemia. The socioeconomic costs associated with Campylobacter infections have been calculated to several billion dollars annually. Poultry meat products represent major sources of human infections. Thus, a "One World-One Health" approach with collective efforts of public health authorities, veterinarians, clinicians, researchers and politicians is required to reduce the burden of campylobacteriosis. Innovative intervention regimes for the prevention of Campylobacter contaminations along the food chain include improvements of information distribution to strengthen hygiene measures for agricultural remediation. Given that elimination of Campylobacter from the food production chains is not feasible, novel intervention strategies fortify both the reduction of pathogen contamination in food production and the treatment of the associated diseases in humans. This review summarizes some current trends in the combat of Campylobacter infections including the combination of public health and veterinary preventive approaches with consumer education. The "One World-One Health" perspective is completed by clinical aspects and molecular concepts of human campylobacteriosis offering innovative treatment options supported by novel murine infection models that are based on the essential role of innate immune activation by bacterial endotoxins.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Thomas Alter
- Department of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Free University Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
6
|
Mousavi S, Bereswill S, Heimesaat MM. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr Top Microbiol Immunol 2021; 431:233-263. [PMID: 33620654 DOI: 10.1007/978-3-030-65481-8_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
7
|
Toll-Like Receptor-4 Is Involved in Mediating Intestinal and Extra-Intestinal Inflammation in Campylobacter coli-Infected Secondary Abiotic IL-10 -/- Mice. Microorganisms 2020; 8:microorganisms8121882. [PMID: 33261211 PMCID: PMC7761268 DOI: 10.3390/microorganisms8121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Human Campylobacter infections are emerging worldwide and constitute significant health burdens. We recently showed that the immunopathological sequelae in Campylobacter jejuni-infected mice were due to Toll-like receptor (TLR)-4 dependent immune responses induced by bacterial lipooligosaccharide (LOS). Information regarding the molecular mechanisms underlying Campylobacter coli-host interactions are scarce, however. Therefore, we analyzed C. coli-induced campylobacteriosis in secondary abiotic IL-10−/− mice with and without TLR4. Mice were infected perorally with a human C. coli isolate or with a murine commensal Escherichia coli as apathogenic, non-invasive control. Independent from TLR4, C. coli and E. coli stably colonized the gastrointestinal tract, but only C. coli induced clinical signs of campylobacteriosis. TLR4−/− IL-10−/− mice, however, displayed less frequently fecal blood and less distinct histopathological and apoptotic sequelae in the colon versus IL-10−/− counterparts on day 28 following C. coli infection. Furthermore, C. coli-induced colonic immune cell responses were less pronounced in TLR4−/− IL-10−/− as compared to IL-10−/− mice and accompanied by lower pro-inflammatory mediator concentrations in the intestines and the liver of the former versus the latter. In conclusion, our study provides evidence that TLR4 is involved in mediating C. coli-LOS-induced immune responses in intestinal and extra-intestinal compartments during murine campylobacteriosis.
Collapse
|
8
|
Perruzza L, Jaconi S, Lombardo G, Pinna D, Strati F, Morone D, Seehusen F, Hu Y, Bajoria S, Xiong J, Kumru OS, Joshi SB, Volkin DB, Piantanida R, Benigni F, Grassi F, Corti D, Pizzuto MS. Prophylactic Activity of Orally Administered FliD-Reactive Monoclonal SIgA Against Campylobacter Infection. Front Immunol 2020; 11:1011. [PMID: 32582158 PMCID: PMC7296071 DOI: 10.3389/fimmu.2020.01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter infection is one of the most common causes of bacterial gastroenteritis worldwide and a major global health threat due to the rapid development of antibiotic resistance. Currently, there are no vaccines approved to prevent campylobacteriosis, and rehydration is the main form of therapy. Secretory immunoglobulin A (SIgA) is the main antibody class found in mucous secretions, including human milk, and serves as the first line of defense for the gastrointestinal epithelium against enteric pathogens. In this study, we describe the prophylactic activity of orally delivered recombinant SIgA generated from two human monoclonal antibodies (CAA1 and CCG4) isolated for their reactivity against the flagellar-capping protein FliD, which is essential for bacteria motility and highly conserved across Campylobacter species associated with severe enteritis. In an immunocompetent weaned mouse model, a single oral administration of FliD-reactive SIgA CAA1 or CCG4 at 2 h before infection significantly enhances Campylobacter clearance at early stages post-infection, reducing the levels of inflammation markers associated with epithelial damage and polymorphonuclear (PMN) cells infiltration in the cecum lamina propria. Our data indicate that the prophylactic activity of CAA1 and CCG4 is not only dependent on the specificity to FliD but also on the use of the SIgA format, as the immunoglobulin G (IgG) versions of the same antibodies did not confer a comparable protective effect. Our work emphasizes the potential of FliD as a target for the development of vaccines and supports the concept that orally administered FliD-reactive SIgA can be developed to prevent or mitigate the severity of Campylobacter infections as well as the development of post-infection syndromes.
Collapse
Affiliation(s)
- Lisa Perruzza
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Gloria Lombardo
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Debora Pinna
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Francesco Strati
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Diego Morone
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Yue Hu
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Jian Xiong
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Ozan Selahattin Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Sangeeta Bagai Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - David Bernard Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Renato Piantanida
- Department of Otolaryngology-Head and Neck Surgery, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Fabio Grassi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Davide Corti
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | | |
Collapse
|
9
|
Kløve S, Genger C, Mousavi S, Weschka D, Bereswill S, Heimesaat MM. Toll-Like Receptor-4 Dependent Intestinal and Systemic Sequelae Following Peroral Campylobacter coli Infection of IL10 Deficient Mice Harboring a Human Gut Microbiota. Pathogens 2020; 9:E386. [PMID: 32443576 PMCID: PMC7281621 DOI: 10.3390/pathogens9050386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Zoonotic Campylobacter, including C. jejuni and C. coli, are among the most prevalent agents of food-borne enteritis worldwide. The immunopathological sequelae of campylobacteriosis are caused by Toll-like Receptor-4 (TLR4)-dependent host immune responses, induced by bacterial lipooligosaccharide (LOS). In order to investigate C. coli-host interactions, including the roles of the human gut microbiota and TLR4, upon infection, we applied a clinical acute campylobacteriosis model, and subjected secondary abiotic, TLR4-deficient IL10-/- mice and IL10-/- controls to fecal microbiota transplantation derived from human donors by gavage, before peroral C. coli challenge. Until day 21 post-infection, C. coli could stably colonize the gastrointestinal tract of human microbiota-associated (hma) mice of either genotype. TLR4-deficient IL10-/- mice, however, displayed less severe clinical signs of infection, that were accompanied by less distinct apoptotic epithelial cell and innate as well as adaptive immune cell responses in the colon, as compared to IL10-/- counterparts. Furthermore, C. coli infected IL10-/-, as opposed to TLR4-deficient IL10-/-, mice displayed increased pro-inflammatory cytokine concentrations in intestinal and, strikingly, systemic compartments. We conclude that pathogenic LOS might play an important role in inducing TLR4-dependent host immune responses upon C. coli infection, which needs to be further addressed in more detail.
Collapse
|
10
|
Mousavi S, Bereswill S, Heimesaat MM. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020; 8:E482. [PMID: 32231139 PMCID: PMC7232424 DOI: 10.3390/microorganisms8040482] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
: Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment.
