1
|
Liao TY, Boden A, King PC, Thissen H, Crawford RJ, Ivanova EP, Kingshott P. Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane). ACS APPLIED BIO MATERIALS 2025; 8:1167-1185. [PMID: 39849900 DOI: 10.1021/acsabm.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness. Specifically, relatively low nozzle scanning speeds were used to develop high-density Mo-embedded PDMS surfaces. A comprehensive analysis was conducted to investigate how cold-spray processing parameters affect the surface topography, wettability, and chemical properties. The ability of the Mo-embedded PDMS to inhibit the colonization of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa bacterial species was demonstrated by both live/dead staining and disk diffusion methods. Surfaces with higher Mo loading densities significantly reduced the level of bacterial attachment and enhanced the bactericidal activity upon contact. Also, the level of Mo ion release over a 14-day period was measured and correlated to the properties of the substrate surface. Furthermore, attachment, viability, and proliferation of osteoblast-like MG63 cells were assessed to investigate the effect of Mo ion release on the biocompatibility of fabricated coatings. A notable decrease in cell viability and delayed growth of MG63 cells became evident after 7 days of incubation with the highly Mo-loaded samples. While this study enhanced our understanding regarding the engineering of composite materials for combatting microbial infections, the findings also suggest that the release of Mo ions may detrimentally affect osteoblast survival, potentially compromising the long-term functionality of orthopedic implants produced using this technique.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Andrew Boden
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter C King
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Russell J Crawford
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena P Ivanova
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
2
|
Suner SS, Ayyala RS, Sahiner N. Antipathogenic Activity of Betainized Polyethyleneimine Sprays Without Toxicity. Biomedicines 2024; 12:2462. [PMID: 39595028 PMCID: PMC11592210 DOI: 10.3390/biomedicines12112462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The design of alternative antipathogenic sprays has recently attracted much attention due to the limitations of existing formulations, such as toxicity and low and narrow efficacy. Polyethyleneimine (PEI) is a great antimicrobial polymer against a wide range of pathogens, but toxicity limits its use. Here, betainized PEI (B-PEI) was synthesized to decrease the toxicity of PEI and protonated with citric acid (CA), boric acid (BA), and HCl to improve antimicrobial activity. Methods: Cytotoxicity of the PEI-based solutions was determined on L929 fibroblast cells. Antibacterial/fungal activity of PEI-based antipathogenic sprays was investigated by microtiter and disc diffusion assays, in addition to bacterial viability and adhesion % of common bacteria and fungi on the PEI-treated masks. Furthermore, the antiviral effect of the PEI-based solutions was determined against SARS-CoV-2 virus. Results: The biosafe concentration of PEI was determined as 1 μg/mL with 75 ± 11% cell viability, but B-PEI and its protonated forms had great biocompatibility even at 1000 μg/mL with more than 85% viability. The antibacterial/fungal effect of non-toxic B-PEI was improved by protonation with BA and HCl with 2.5-10 mg/mL minimum bactericidal/fungicidal concentrations (MBCs/MFCs). Bacterial/fungal viability and adhesion on the mask was almost eliminated by using 50 μL with 5-10 mg/mL of B-PEI-BA. Both protonated bare and betainized PEI show potent antiviral activity against SARS-CoV-2 virus. Conclusions: The toxicity of PEI was overcome by using betainized forms of PEI (B-PEI). Furthermore, the antimicrobial and antiviral efficacy of PEI and B-PEI was improved by protonation with CA, BA, and HCl of amine groups on B-PEI. B-PEI-BA spray solution has great potential as an antipathogenic spray with broad-spectrum antimicrobial potency against harmful bacteria, fungi, and viruses without any toxicity.
Collapse
Affiliation(s)
- Selin S. Suner
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey;
| | - Ramesh S. Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey;
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Department of Bioengineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| |
Collapse
|
3
|
Luk AMY, Lo CKY, Chiou JA, Ngai CH, Law K, Lau TL, Chen WX, Hui M, Kan CW. Antiviral and Antibacterial 3D-Printed Products Functionalised with Poly(hexamethylene biguanide). Polymers (Basel) 2024; 16:312. [PMID: 38337200 DOI: 10.3390/polym16030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Infection prevention and public health are a vital concern worldwide, especially during pandemics such as COVID-19 and seasonal influenza. Frequent manual disinfection and use of chemical spray coatings at public facilities are the typical measures taken to protect people from coronaviruses and other pathogens. However, limitations of human resources and coating durability, as well as the safety of disinfectants used are the major concerns in society during a pandemic. Non-leachable antimicrobial agent poly(hexamethylene biguanide) (PHMB) was mixed into photocurable liquid resins to produce novel and tailor-made covers for public facilities via digital light processing, which is a popular 3D printing technique for satisfactory printing resolution. Potent efficacies of the 3D-printed plastics were achieved in standard antibacterial assessments against S. aureus, E. coli and K. pneumoniae. A total of 99.9% of Human coronavirus 229E was killed after being in contact with the 3D-printed samples (containing the promising PHMB formulation) for two hours. In an eight-week field test in Hong Kong Wetland Park, antibacterial performances of the specially designed 3D-printed covers analysed by environmental swabbing were also found to be satisfactory. With these remarkable outcomes, antimicrobial products prepared by digital light processing 3D printing can be regarded as a reliable solution to long-term infection prevention and control.