Collapse
|
11
|
Mousavi S, Escher U, Thunhorst E, Kittler S, Kehrenberg C, Bereswill S, Heimesaat MM. Vitamin C alleviates acute enterocolitis in Campylobacter jejuni infected mice. Sci Rep 2020; 10:2921. [PMID: 32076081 PMCID: PMC7031283 DOI: 10.1038/s41598-020-59890-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/03/2020] [Indexed: 11/12/2022] Open
Abstract
Human foodborne infections with the zoonotic pathogen Campylobacter jejuni are on the rise and constitute a significant socioeconomic burden worldwide. The health-beneficial, particularly anti-inflammatory effects of vitamin C (ascorbate) are well known. In our preclinical intervention study, we assessed potential anti-pathogenic and immunomodulatory effects of ascorbate in C. jejuni-infected secondary abiotic IL-10-/- mice developing acute campylobacteriosis similar to humans. Starting 4 days prior peroral C. jejuni-infection, mice received synthetic ascorbate via the drinking water until the end of the experiment. At day 6 post-infection, ascorbate-treated mice harbored slightly lower colonic pathogen loads and suffered from less severe C. jejuni-induced enterocolitis as compared to placebo control animals. Ascorbate treatment did not only alleviate macroscopic sequelae of infection, but also dampened apoptotic and inflammatory immune cell responses in the intestines that were accompanied by less pronounced pro-inflammatory cytokine secretion. Remarkably, the anti-inflammatory effects of ascorbate pretreatment in C. jejuni-infected mice were not restricted to the intestinal tract but could also be observed in extra-intestinal compartments including liver, kidneys and lungs. In conclusion, due to the potent anti-inflammatory effects observed in the clinical murine C. jejuni-infection model, ascorbate constitutes a promising novel option for prophylaxis and treatment of acute campylobacteriosis.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisa Thunhorst
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University, Giessen, Germany
| | - Stefan Bereswill
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
12
|
Ishikawa H, Ino S, Yamochi T, Sasaki H, Kobayashi T, Kohda C, Takimoto M, Tanaka K. NKT cells are responsible for the clearance of murine norovirus through the virus-specific secretory IgA pathway. Biochem Biophys Rep 2020; 21:100722. [PMID: 31909227 PMCID: PMC6940707 DOI: 10.1016/j.bbrep.2019.100722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/23/2019] [Accepted: 12/25/2019] [Indexed: 12/30/2022] Open
Abstract
Norovirus infection cause epidemic nonbacterial gastroenteritis in patients. The immune mechanisms responsible for the clearance of virus are not completely understood. We examined whether NKT cells are effective against norovirus infection using CD1d KO mice. The body weights of 4-weeks-old CD1d KO mice that were infected with murine norovirus-S7 (MNV-S7) were significantly lower than those of non-infected CD1d KO mice. On the other hand, the body weights of infected WT mice were comparable to those of non-infected WT mice. Correspondingly, CD1d KO mice had an almost 1000-fold higher MNV-S7 burden in the intestine after infection in comparison to WT mice. The mechanism responsible for the insufficient MNV-S7 clearance in CD1d KO mice was attributed to reduced IFN-γ production early during MNV-S7 infection. In addition, the markedly impaired IL-4 production in CD1d KO mice resulted in an impaired MNV-S7-specific secretory IgA production after MNV-S7 infection which is associated with mucosal immunity. Thus, the present results provide evidence that NKT cells play an essential role in MNV-S7 clearance.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Satoshi Ino
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Toshiko Yamochi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiraku Sasaki
- Department of Health Science, Juntendo University School of Health and Sports Science, Inzai, Chiba, 270-1695, Japan
| | - Takahiro Kobayashi
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kazuo Tanaka
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
13
|
Mousavi S, Lobo de Sá FD, Schulzke JD, Bücker R, Bereswill S, Heimesaat MM. Vitamin D in Acute Campylobacteriosis-Results From an Intervention Study Applying a Clinical Campylobacter jejuni Induced Enterocolitis Model. Front Immunol 2019; 10:2094. [PMID: 31552040 PMCID: PMC6735268 DOI: 10.3389/fimmu.2019.02094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Human Campylobacter infections are progressively rising and of high socioeconomic impact. In the present preclinical intervention study we investigated anti-pathogenic, immuno-modulatory, and intestinal epithelial barrier preserving properties of vitamin D applying an acute campylobacteriosis model. Therefore, secondary abiotic IL-10−/− mice were perorally treated with synthetic 25-OH-cholecalciferol starting 4 days before peroral Campylobacter jejuni infection. Whereas, 25-OH-cholecalciferol application did not affect gastrointestinal pathogen loads, 25-OH-cholecalciferol treated mice suffered less frequently from diarrhea in the midst of infection as compared to placebo control mice. Moreover, 25-OH-cholecalciferol application dampened C. jejuni induced apoptotic cell responses in colonic epithelia and promoted cell-regenerative measures. At day 6 post-infection, 25-OH-cholecalciferol treated mice displayed lower numbers of colonic innate and adaptive immune cell populations as compared to placebo controls that were accompanied by lower intestinal concentrations of pro-inflammatory mediators including IL-6, MCP1, and IFN-γ. Remarkably, as compared to placebo application synthetic 25-OH-cholecalciferol treatment of C. jejuni infected mice resulted in lower cumulative translocation rates of viable pathogens from the inflamed intestines to extra-intestinal including systemic compartments such as the kidneys and spleen, respectively, which was accompanied by less compromised colonic epithelial barrier function in the 25-OH-cholecalciferol as compared to the placebo cohort. In conclusion, our preclinical intervention study provides evidence that peroral synthetic 25-OH-cholecalciferol application exerts inflammation-dampening effects during acute campylobacteriosis.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
Wang G, He Y, Jin X, Zhou Y, Chen X, Zhao J, Zhang H, Chen W. The Effect of Co-infection of Food-Borne Pathogenic Bacteria on the Progression of Campylobacter jejuni Infection in Mice. Front Microbiol 2018; 9:1977. [PMID: 30186279 PMCID: PMC6113366 DOI: 10.3389/fmicb.2018.01977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Campylobacter is a well-known food-borne pathogen that causes human gastroenteritis. Food products that contain Campylobacter may also be contaminated by other pathogens, however, whether this multiple contamination leads to more severe infection remains unclear. In this study, mice were gavaged with Campylobacter jejuni and other food-borne pathogenic bacteria to mimic a multiple infection. It was demonstrated that the C. jejuni load was elevated when the mice were co-infected with C. jejuni and Salmonella typhimurium, and the campylobacteriosis that followed was also enhanced, with features of decreased body weight, heavier bloody stools and more pronounced inflammatory changes to the colon. In addition, infection with C. jejuni was also promoted by co-infection with entero-invasive Escherichia coli but unaffected over time. In contrast to S. typhimurium and entero-invasive E. coli, co-infection by Listeria monocytogenes showed little effect on C. jejuni infection and even hindered its progress. In addition, the intestinal microecology was also affected by co-infection of C. jejuni with other pathogens, with an increased relative abundance of unclassified Enterobacteriaceae, decreased levels of butyric acid and changes in the abundance of several genera of gut microbe, which suggests that some food-borne pathogenic bacteria might affect the progression of C. jejuni infection in mice by influencing the composition of the gut microbiota and the resulting changes in SCFA levels. Collectively, our findings suggest that co-infection of Campylobacter with other pathogenic bacteria can impact on the progression of infection by C. jejuni in mice, which may also have implication for the etiology of Campylobacter on human health.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yonghua Zhou
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Xiaohua Chen
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Boehm M, Simson D, Escher U, Schmidt AM, Bereswill S, Tegtmeyer N, Backert S, Heimesaat MM. Function of Serine Protease HtrA in the Lifecycle of the Foodborne Pathogen Campylobacter jejuni. Eur J Microbiol Immunol (Bp) 2018; 8:70-77. [PMID: 30345086 PMCID: PMC6186014 DOI: 10.1556/1886.2018.00011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Campylobacter jejuni is a major food-borne zoonotic pathogen, responsible for a large proportion of bacterial gastroenteritis cases, as well as Guillian-Barré and Miller-Fisher syndromes. During infection, tissue damage is mainly caused by bacteria invading epithelial cells and traversing the intestinal barrier. C. jejuni is able to enter the lamina propria and the bloodstream and may move into other organs, such as spleen, liver, or mesenteric lymph nodes. However, the involved molecular mechanisms are not fully understood. C. jejuni can transmigrate effectively across polarized intestinal epithelial cells mainly by the paracellular route using the serine protease high-temperature requirement A (HtrA). However, it appears that HtrA has a dual function, as it also acts as a chaperone, interacting with denatured or misfolded periplasmic proteins under stress conditions. Here, we review recent progress on the role of HtrA in C. jejuni pathogenesis. HtrA can be transported into the extracellular space and cleaves cell-to-cell junction factors, such as E-cadherin and probably others, disrupting the epithelial barrier and enabling paracellular transmigration of the bacteria. The secretion of HtrA is a newly discovered strategy also utilized by other pathogens. Thus, secreted HtrA proteases represent highly attractive targets for anti-bacterial treatment and may provide a suitable candidate for vaccine development.
Collapse
Affiliation(s)
- Manja Boehm
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Daniel Simson
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Ulrike Escher
- Department of Microbiology and Infection Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Anna-Maria Schmidt
- Department of Microbiology and Infection Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Infection Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Infection Immunology, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
16
|
von Klitzing E, Ekmekciu I, Kühl AA, Bereswill S, Heimesaat MM. Multidrug-resistant Pseudomonas aeruginosa aggravates inflammatory responses in murine chronic colitis. Sci Rep 2018; 8:6685. [PMID: 29704005 PMCID: PMC5923287 DOI: 10.1038/s41598-018-25034-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
The World Health Organization has rated multidrug-resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa (Psae) as serious threat to human health. We here addressed whether chronic murine gut inflammation facilitates intestinal MDR Psae colonization and whether bacterial infection subsequently worsens colonic immunopathology. Converse to wildtype counterparts, Psae colonized the intestines of IL-10−/− mice with chronic colitis following peroral challenge, but did not lead to changes in intestinal microbiota composition. Psae infection accelerated both macroscopic (i.e. clinical) and microscopic disease (i.e. colonic epithelial apoptosis), that were accompanied by increased intestinal pro-inflammatory immune responses as indicated by elevated colonic numbers of innate and adaptive immune cell subsets and enhanced secretion of pro-inflammatory cytokines such as TNF and IFN-γ in mesenteric lymph nodes of Psae-infected as compared to unchallenged IL-10−/− mice. Remarkably, Psae-induced pro-inflammatory immune responses were not restricted to the gut, but could also be observed systemically as indicated by increased TNF and IFN-γ concentrations in sera upon Psae-infection. Furthermore, viable commensals originating from the intestinal microbiota translocated to extra-intestinal compartments such as liver, kidney and spleen of Psae-infected IL-10−/− mice with chronic colitis only. Hence, peroral MDR Psae-infection results in exacerbated colonic as well as systemic pro-inflammatory immune responses during chronic murine colitis.
Collapse
Affiliation(s)
- Eliane von Klitzing
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
17
|
Campylobacter jejuni and associated immune mechanisms: short-term effects and long-term implications for infants in low-income countries. Curr Opin Infect Dis 2018; 30:322-328. [PMID: 28157786 DOI: 10.1097/qco.0000000000000364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Campylobacter jejuni is recognized as one of the most common causes of food-borne gastrointestinal illness worldwide, resulting in a self-limiting dysentery in developed countries. However, it is increasingly gaining attention due to its association with postinfectious complications such as Guillain-Barré Syndrome and recently recognized importance in early childhood diarrhea in developing countries. We hypothesize that the inflammation mediated by C. jejuni infection causes environmental enteric dysfunction, and with contribution from diet and the host, microbiome may be responsible for growth faltering in children and developmental disability. RECENT FINDINGS Diet plays a major role in the impact of C. jejuni infection, both by availability of micronutrients for the bacteria and host as well as shaping the microbiome that affords resistance. Early childhood repeated exposure to the bacterium results in inflammation that affords long-term immunity but, in the short term, can lead to malabsorption, oral vaccine failure, cognitive delay and increased under-5 mortality. SUMMARY As interest in C. jejuni increases, our understanding of its virulence mechanisms has improved. However, much work remains to be done to fully understand the implications of immune-mediated inflammation and its potential role in diseases such as environmental enteric dysfunction.
Collapse
|
18
|
Grunau A, Escher U, Kühl AA, Bereswill S, Heimesaat MM. Toll-like receptor-4 differentially mediates intestinal and extra-intestinal immune responses upon multi-drug resistant Pseudomonas aeruginosa association of IL10 -/- mice with chronic colitis. Gut Pathog 2017; 9:61. [PMID: 29151895 PMCID: PMC5678768 DOI: 10.1186/s13099-017-0211-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/31/2017] [Indexed: 01/27/2023] Open
Abstract
Background Infections with multi-drug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa (PA) have become a serious threat particularly in hospitalized patients with immunopathological co-morbidities. The well-balanced interplay between immune cells, pattern recognition receptors such as Toll-like receptor (TLR)-4 sensing lipopolysaccharide from Gram-negative bacteria including PA, and evolving pathways is crucial to prevent the host from invading (opportunistic) pathogens. Information regarding the molecular mechanisms underlying the interactions between intestinal carriage of MDR PA and host immunity during chronic large intestinal inflammation is scarce, however. Methods and results We therefore perorally challenged conventionally colonized TLR4-deficient IL10−/− mice and IL10−/− counterparts displaying comparably severe chronic colitis with a clinical MDR PA strain. PA could more sufficiently establish in the intestinal tract of TLR4-deficient IL10−/− mice until day 14 postinfection (p.i.), whereas within 48 h the majority of IL10−/− mice had already expelled the opportunistic pathogen from their guts. Intestinal colonization properties of PA in TLR4-deficient IL10−/− mice were associated with distinct genotype-dependent differences in gut microbiota compositions before challenge given that TLR4-deficient IL10−/− mice harbored more fecal enterobacteria and enterococci, but lower Clostridium/Eubacterium burdens. At day 14 p.i., PA-induced increases in colonic immune cells such as macrophages, monocytes and T-lymphocytes could be observed in TLR4-deficient IL10−/− mice, but not IL10−/− counterparts, that were accompanied by a more distinct secretion of IFN-γ in the colon and TNF in the mesenteric lymph nodes (MLN) of the former as compared to the latter. Conversely, splenic TNF levels were lower in TLR4-deficient IL10−/− mice as compared to IL10−/− controls at day 14 p.i. Interestingly, more pronounced apoptotic responses could be assessed in colonic epithelia of PA-challenged IL10−/− mice only. This was paralleled by enhanced pro-inflammatory cytokine secretion not only in the intestines, but also in extra-intestinal compartments of IL10−/− mice as indicated by increased concentrations of nitric oxide in the colon, IFN-γ in the MLN and IL-12p70 in the spleen at day 14 p.i. Conclusions Under chronic intestinal inflammatory conditions including IL10−/− colitis MDR PA-association results in well-orchestrated TLR4-dependent immune responses both in intestinal and extra-intestinal compartments. Further studies should unravel the underlying molecular mechanisms in more detail. Electronic supplementary material The online version of this article (10.1186/s13099-017-0211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Grunau
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences (RCIS), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,CC5, Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
19
|
Bereswill S, Grundmann U, Alutis ME, Fischer A, Kühl AA, Heimesaat MM. Immune responses upon Campylobacter jejuni infection of secondary abiotic mice lacking nucleotide-oligomerization-domain-2. Gut Pathog 2017; 9:33. [PMID: 28592996 PMCID: PMC5461728 DOI: 10.1186/s13099-017-0182-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/30/2017] [Indexed: 12/28/2022] Open
Abstract
Background Campylobacter jejuni infections are of rising importance worldwide. Given that innate immune receptors including nucleotide-oligomerization-domain-2 (Nod2) are essentially involved in combating enteropathogenic infections, we here surveyed the impact of Nod2 in murine campylobacteriosis. Methods and results In order to overcome physiological colonization resistance preventing from C. jejuni infection, we generated secondary abiotic Nod2−/− and wildtype (WT) mice by broad-spectrum antibiotic treatment. Mice were then perorally infected with C. jejuni strain 81-176 on 2 consecutive days and could be stably colonized by the pathogen at high loads. Notably, Nod2 deficiency did not affect gastrointestinal colonization properties of C. jejuni. Despite high intestinal pathogenic burdens mice were virtually uncompromised and exhibited fecal blood in single cases only. At day 7 postinfection (p.i.) similar increases in numbers of colonic epithelial apoptotic cells could be observed in mice of either genotype, whereas C. jejuni infected Nod2−/− mice displayed more distinct regenerative properties in the colon than WT controls. C. jejuni infection was accompanied by increases in distinct immune cell populations such as T lymphocytes and regulatory T cells in mice of either genotype. Increases in T lymphocytes, however, were less pronounced in large intestines of Nod2−/− mice at day 7 p.i. when compared to WT mice, whereas colonic numbers of B lymphocytes were elevated in WT controls only upon C. jejuni infection. At day 7 p.i., colonic pro-inflammatory mediators including nitric oxide, TNF, IFN-γ and IL-22 increased more distinctly in Nod2−/− as compared to WT mice, whereas C. jejuni induced IL-23p19 and IL-18 levels were lower in the large intestines of the former. Converse to the colon, however, ileal concentrations of nitric oxide, TNF, IFN-γ, IL-6 and IL-10 were lower in Nod2−/− as compared to WT mice at day 7 p.i. Even though MUC2 was down-regulated in C. jejuni infected Nod2−/− mice, this did not result in increased pathogenic translocation from the intestinal tract to extra-intestinal compartments. Conclusion In secondary abiotic mice, Nod2 signaling is involved in the orchestrated host immune responses upon C. jejuni infection, but does not control pathogen loads in the gastrointestinal tract. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0182-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Anja A Kühl
- Research Center ImmunoSciences (RCIS), Charité-University Medicine Berlin, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
20
|
Bereswill S, Grundmann U, Alutis ME, Fischer A, Heimesaat MM. Campylobacter jejuni infection of conventionally colonized mice lacking nucleotide-oligomerization-domain-2. Gut Pathog 2017; 9:5. [PMID: 28127403 PMCID: PMC5251327 DOI: 10.1186/s13099-017-0155-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/14/2017] [Indexed: 01/07/2023] Open
Abstract
Background The nucleotide-binding oligomerisaton protein 2 (NOD2) constitutes a pivotal sensor of bacterial muramyl dipeptide and assures expression of distinct antimicrobial peptides and mediators produced by enterocytes and immune cells directed against pathogens including Campylobacter jejuni. We here elucidated the role of NOD2 during murine C. jejuni infection in more detail. Results Conventionally colonized NOD2 deficient (NOD2−/−) mice and corresponding wildtype (WT) counterparts were perorally infected with C. jejuni strain 81–176 on three consecutive days. The pathogen colonized both WT and NOD2−/− mice only sporadically until day 14 post infection (p.i.). However, the slightly higher prevalence of C. jejuni in NOD2−/− mice was accompanied by higher intestinal Escherichia coli loads known to facilitate C. jejuni colonization. Neither overt macroscopic (clinical) nor microscopic sequelae (such as colonic epithelial apoptosis) could be observed upon murine C. jejuni infection of either genotype. Innate immune responses were less distinctly induced in C. jejuni infected NOD2−/− versus WT mice as indicated by lower colonic numbers of neutrophils in the former. Conversely, adaptive immune cell counts including T lymphocytes were higher in large intestines of NOD2−/− as compared to WT mice that were paralleled by increased colonic IL-6 secretion and higher TNF and IL-18 mRNA expression levels in large intestines of the former. Only in NOD2−/− mice, however, colonic IL-22 mRNA expression was down-regulated at day 14 p.i. Whereas viable commensal intestinal bacteria could exclusively be detected in mesenteric lymph nodes and livers of NOD2−/− mice, bacterial translocation rates to kidneys and spleen were NOD2 independent. Notably, large intestinal mRNA expression levels of mucin-2, constituting a pivotal factor involved in epithelial barrier integrity, were comparable in naive and C. jejuni infected mice of either genotype. Conclusion NOD2 is involved in the well-balanced regulation of innate and adaptive pro-inflammatory immune responses of conventional mice upon C. jejuni infection. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0155-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