Collapse
Affiliation(s)
- Anson M Y Luk
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Chris K Y Lo
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jiachi Amber Chiou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chi-Hang Ngai
- University Research Facility in 3D Printing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ki Law
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Tsz-Long Lau
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Wan-Xue Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Matthew Hui
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Chi-Wai Kan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Behzadinasab S, Williams MD, Falkinham Iii JO, Ducker WA. Antimicrobial mechanism of cuprous oxide (Cu 2O) coatings. J Colloid Interface Sci 2023; 652:1867-1877. [PMID: 37688933 DOI: 10.1016/j.jcis.2023.08.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Some very effective antimicrobial coatings exploit copper or cuprous oxide (Cu2O) as the active agent. The aim of this study is to determine which species is the active antimicrobial - dissolved ions, the Cu2O solid, or reactive oxygen species. Copper ions were leached from Cu2O into various solutions and the leachate tested for both dissolved copper and the efficacy in killing Pseudomonas aeruginosa. The concentration of copper species leached from Cu2O into aqueous solution varied greatly with the composition of the aqueous solution. For a range of solution buffers, killing of P. aeruginosa was highly correlated with the concentration of copper in the leachate. Further, 10 µL bacterial suspension droplets were placed on Cu2O coatings, with or without a polymer barrier layer, and tested for bacterial kill. Killing occurred without contact between bacterium and solid, demonstrating that contact with Cu2O is not necessary. We therefore conclude that soluble copper species are the antimicrobial agent, and that the most potent species is Cu+. The solid quickly raises and sustains the concentration of soluble copper species near the bacterium. Killing via soluble copper ions rather than contact should allow copper coatings to kill bacteria even when fouled, which is an important practical consideration.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | | | - William A Ducker
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Zhang F, Lin J, Yang M, Wang Y, Ye Z, He J, Shen J, Zhou X, Guo Z, Zhang Y, Wang B. High-breathable, antimicrobial and water-repellent face mask for breath monitoring. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 466:143150. [PMID: 37138814 PMCID: PMC10122566 DOI: 10.1016/j.cej.2023.143150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Face masks with multiple functionalities and exceptional durability have attracted increasing interests during the COVID-19 pandemic. How to integrate the antibacterial property, comfortability during long-time wearing, and breath monitoring capability together on a face mask is still challenging. Here we developed a kind of face mask that assembles the particles-free water-repellent fabric, antibacterial fabric, and hidden breath monitoring device together, resulting in the highly breathable, water-repellent, and antibacterial face mask with breath monitoring capability. Based on the rational design of the functional layers, the mask shows exceptional repellency to micro-fogs generated during breathing while maintaining high air permeability and inhibiting the passage of bacteria-containing aerogel. More importantly, the multi-functional mask can also monitor the breath condition in a wireless and real-time fashion, and collect the breath information for epidemiological analysis. The resultant mask paves the way to develop multi-functional breath-monitoring masks that can aid the prevention of the secondary transmission of bacteria and viruses while preventing potential discomfort and face skin allergy during long-period wearing.
Collapse
Affiliation(s)
- Fangfei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Mingwan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jiajun He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
6
|
Ivanauskas R, Ancutienė I, Milašienė D, Ivanauskas A, Bronušienė A. Effect of Reducing Agent on Characteristics and Antibacterial Activity of Copper-Containing Particles in Textile Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7623. [PMID: 36363214 PMCID: PMC9657411 DOI: 10.3390/ma15217623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Textile materials modified with copper-containing particles have antibacterial and antiviral properties that have prospects for use in healthcare. In the study, textile materials were saturated with copper-containing particles in their entire material volume by the absorption/diffusion method. The antibacterial properties of modified textile materials were confirmed by their inhibitory effect on Staphylococcus aureus, a Gram-positive bacterium that spreads predominantly through the respiratory tract. For the modification, ordinary textile materials of various origins and fiber structures were used. Technological conditions and compositions of modifying solutions were established, as well as the most suitable textile materials for modification. To assess the morphological and physical characteristics of copper-containing particles and the textile materials themselves, X-ray diffraction, a scanning electron microscope, and an energy-dispersive X-ray spectrum were used. In modified textile samples, XRD data showed the presence of crystalline phases of copper (Cu) and copper (I) oxide (Cu2O). On the grounds of the SEM/EDS analysis, the saturation of textile materials with copper-containing particles depends on the structure of the textile materials and the origins of the fibers included in their composition, as well as the modification conditions and the copper precursor.