21
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Bereswill S. Microbiota Composition and Immune Responses During Campylobacter Jejuni Infection in Conventionally Colonized IL-10 -/- Mice Lacking Nucleotide Oligomerization Domain 2. Eur J Microbiol Immunol (Bp) 2016; 7:1-14. [PMID: 28386467 PMCID: PMC5372477 DOI: 10.1556/1886.2016.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Host immune responses are pivotal for combating enteropathogenic infections. We here assessed the impact of the innate receptor nucleotide oligomerization domain protein 2 (NOD2) in murine Campylobacter jejuni-infection. Conventionally colonized IL-10–/– mice lacking NOD2 and IL-10–/– controls were perorally challenged with C. jejuni strain 81-176 and displayed comparable pathogenic colonization of intestines until day 14 postinfection (p.i.). Whereas overall intestinal microbiota compositions were comparable in naive mice, NOD2–/– IL-10–/– mice exhibited less fecal bifidobacteria and lactobacilli than IL-10–/– counterparts after infection. Interestingly, NOD2–/– IL-10–/– mice were clinically more compromised during the early phase of infection, whereas, conversely, IL-10–/– animals exhibited more frequently bloody feces lateron. While colonic apoptotic cell and T lymphocyte numbers were comparable in either C. jejuni-infected mice, B lymphocytes were lower in the colon of infected NOD2–/– IL-10–/– mice versus controls. At day 14 p.i., colonic TNF and IL-23p19 mRNA levels were upregulated in NOD2–/– IL-10–/– mice only. Translocation rates of intestinal commensals to mesenteric lymphnodes and extra-intestinal compartments including liver and kidney were comparable, whereas viable bacteria were more frequently detected in spleens derived from IL-10–/– as compared to NOD2–/– IL-10–/– mice. In conclusion, NOD2 is involved during C. jejuni infection in conventionally colonized IL-10–/– mice in a time-dependent manner.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
22
|
Casabonne C, Gonzalez A, Aquili V, Subils T, Balague C. Prevalence of Seven Virulence Genes of Campylobacter jejuni Isolated from Patients with Diarrhea in Rosario, Argentina. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/iji-37727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Göbel UB, Bereswill S. The IL-23/IL-22/IL-18 axis in murine Campylobacter jejuni infection. Gut Pathog 2016; 8:21. [PMID: 27385977 PMCID: PMC4934010 DOI: 10.1186/s13099-016-0106-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023] Open
Abstract
Background Human Campylobacter jejuni infections are worldwide on the rise. Information about the distinct molecular mechanisms underlying campylobacteriosis, however, are scarce. In the present study we investigated whether cytokines including IL-23, IL-22 and IL-18 sharing pivotal functions in host immunity were involved in mediating immunopathological responses upon C. jejuni infection. Results To address this, conventionally colonized IL-23p19−/−, IL-22−/− and IL-18−/− mice were perorally infected with C. jejuni strain ATCC 43431. Respective gene-deficient, but not wildtype mice were susceptible to C. jejuni infection and could be readily colonized with highest pathogenic loads in the terminal ileum and colon at day 14 postinfection (p.i.). In IL-23p19−/−, IL-22−/− and IL-18−/− mice viable C. jejuni were detected in MLNs, but did not translocate to spleen, liver, kidney and blood in the majority of cases. Susceptible IL-22−/−, but neither IL-23p19−/−, nor IL-18−/− mice harbored higher intestinal commensal E. coli loads when compared to resistant wildtype mice. Alike C. jejuni, commensal E. coli did not translocate from the intestinal to extra-intestinal tissue sites. Despite C. jejuni infection, mice lacking IL-23p19, IL-22 or IL-18 exhibited less apoptotic cells, but higher numbers of proliferating cells in their colonic epithelium as compared to wildtype mice at day 14 p.i. Less pronounced apoptosis was parallelled by lower abundance of neutrophils within the colonic mucosa and lamina propria of infected IL-23p19−/− and IL-22−/− as compared to wildtype control mice, whereas less distinct colonic TNF secretion could be measured in IL-22−/− and IL-18−/− than in wildtype mice at day 14 p.i. Notably, in infected IL-22−/− mice, colonic IL-23p19 mRNA levels were lower, whereas the other way round, colonic IL-22 expression rates were lower in IL-23p19−/− mice as compared to wildtype controls. Moreover, IL-18 mRNA was less distinctly expressed in large intestines of naive and infected IL-22−/− mice, but not vice versa, given that IL-22 mRNA levels did not differ between in IL-18−/− and wildtype mice. Conclusion Cytokines belonging to the IL-23/IL-22/IL-18 axis mediate immunopathological responses upon murine C. jejuni infection in a differentially orchestrated manner. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogenic-host interaction. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0106-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
24
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Göbel UB, Bereswill S. Colonic Expression of Genes Encoding Inflammatory Mediators and Gelatinases During Campylobacter Jejuni Infection of Conventional Infant Mice. Eur J Microbiol Immunol (Bp) 2016; 6:137-46. [PMID: 27429796 PMCID: PMC4936336 DOI: 10.1556/1886.2016.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022] Open
Abstract
Within 1 week following peroral Campylobacter jejuni infection, infant mice develop acute enteritis resolving thereafter. We here assessed colonic expression profiles of mediators belonging to the IL-23/IL-22/IL-18 axis and of matrix-degrading gelatinases MMP-2 and MMP-9 at day 6 post C. jejuni strain 81-176 infection. Whereas the pathogen readily colonized the intestines of infant IL-18–/– mice only, colonic mucin-2 mRNA, a pivotal mucus constituent, was downregulated in IL-22–/– mice and accompanied by increased expression of pro-inflammatory cytokines including IFN-γ, TNF, IL-17A, and IL-1β. Furthermore, in both naive and infected IL-22–/– mice, colonic expression of IL-23p19 and IL-18 was lower as compared to wildtype mice, whereas, conversely, colonic IL-22 mRNA levels were lower in IL-18–/– and colonic IL-18 expression lower in IL-23p19–/– as compared to wildtype mice. Moreover, colonic expression of MMP-2 and MMP-9 and their endogenous inhibitor TIMP-1 were lower in IL-22–/– as compared to wildtype mice at day 6 postinfection. In conclusion, mediators belonging of the IL-23/IL-22/IL-18 axis as well as the gelatinases MMP-2 and MMP-9 are involved in mediating campylobacteriosis of infant mice in a differentially regulated fashion.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
25
|
Heimesaat MM, Alutis ME, Grundmann U, Fischer A, Göbel UB, Bereswill S. The Role of IL-23, IL-22, and IL-18 in Campylobacter Jejuni Infection of Conventional Infant Mice. Eur J Microbiol Immunol (Bp) 2016; 6:124-36. [PMID: 27429795 PMCID: PMC4936335 DOI: 10.1556/1886.2016.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023] Open
Abstract
We have recently shown that, within 1 week following peroral Campylobacter jejuni infection, conventional infant mice develop self-limiting enteritis. We here investigated the role of IL-23, IL-22, and IL-18 during C. jejuni strain 81-176 infection of infant mice. The pathogen efficiently colonized the intestines of IL-18(-/-) mice only, but did not translocate to extra-intestinal compartments. At day 13 postinfection (p.i.), IL-22(-/-) mice displayed lower colonic epithelial apoptotic cell numbers as compared to wildtype mice, whereas, conversely, colonic proliferating cells increased in infected IL-22(-/-) and IL-18(-/-) mice. At day 6 p.i., increases in neutrophils, T and B lymphocytes were less pronounced in gene-deficient mice, whereas regulatory T cell numbers were lower in IL-23p19(-/-) and IL-22(-/-) as compared to wildtype mice, which was accompanied by increased colonic IL-10 levels in the latter. Until then, colonic pro-inflammatory cytokines including TNF, IFN-γ, IL-6, and MCP-1 increased in IL-23p19(-/-) mice, whereas IL-18(-/-) mice exhibited decreased cytokine levels and lower colonic numbers of T and B cell as well as of neutrophils, macrophages, and monocytes as compared to wildtype controls. In conclusion, IL-23, IL-22, and IL-18 are differentially involved in mediating C. jejuni-induced immunopathology of conventional infant mice.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
26
|
Gölz G, Alter T, Bereswill S, Heimesaat MM. Toll-Like Receptor-4 Dependent Intestinal Gene Expression During Arcobacter Butzleri Infection of Gnotobiotic Il-10 Deficient Mice. Eur J Microbiol Immunol (Bp) 2016; 6:67-80. [PMID: 27141316 PMCID: PMC4838987 DOI: 10.1556/1886.2016.00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that Arcobacter butzleri infection induces Toll-like receptor (TLR) -4 dependent immune responses in perorally infected gnotobiotic IL-10–/– mice. Here, we analyzed TLR-4-dependent expression of genes encoding inflammatory mediators and matrix-degrading gelatinases MMP-2 and -9 in the small and large intestines of gnotobiotic TLR-4-deficient IL-10–/– mice that were perorally infected with A. butzleri strains CCUG 30485 or C1, of human and chicken origin, respectively. At day 6 following A. butzleri infection, colonic mucin-2 mRNA, as integral part of the intestinal mucus layer, was downregulated in the colon, but not ileum, of IL-10–/– but not TLR-4–/– IL-10–/– mice. CCUG 30485 strain-infected TLR-4-deficient IL-10–/– mice displayed less distinctly upregulated IFN-γ, IL-17A, and IL-1β mRNA levels in ileum and colon, which was also true for colonic IL-22. These changes were accompanied by upregulated colonic MMP-2 and ileal MMP-9 mRNA exclusively in IL-10–/– mice. In conclusion, TLR-4 is essentially involved in A. butzleri mediated modulation of gene expression in the intestines of gnotobiotic IL-10–/– mice.
Collapse
Affiliation(s)
- Greta Gölz
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
27
|
Shams S, Bakhshi B, Tohidi Moghadam T. In Silico Analysis of the cadF Gene and Development of a Duplex Polymerase Chain Reaction for Species-Specific Identification of Campylobacter jejuni and Campylobacter coli. Jundishapur J Microbiol 2016; 9:e29645. [PMID: 27127589 PMCID: PMC4842252 DOI: 10.5812/jjm.29645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/28/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022] Open
Abstract
Background Campylobacteriosis is a zoonotic infectious disease caused by Campylobacter jejuni and C. coli. The cadF gene is considered as a genus-specific gene while other genes are mainly used for discrimination at the species level. Objectives This study aimed to analyze the cadF gene and to develop a duplex PCR assay for simultaneous detection of C. coli and C. jejuni, the two commonly encountered species. Materials and Methods In silico analysis of the cadF gene was carried out by several software and available online tools. A duplex PCR optimized with specific primers was used for detection and differentiation of both species. To evaluate specificity and sensitivity of the test, a panel of different Campylobacter spp. together with several intestinal bacterial pathogens was tested. The limit of detection (LOD) of method was determined using serial dilutions of standard genomes. Results The analysis of the full size cadF gene indicated variations in this gene, which can be used to differentiate C. jejuni and C. coli. The duplex PCR designed in this study showed that it could simultaneously detect and differentiate both C. jejuni and C. coli with product sizes of 737 bp and 461 bp, respectively. This assay, with 100% specificity and sensitivity, had a limit of detection (LOD) of about 14 and 0.7 µg/mL for C. jejuni and C. coli, respectively. Conclusions In silico analysis of the cadF full-gene showed variations between the two species that can be used as a molecular target for differentiating C. jejuni and C. coli in a single-step duplex-PCR assay with high specificity and sensitivity.
Collapse
Affiliation(s)
- Saeed Shams
- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Bita Bakhshi
- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Bita Bakhshi, Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran. Tel: +98-2182884558, Fax: +98-2182884555, E-mail:
| | - Tahereh Tohidi Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
28
|
Gölz G, Karadas G, Fischer A, Göbel UB, Alter T, Bereswill S, Heimesaat MM. Toll-Like Receptor-4 is Essential for Arcobacter Butzleri-Induced Colonic and Systemic Immune Responses in Gnotobiotic IL-10(-/-) Mice. Eur J Microbiol Immunol (Bp) 2015; 5:321-32. [PMID: 26716021 PMCID: PMC4681360 DOI: 10.1556/1886.2015.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Arcobacter butzleri causes sporadic cases of gastroenteritis, but the underlying immunopathological mechanisms of infection are unknown. We have recently demonstrated that A. butzleri-infected gnotobiotic IL-10–/– mice were clinically unaffected but exhibited intestinal and systemic inflammatory immune responses. For the first time, we here investigated the role of Toll-like receptor (TLR)-4, the main receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, in murine arcobacteriosis. Gnotobiotic TLR-4/IL-10-double deficient (TLR-4–/– IL-10–/–) and IL-10–/– control mice generated by broad-spectrum antibiotics were perorally infected with A. butzleri. Until day 16 postinfection, mice of either genotype were stably colonized with the pathogen, but fecal bacterial loads were approximately 0.5–2.0 log lower in TLR-4–/– IL-10–/– as compared to IL-10–/– mice. A. butzleri-infected TLR-4–/– IL-10–/– mice displayed less pronounced colonic apoptosis accompanied by lower numbers of macrophages and monocytes, T lymphocytes, regulatory T-cells, and B lymphocytes within the colonic mucosa and lamina propria as compared to IL-10–/– mice. Furthermore, colonic concentrations of nitric oxide, TNF, IL-6, MCP-1, and, remarkably, IFN-γ and IL-12p70 serum levels were lower in A. butzleri-infected TLR-4–/– IL-10–/– versus IL-10–/– mice. In conclusion, TLR-4 is involved in mediating murine A. butzleri infection. Further studies are needed to investigate the molecular mechanisms underlying Arcobacter–host interactions in more detail.
Collapse
Affiliation(s)
- Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - Gül Karadas
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
29
|
Heimesaat MM, Karadas G, Fischer A, Göbel UB, Alter T, Bereswill S, Gölz G. Toll-Like Receptor-4 Dependent Small Intestinal Immune Responses Following Murine Arcobacter Butzleri Infection. Eur J Microbiol Immunol (Bp) 2015; 5:333-42. [PMID: 26716022 PMCID: PMC4681361 DOI: 10.1556/1886.2015.00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
Sporadic cases of gastroenteritis have been attributed to Arcobacter butzleri infection, but information about the underlying immunopathological mechanisms is scarce. We have recently shown that experimental A. butzleri infection induces intestinal, extraintestinal and systemic immune responses in gnotobiotic IL-10(-/-) mice. The aim of the present study was to investigate the immunopathological role of Toll-like Receptor-4, the receptor for lipopolysaccharide and lipooligosaccharide of Gram-negative bacteria, during murine A. butzleri infection. To address this, gnotobiotic IL-10(-/-) mice lacking TLR-4 were generated by broad-spectrum antibiotic treatment and perorally infected with two different A. butzleri strains isolated from a patient (CCUG 30485) or fresh chicken meat (C1), respectively. Bacteria of either strain stably colonized the ilea of mice irrespective of their genotype at days 6 and 16 postinfection. As compared to IL-10(-/-) control animals, TLR-4(-/-) IL-10(-/-) mice were protected from A. butzleri-induced ileal apoptosis, from ileal influx of adaptive immune cells including T lymphocytes, regulatory T-cells and B lymphocytes, and from increased ileal IFN-γ secretion. Given that TLR-4-signaling is essential for A. butzleri-induced intestinal inflammation, we conclude that bacterial lipooligosaccharide or lipopolysaccharide compounds aggravate intestinal inflammation and may thus represent major virulence factors of Arcobacter. Future studies need to further unravel the molecular mechanisms of TLR-4-mediated A. butzleri-host interactions.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Gül Karadas
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Thomas Alter
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Greta Gölz
- Institute of Food Hygiene, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
30
|
Alutis ME, Grundmann U, Fischer A, Hagen U, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. The Role of Gelatinases in Campylobacter Jejuni Infection of Gnotobiotic Mice. Eur J Microbiol Immunol (Bp) 2015; 5:256-67. [PMID: 26716014 PMCID: PMC4681353 DOI: 10.1556/1886.2015.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMP)-2 and -9 (also referred to gelatinases-A and -B, respectively) are upregulated in the inflamed gut of mice and men. We recently demonstrated that synthetic gelatinase blockage reduced large intestinal pro-inflammatory immune responses and apoptosis following murine Campylobacter (C.) jejuni infection. In order to address which gelatinase mediates C. jejuni-induced immune responses, gnotobiotic MMP-2(-/-), MMP-9(-/-), and wildtype (WT) mice were generated by broadspectrum antibiotic treatment and perorally infected with C. jejuni strain 81-176. The pathogen stably colonized the murine intestinal tract irrespective of the genotype but did not translocate to extra-intestinal compartments. At days 8 and 14 postinfection (p.i.), less pronounced colonic histopathological changes were observed in infected MMP-2(-/-) mice, less distinct epithelial apoptosis, but more epithelial proliferation in both MMP-2(-/-) and MMP-9(-/-) mice, as compared to WT controls. Reduced immune responses in gelatinase-deficient mice were characterized by lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa and lamina propria. The expression of IL-22, IL-18, IL-17A, and IL-1β mRNA was higher in the colon of MMP-2(-/-) as compared to WT mice. In conclusion, both MMP-2 and MMP-9 are differentially involved in mediating C. jejuni-induced intestinal immunopathology.