Collapse
Affiliation(s)
- Remigijus Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Ingrida Ancutienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Daiva Milašienė
- Faculty of Mechanical Engineering and Design, Department of Production Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Algimantas Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Asta Bronušienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| |
Collapse
|
7
|
Souza ALR, Correa MA, Bohn F, Castro H, Fernandes MM, Vaz F, Ferreira A. High Performance of Metallic Thin Films for Resistance Temperature Devices with Antimicrobial Properties. SENSORS (BASEL, SWITZERLAND) 2022; 22:7665. [PMID: 36236764 PMCID: PMC9570709 DOI: 10.3390/s22197665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Titanium-copper alloy films with stoichiometry given by Ti1-xCux were produced by magnetron co-sputtering technique and analyzed in order to explore the suitability of the films to be applied as resistive temperature sensors with antimicrobial properties. For that, the copper (Cu) amount in the films was varied by applying different DC currents to the source during the deposition in order to change the Cu concentration. As a result, the samples showed excellent thermoresistivity linearity and stability for temperatures in the range between room temperature to 110 °C. The sample concentration of Ti0.70Cu0.30 has better characteristics to act as RTD, especially the αTCR of 1990 ×10-6°C-1. The antimicrobial properties of the Ti1-xCux films were analyzed by exposing the films to the bacterias S. aureus and E. coli, and comparing them with bare Ti and Cu films that underwent the same protocol. The Ti1-xCux thin films showed bactericidal effects, by log10 reduction for both bacteria, irrespective of the Cu concentrations. As a test of concept, the selected sample was subjected to 160 h reacting to variations in ambient temperature, presenting results similar to a commercial temperature sensor. Therefore, these Ti1-xCux thin films become excellent antimicrobial candidates to act as temperature sensors in advanced coating systems.
Collapse
Affiliation(s)
- Arthur L. R. Souza
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Marcio A. Correa
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Felipe Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Helder Castro
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
| | - Filipe Vaz
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratório de Física para Materiais e Tecnologias Emergentes, Universidade do Minho, 4710-057 Braga, Portugal
| | - Armando Ferreira
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratório de Física para Materiais e Tecnologias Emergentes, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Behzadinasab S, Hosseini M, Williams MD, Ivester HM, Allen IC, Falkinham JO, Ducker WA. Antimicrobial Activity of Cuprous Oxide and Cupric Oxide-Coated Surfaces. J Hosp Infect 2022; 129:58-64. [DOI: 10.1016/j.jhin.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
9
|
Sorci M, Fink TD, Sharma V, Singh S, Chen R, Arduini BL, Dovidenko K, Heldt CL, Palermo EF, Zha RH. Virucidal N95 Respirator Face Masks via Ultrathin Surface-Grafted Quaternary Ammonium Polymer Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25135-25146. [PMID: 35613701 PMCID: PMC9185690 DOI: 10.1021/acsami.2c04165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N95 respirator face masks serve as effective physical barriers against airborne virus transmission, especially in a hospital setting. However, conventional filtration materials, such as nonwoven polypropylene fibers, have no inherent virucidal activity, and thus, the risk of surface contamination increases with wear time. The ability of face masks to protect against infection can be likely improved by incorporating components that deactivate viruses on contact. We present a facile method for covalently attaching antiviral quaternary ammonium polymers to the fiber surfaces of nonwoven polypropylene fabrics that are commonly used as filtration materials in N95 respirators via ultraviolet (UV)-initiated grafting of biocidal agents. Here, C12-quaternized benzophenone is simultaneously polymerized and grafted onto melt-blown or spunbond polypropylene fabric using 254 nm UV light. This grafting method generated ultrathin polymer coatings which imparted a permanent cationic charge without grossly changing fiber morphology or air resistance across the filter. For melt-blown polypropylene, which comprises the active filtration layer of N95 respirator masks, filtration efficiency was negatively impacted from 72.5 to 51.3% for uncoated and coated single-ply samples, respectively. Similarly, directly applying the antiviral polymer to full N95 masks decreased the filtration efficiency from 90.4 to 79.8%. This effect was due to the exposure of melt-blown polypropylene to organic solvents used in the coating process. However, N95-level filtration efficiency could be achieved by wearing coated spunbond polypropylene over an N95 mask or by fabricating N95 masks with coated spunbond as the exterior layer. Coated materials demonstrated broad-spectrum antimicrobial activity against several lipid-enveloped viruses, as well as Staphylococcus aureus and Escherichia coli bacteria. For example, a 4.3-log reduction in infectious MHV-A59 virus and a 3.3-log reduction in infectious SuHV-1 virus after contact with coated filters were observed, although the level of viral deactivation varied significantly depending on the virus strain and protocol for assaying infectivity.