Collapse
Affiliation(s)
- Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulrike Hagen
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
31
|
Alutis ME, Grundmann U, Hagen U, Fischer A, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. Matrix Metalloproteinase-2 Mediates Intestinal Immunopathogenesis in Campylobacter Jejuni-Infected Infant Mice. Eur J Microbiol Immunol (Bp) 2015; 5:188-98. [PMID: 26495129 PMCID: PMC4598886 DOI: 10.1556/1886.2015.00020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Increased levels of the matrix metalloproteinases (MMPs)-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in the inflamed gut. We have recently shown that synthetic gelatinase blockage reduces colonic apoptosis and pro-inflammatory immune responses following murine Campylobacter (C.) jejuni infection. In order to dissect whether MMP-2 and/or MMP-9 is involved in mediating C. jejuni-induced immune responses, infant MMP-2(-/-), MMP-9(-/-), and wildtype (WT) mice were perorally infected with the C. jejuni strain B2 immediately after weaning. Whereas, at day 2 postinfection (p.i.), fecal C. jejuni B2 loads were comparable in mice of either genotype, mice expelled the pathogen from the intestinal tract until day 4 p.i. Six days p.i., colonic MMP-2 but not MMP-9 mRNA was upregulated in WT mice. Remarkably, infected MMP-2(-/-) mice exhibited less frequent abundance of blood in feces, less distinct colonic histopathology and apoptosis, lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa, and higher colonic IL-22 mRNA levels as compared to infected WT mice. In conclusion, these results point towards an important role of MMP-2 in mediating C. jejuni-induced intestinal immunopathogenesis.
Collapse
Affiliation(s)
- Marie E Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Ulrike Hagen
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin , Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
32
|
Arora Z, Mukewar S, Wu X, Shen B. Risk factors and clinical implication of superimposed Campylobacter jejuni infection in patients with underlying ulcerative colitis. Gastroenterol Rep (Oxf) 2015; 4:287-292. [PMID: 26159630 PMCID: PMC5193056 DOI: 10.1093/gastro/gov029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022] Open
Abstract
Background and aims: Superimposed Campylobacter jejuni infection (CJI) has been described in patients with ulcerative colitis (UC). Its risk factors and impact on the disease course of UC are not known. Our aims were to evaluate the risk factors for CJI in UC patients and the impact of the bacterial infection on outcomes of UC. Methods: Out of a total of 918 UC patients tested, 21 (2.3%) of patients were found to be positive for CJI (the study group). The control group comprised 84 age-matched UC patients who had tested negative for CJI. Risk factors for CJI and UC-related outcomes at 1 year after diagnosis of CJI were compared between the two groups. Results: Ten patients (47.6%) with CJI required hospital admission at the time of diagnosis, including eight for the management of “UC flare”. Treatment with antibiotics resulted in improvement in symptoms in 13 patients (61.9%). On multivariate analysis, hospital admission in the preceding year was found to be an independent risk factor for CJI [odds ratio (OR): 3.9; 95% confidence interval (CI): 1.1–14.1] and there was a trend for chronic liver disease as a strong risk factor (OR: 5.0; 95% CI: 0.9–28.3). At 1-year follow up, there was a trend for higher rates of UC-related colectomy (28.8% vs. 14.3%; P = 0.11), and mortality (9.5% vs. 1.2%; P = 0.096) in the study group. Conclusion: Recent hospitalization within 1 year was found to be associated with increased risk for CJI in UC patients. There was a trend for worse clinical outcomes of UC with in patients with superimposed CJI, which was frequently associated with UC flare requiring hospital admission.
Collapse
Affiliation(s)
- Zubin Arora
- Center for Inflammatory Bowel Diseases, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Saurabh Mukewar
- Center for Inflammatory Bowel Diseases, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xianrui Wu
- Center for Inflammatory Bowel Diseases, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bo Shen
- Center for Inflammatory Bowel Diseases, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
33
|
Alutis ME, Grundmann U, Fischer A, Kühl AA, Bereswill S, Heimesaat MM. Selective gelatinase inhibition reduces apoptosis and pro-inflammatory immune cell responses in Campylobacter jejuni-infected gnotobiotic IL-10 deficient mice. Eur J Microbiol Immunol (Bp) 2014; 4:213-22. [PMID: 25544894 DOI: 10.1556/eujmi-d-14-00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
Increased levels of the matrix metalloproteinases-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in intestinal inflammation. We have recently shown that selective gelatinase blockage by the synthetic compound RO28-2653 ameliorates acute murine ileitis and colitis. We here investigated whether RO28-2653 exerts anti-inflammatory effects in acute Campylobacter jejuni-induced enterocolitis of gnotobiotic IL-10(-/-) mice generated following antibiotic treatment. Mice were perorally infected with C. jejuni (day 0) and either treated with RO28-2653 (75 mg/kg body weight/day) or placebo from day 1 until day 6 post infection (p.i.) by gavage. Irrespective of the treatment, infected mice displayed comparable pathogen loads within the gastrointestinal tract. Following RO28-2653 administration, however, infected mice exhibited less severe symptoms such as bloody diarrhea as compared to placebo controls. Furthermore, less distinct apoptosis but higher numbers of proliferating cells could be detected in the colon of RO28-2653-treated as compared to placebo-treated mice at day 7 p.i. Remarkably, gelatinase blockage resulted in lower numbers of T- and B-lymphocytes as well as macrophages and monocytes in the colonic mucosa of C. jejuni-infected gnotobiotic IL-10(-/-) mice. Taken together, synthetic gelatinase inhibition exerts anti-inflammatory effects in experimental campylobacteriosis.
Collapse
|
34
|
Heimesaat MM, Alutis M, Grundmann U, Fischer A, Tegtmeyer N, Böhm M, Kühl AA, Göbel UB, Backert S, Bereswill S. The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice. Front Cell Infect Microbiol 2014; 4:77. [PMID: 24959425 PMCID: PMC4050650 DOI: 10.3389/fcimb.2014.00077] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden. C. jejuni can cross the intestinal epithelial barrier as visualized in biopsies derived from human patients and animal models, however, the underlying molecular mechanisms and associated immunopathology are still not well understood. We have recently shown that the secreted serine protease HtrA (high temperature requirement A) plays a key role in C. jejuni cellular invasion and transmigration across polarized epithelial cells in vitro. In the present in vivo study we investigated the role of HtrA during C. jejuni infection of mice. We used the gnotobiotic IL-10−/− mouse model to study campylobacteriosis following peroral infection with the C. jejuni wild-type (WT) strain NCTC11168 and the isogenic, non-polar NCTC11168ΔhtrA deletion mutant. Six days post infection (p.i.) with either strain mice harbored comparable intestinal C. jejuni loads, whereas ulcerative enterocolitis was less pronounced in mice infected with the ΔhtrA mutant strain. Moreover, ΔhtrA mutant infected mice displayed lower apoptotic cell numbers in the large intestinal mucosa, less colonic accumulation of neutrophils, macrophages and monocytes, lower large intestinal nitric oxide, IFN-γ, and IL-6 as well as lower TNF-α and IL-6 serum concentrations as compared to WT strain infected mice at day 6 p.i. Notably, immunopathological responses were not restricted to the intestinal tract given that liver and kidneys exhibited mild histopathological changes 6 days p.i. with either C. jejuni strain. We also found that hepatic and renal nitric oxide levels or renal TNF-α concentrations were lower in the ΔhtrA mutant as compared to WT strain infected mice. In conclusion, we show here that the C. jejuni HtrA protein plays a pivotal role in inducing host cell apoptosis and immunopathology during murine campylobacteriosis in the gut in vivo.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin Berlin, Germany
| | - Marie Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin Berlin, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg Erlangen, Germany
| | - Manja Böhm
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg Erlangen, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology/Research Center ImmunoSciences, Charité - University Medicine Berlin Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg Erlangen, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin Berlin, Germany
| |
Collapse
|
35
|
Heimesaat MM, Fischer A, Alutis M, Grundmann U, Boehm M, Tegtmeyer N, Göbel UB, Kühl AA, Bereswill S, Backert S. The impact of serine protease HtrA in apoptosis, intestinal immune responses and extra-intestinal histopathology during Campylobacter jejuni infection of infant mice. Gut Pathog 2014; 6:16. [PMID: 24883112 PMCID: PMC4040118 DOI: 10.1186/1757-4749-6-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Campylobacter jejuni has emerged as a leading cause of bacterial enterocolitis. The serine protease HtrA has been shown to be a pivotal, novel C. jejuni virulence factor involved in cell invasion and transmigration across polarised epithelial cells in vitro. However, the functional relevance of the htrA gene for the interaction of C. jejuni with the host immune system in the infant mouse infection model has not been investigated so far. Results Here we studied the role of C. jejuni htrA during infection of 3-weeks-old infant mice. Immediately after weaning, conventional wild-type mice were perorally infected with the NCTC11168∆htrA mutant (∆htrA) or the parental wild-type strain. Approximately one third of infected infant mice suffered from bloody diarrhea until day 7 post infection (p.i.), whereas colonic histopathological changes were rather moderate but comparable between the two strains. Interestingly, parental, but not ∆htrA mutant infected mice, displayed a multifold increase of apoptotic cells in the colonic mucosa at day 7 p.i., which was paralleled by higher colonic levels of pro-inflammatory cytokines such as TNF-α and IFN-γ and the matrix-degrading enzyme matrixmetalloproteinase-2 (MMP-2). Furthermore, higher numbers of proliferating cells could be observed in the colon of ∆htrA infected mice as compared to the parental wild-type strain. Remarkably, as early as 7 days p.i. infant mice also exhibited inflammatory changes in extra-intestinal compartments such as liver, kidneys and lungs, which were less distinct in kidneys and lungs following ∆htrA versus parental strain infection. However, live C. jejuni bacteria could not be found in these organs, suggesting the induction of systemic effects during intestinal infection. Conclusion Upon C. jejuni ∆htrA strain infection of infant mice, intestinal and extra-intestinal pro-inflammatory immune responses were ameliorated in the infant mouse model system. Future studies will shed further light onto the molecular mechanisms of host-pathogen interactions.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Marie Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Manja Boehm
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Nuremberg, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Nuremberg, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology / Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Nuremberg, Germany
| |
Collapse
|
36
|
Renaud M, Aupy J, Camuset G, Collongues N, Chanson JB, de Seze J, Blanc F. Chronic Bickerstaff's encephalitis with cognitive impairment, a reality? BMC Neurol 2014; 14:99. [PMID: 24885623 PMCID: PMC4040113 DOI: 10.1186/1471-2377-14-99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/01/2014] [Indexed: 11/24/2022] Open
Abstract
Background Bickerstaff’s encephalitis (BE) is an acute post-infectious demyelinating disease with albuminocytological dissociation. A chronic form has rarely been described previously. Case presentation A 44-year-old man was hospitalized for drowsiness, cognitive complaint limb weakness, ataxia and sensory disturbance after diarrhea. Neuropsychological evaluation showed slowing, memory and executive function impairment, while analysis of the CSF showed albuminocytological dissociation. Immunologic tests showed positive anti-ganglioside antibodies (anti-GM1 IgM, anti-GD1a IgG and anti-GD1b IgM). Brain MRI was normal but SPECT showed bilateral temporal and frontal hypoperfusion. Outcome under immunoglobulin treatment (IVIG) was favorable with an initial improvement but was marked by worsening after a few weeks. Consequently, the patient was treated with IVIG every 2 months due to the recurrence of symptoms after 6 weeks. Conclusion This case raises the question of the existence of a chronic form of BE with cognitive impairment, in the same way as chronic inflammatory demyelinating polyneuropathy is considered to be a chronic form of Guillain–Barré syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frédéric Blanc
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service and CMRR (Centre Mémoire de Ressources et de Recherche), 1 avenue Molière, 67098 Strasbourg Cedex, France.
| |
Collapse
|
37
|
Heimesaat MM, Lugert R, Fischer A, Alutis M, Kühl AA, Zautner AE, Tareen AM, Göbel UB, Bereswill S. Impact of Campylobacter jejuni cj0268c knockout mutation on intestinal colonization, translocation, and induction of immunopathology in gnotobiotic IL-10 deficient mice. PLoS One 2014; 9:e90148. [PMID: 24587249 PMCID: PMC3934979 DOI: 10.1371/journal.pone.0090148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/31/2014] [Indexed: 11/19/2022] Open
Abstract
Background Although Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden, the underlying molecular mechanisms of induced intestinal immunopathology are still not well understood. We have recently generated a C. jejuni mutant strain NCTC11168::cj0268c, which has been shown to be involved in cellular adhesion and invasion. The immunopathological impact of this gene, however, has not been investigated in vivo so far. Methodology/Principal Findings Gnotobiotic IL-10 deficient mice were generated by quintuple antibiotic treatment and perorally infected with C. jejuni mutant strain NCTC11168::cj0268c, its complemented version (NCTC11168::cj0268c-comp-cj0268c), or the parental strain NCTC11168. Kinetic analyses of fecal pathogen loads until day 6 post infection (p.i.) revealed that knockout of cj0268c did not compromise intestinal C. jejuni colonization capacities. Whereas animals irrespective of the analysed C. jejuni strain developed similar clinical symptoms of campylobacteriosis (i.e. enteritis), mice infected with the NCTC11168::cj0268c mutant strain displayed significant longer small as well as large intestinal lengths indicative for less distinct C. jejuni induced pathology when compared to infected control groups at day 6 p.i. This was further supported by significantly lower apoptotic and T cell numbers in the colonic mucosa and lamina propria, which were paralleled by lower intestinal IFN-γ and IL-6 concentrations at day 6 following knockout mutant NCTC11168::cj0268c as compared to parental strain infection. Remarkably, less intestinal immunopathology was accompanied by lower IFN-γ secretion in ex vivo biopsies taken from mesenteric lymphnodes of NCTC11168::cj0268c infected mice versus controls. Conclusion/Significance We here for the first time show that the cj0268c gene is involved in mediating C. jejuni induced immunopathogenesis in vivo. Future studies will provide further deep insights into the immunological and molecular interplays between C. jejuni and innate immunity in human campylobacteriosis.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
- * E-mail:
| | - Raimond Lugert
- Department of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Marie Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Pathology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Andreas E. Zautner
- Department of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Clinical Chemistry/UMG-Laboratory, University Medical Center Göttingen, Göttingen, Germany
| | - A. Malik Tareen
- Department of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
38
|
Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. Clin Dev Immunol 2013; 2013:526860. [PMID: 24324507 PMCID: PMC3845433 DOI: 10.1155/2013/526860] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023]
Abstract
Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF- κ B triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response.
Collapse
|
39
|
Heimesaat MM, Haag LM, Fischer A, Otto B, Kühl AA, Göbel UB, Bereswill S. Survey of extra-intestinal immune responses in asymptomatic long-term Campylobacter jejuni-infected mice. Eur J Microbiol Immunol (Bp) 2013; 3:174-82. [PMID: 24265935 DOI: 10.1556/eujmi.3.2013.3.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 01/20/2023] Open
Abstract
Campylobacter jejuni is among the most frequently reported bacterial pathogens causing diarrhea in humans worldwide. We recently reported a murine infection model mimicking key features of human campylobacteriosis. Six days following oral C. jejuni infection immediately after weaning, infant mice developed acute enterocolitis resolving within 2 weeks. Thereafter, C. jejuni could still be isolated from the intestines of asymptomatic mice at low levels accompanied by distinct immune responses, both at intestinal and extra-intestinal locations. We here show that, at day 103 post infection (p.i.), long-term C. jejuni-infected mice exhibited higher numbers of T lymphocytes in liver, lung, kindneys, and cardiac muscle as compared to uninfected controls. In addition, B lymphocytes were slightly higher, but macrophage numbers were significantly lower in liver and lung of C. jejuni-infected versus naive mice. As compared to uninfected control animals, proliferating cells were significantly lower in liver, lung, kidneys, cardiac muscle, and spleen at day 103 p.i., whereas more apoptotic cells were abundant in the spleen with predominance in the red pulp. This study underlines that post-infectious, immunological sequelae at extra-intestinal locations are of importance even in asymptomatic long-term C. jejuni carriers and need to be further studied in order to unravel the underlying molecular mechanisms.
Collapse
|
40
|
Bereswill S, Fischer A, Dunay IR, Kühl AA, Göbel UB, Liesenfeld O, Heimesaat MM. Pro-inflammatory potential of Escherichia coli strains K12 and Nissle 1917 in a murine model of acute ileitis. Eur J Microbiol Immunol (Bp) 2013; 3:126-34. [PMID: 24265929 DOI: 10.1556/eujmi.3.2013.2.6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
Non-pathogenic Escherichia coli (Ec) strains K12 (EcK12) and Nissle 1917 (EcN) are used for gene technology and probiotic treatment of intestinal inflammation, respectively. We investigated intestinal colonization and potential pro-inflammatory properties of EcK12, EcN, and commensal E. coli (EcCo) strains in Toxoplasma (T.) gondii-induced acute ileitis. Whereas gnotobiotic animals generated by quintuple antibiotic treatment were protected from ileitis, mice replenished with conventional microbiota suffered from small intestinal necrosis 7 days post-T. gondii infection (p.i.). Irrespective of the Ec strain, recolonized mice revealed mild to moderate histopathological changes in their ileal mucosa. Upon stable recolonization with EcK12, EcN, or EcCo, development of inflammation was accompanied by pro-inflammatory responses at day 7 p.i., including increased ileal T lymphocyte and apoptotic cell numbers compared to T. gondii-infected gnotobiotic controls. Strikingly, either Ec strain was capable to translocate to extra-intestinal locations, such as MLN, spleen, and liver. Taken together, Ec strains used in gene technology and probiotic treatment are able to exert inflammatory responses in a murine model of small intestinal inflammation. In conclusion, the therapeutic use of Ec strains in patients with broad-spectrum antibiotic treatment and/or intestinal inflammation should be considered with caution.
Collapse
Key Words
- gnotobiotic mice, Escherichia coli, E. coli Nissle 1917, E. coli K12, security strains, probiotic, colonization resistance, Toxoplasma gondii, ileitis, acute intestinal inflammation, Th1-type immunopathology, T lymphocytes, bacterial translocation, mesent
Collapse
|
41
|
Heimesaat MM, Plickert R, Fischer A, Göbel UB, Bereswill S. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni? Eur J Microbiol Immunol (Bp) 2013; 3:36-43. [PMID: 24265916 DOI: 10.1556/eujmi.3.2013.1.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.
Collapse
Key Words
- Campylobacter jejuni, colonization resistance, fecal transplantation, microbiota, intestinal inflammation, acute ileitis, Toxoplasma gondii, bacterial translocation, susceptibility to infection, E. coli, pathogen–commensal interaction, pathogen–host i
Collapse
Affiliation(s)
- M M Heimesaat
- Charité-University Medicine Berlin, CC5, Department of Microbiology and Hygiene, Campus Benjamin Franklin Hindenburgdamm 27, D-12203 Berlin +49-30-8445-2194 +49-30-450-524-902 Germany
| | | | | | | | | |
Collapse
|
42
|
Heimesaat MM, Heilmann K, Kühl AA, Erben U, Rühl M, Fischer A, Farndale RW, Bereswill S, Göbel UB, Zeitz M, Somasundaram R, Freise C. The synthetic hydroxyproline-containing collagen analogue (Gly-Pro-Hyp)10 ameliorates acute DSS colitis. Eur J Microbiol Immunol (Bp) 2012; 2:192-200. [PMID: 24688765 DOI: 10.1556/eujmi.2.2012.3.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 01/13/2023] Open
Abstract
In experimental models of and humans with intestinal inflammation, increased levels of the matrix-degrading gelatinases MMP-2 and -9 in inflamed tissues can be detected. The synthetic collagen analogue (Gly-Pro-Hyp)10, (GPO)10, has been identified as a relevant binding structure for proMMP-2/-9 and promotes enzymatic activity of proMMP-2. Since targeted MMP strategies might offer promising anti-inflammatory treatment options, we for the first time studied in vivo actions exerted by (GPO)10 applying an acute dextrane sulfate sodium (DSS) induced colitis model. Seven-day intraperitoneal (GPO)10 treatment ameliorated clinical symptoms and histopathological colonic changes as compared to placebo controls with severe colitis. (GPO)10-treated mice displayed a diminished influx of neutrophils, and T- and B-lymphocytes into their colonic mucosa whereas numbers of regulatory T-cells and regenerative cells were higher as compared to placebo controls. Furthermore, IL-6 secretion was down-regulated in ex vivo colonic biopsies derived from (GPO)10-treated mice whereas higher concentrations of the anti-inflammatory cytokine IL-10 in extra-intestinal compartments such as MLN and spleen could be detected. Strikingly, influx of inflammatory cells into lungs was abolished following (GPO)10 application. We therefore propose (GPO)10 as a promising effective and safe treatment option of intestinal and extra-intestinal inflammatory conditions in humans.
Collapse
|
43
|
Otto B, Haag LM, Fischer A, Plickert R, Kühl AA, Göbel UB, Heimesaat MM, Bereswill S. Campylobacter jejuni induces extra-intestinal immune responses via Toll-like-receptor-4 signaling in conventional IL-10 deficient mice with chronic colitis. Eur J Microbiol Immunol (Bp) 2012; 2:210-9. [PMID: 24688768 PMCID: PMC3962757 DOI: 10.1556/eujmi.2.2012.3.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/27/2012] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni is one of the predominant causes for foodborne bacterial infections worldwide. We investigated whether signaling of C. jejuni-lipoproteins and -lipooligosaccharide via Toll-like-receptor (TLR) -2 and -4, respectively, is inducing intestinal and extra-intestinal immune responses following infection of conventional IL-10(-/-) mice with chronic colitis. At day 3 following oral infection, IL-10(-/-) mice lacking TLR-2 or TLR-4 harbored comparable C. jejuni strain ATCC 43431 loads in their colon. Interestingly, infected TLR-4(-/-) IL-10(-/-) mice displayed less compromized epithelial barrier function as indicated by lower translocation rates of live gut commensals into mesenteric lymphnodes (MLNs), and exhibited less distinct B lymphocyte responses in their colonic mucosa as compared to naїve IL-10(-/-) controls. Furthermore, in extra-intestinal compartments such as MLNs and spleens, abundance of myeloid cells was less distinct whereas relative percentages of activated T helper cells and cytotoxic T cells were higher in spleens and dendritic cells more abundant in MLNs of infected IL-10(-/-) animals lacking TLR-4 as compared to IL-10(-/-) controls. Taken together, in conventionally colonized IL-10(-/-) mice, TLR-4, but not TLR-2, is involved in mediating extra-intestinal pro-inflammatory immune responses following C. jejuni infection. Thus, conventional IL-10(-/-) mice are well suited to further dissect mechanisms underlying Campylobacter infections in vivo.
Collapse
Affiliation(s)
- B. Otto
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - L.-M. Haag
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - A. Fischer
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - R. Plickert
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - A. A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical
Immunology / Research Center Immuno-Sciences (RCIS), Charité – University
Medicine BerlinBerlinGermany
| | - U. B. Göbel
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - M. M. Heimesaat
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - S. Bereswill
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| |
Collapse
|
44
|
Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling. PLoS One 2012; 7:e40761. [PMID: 22808254 PMCID: PMC3393706 DOI: 10.1371/journal.pone.0040761] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022] Open
Abstract
Background Campylobacter jejuni is a leading cause of foodborne bacterial enterocolitis worldwide. Investigation of immunopathology is hampered by a lack of suitable vertebrate models. We have recently shown that gnotobiotic mice as well as conventional IL-10−/− animals are susceptible to C. jejuni infection and develop intestinal immune responses. However, clinical symptoms of C. jejuni infection were rather subtle and did not reflect acute bloody diarrhea seen in human campylobacteriosis. Methodology/Principal Findings In order to overcome these limitations we generated gnotobiotic IL-10−/− mice by quintuple antibiotic treatment starting right after weaning. The early treatment was essential to prevent these animals from chronic colitis. Following oral infection C. jejuni colonized the gastrointestinal tract at high levels and induced acute enterocolitis within 7 days as indicated by bloody diarrhea and pronounced histopathological changes of the colonic mucosa. Immunopathology was further characterized by increased numbers of apoptotic cells, regulatory T-cells, T- and B-lymphocytes as well as elevated TNF-α, IFN-γ, and MCP-1 concentrations in the inflamed colon. The induction of enterocolitis was specific for C. jejuni given that control animals infected with a commensal E. coli strain did not display any signs of disease. Most strikingly, intestinal immunopathology was ameliorated in mice lacking Toll-like-receptors-2 or -4 indicating that C. jejuni lipoproteins and lipooligosaccharide are essential for induction and progression of immunopathology. Conclusion/Significance Gnotobiotic IL-10−/− mice develop acute enterocolitis following C. jejuni infection mimicking severe episodes of human campylobacteriosis and are thus well suited to further dissect mechanisms underlying Campylobacter infections in vivo.
Collapse
|
45
|
Haag LM, Fischer A, Otto B, Plickert R, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS One 2012; 7:e35988. [PMID: 22563475 PMCID: PMC3341396 DOI: 10.1371/journal.pone.0035988] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/28/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might occur in human campylobacteriosis. Murine models introduced here mimick key features of human campylobacteriosis and allow for further analysis of immunological and molecular mechanisms of C. jejuni-host interactions.
Collapse
Affiliation(s)
- Lea-Maxie Haag
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Bettina Otto
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Rita Plickert
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|