Collapse
Affiliation(s)
- Mirco Sorci
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Tanner D. Fink
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Vaishali Sharma
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Sneha Singh
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Department
of Chemical Engineering, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Ruiwen Chen
- Department
of Materials Science and Engineering, Rensselaer
Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - Brigitte L. Arduini
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Katharine Dovidenko
- Center
for Materials, Devices, and Integrated Systems, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Caryn L. Heldt
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Department
of Chemical Engineering, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Edmund F. Palermo
- Department
of Materials Science and Engineering, Rensselaer
Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - R. Helen Zha
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
10
|
Guo D, Kazasidis M, Hawkins A, Fan N, Leclerc Z, MacDonald D, Nastic A, Nikbakht R, Ortiz-Fernandez R, Rahmati S, Razavipour M, Richer P, Yin S, Lupoi R, Jodoin B. Cold Spray: Over 30 Years of Development Toward a Hot Future. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2022; 31:866-907. [PMID: 37520275 PMCID: PMC9059919 DOI: 10.1007/s11666-022-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 08/01/2023]
Abstract
Cold Spray (CS) is a deposition process, part of the thermal spray family. In this method, powder particles are accelerated at supersonic speed within a nozzle; impacts against a substrate material triggers a complex process, ultimately leading to consolidation and bonding. CS, in its modern form, has been around for approximately 30 years and has undergone through exciting and unprecedented developmental steps. In this article, we have summarized the key inventions and sub-inventions which pioneered the innovation aspect to the process that is known today, and the key breakthroughs related to the processing of materials CS is currently mastering. CS has not followed a liner path since its invention, but an evolution more similar to a hype cycle: high initial growth of expectations, followed by a decrease in interest and a renewed thrust pushed by a number of demonstrated industrial applications. The process interest is expected to continue (gently) to grow, alongside with further development of equipment and feedstock materials specific for CS processing. A number of current applications have been identified the areas that the process is likely to be the most disruptive in the medium-long term future have been laid down.
Collapse
Affiliation(s)
- D. Guo
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - M. Kazasidis
- Trinity College Dublin, The University of Dublin, Department of Mechanical, Manufacturing & Biomedical Engineering, Parsons Building, Dublin, Ireland
| | - A. Hawkins
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - N. Fan
- Trinity College Dublin, The University of Dublin, Department of Mechanical, Manufacturing & Biomedical Engineering, Parsons Building, Dublin, Ireland
| | - Z. Leclerc
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - D. MacDonald
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - A. Nastic
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - R. Nikbakht
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | | | - S. Rahmati
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - M. Razavipour
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - P. Richer
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| | - S. Yin
- Trinity College Dublin, The University of Dublin, Department of Mechanical, Manufacturing & Biomedical Engineering, Parsons Building, Dublin, Ireland
| | - R. Lupoi
- Trinity College Dublin, The University of Dublin, Department of Mechanical, Manufacturing & Biomedical Engineering, Parsons Building, Dublin, Ireland
| | - B. Jodoin
- Cold Spray Laboratory, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
11
|
Manakhov AM, Permyakova ES, Sitnikova NA, Tsygankova AR, Alekseev AY, Solomatina MV, Baidyshev VS, Popov ZI, Blahová L, Eliáš M, Zajíčková L, Kovalskii AM, Sheveyko AN, Kiryukhantsev-Korneev PV, Shtansky DV, Nečas D, Solovieva AO. Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas. Molecules 2022; 27:1333. [PMID: 35209122 PMCID: PMC8878124 DOI: 10.3390/molecules27041333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.
Collapse
Affiliation(s)
- Anton M. Manakhov
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
| | - Elizaveta S. Permyakova
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Natalya A. Sitnikova
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia;
| | - Alexander Y. Alekseev
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., Novosibirsk 630060, Russia; (A.Y.A.); (M.V.S.)
| | - Maria V. Solomatina
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., Novosibirsk 630060, Russia; (A.Y.A.); (M.V.S.)
| | - Victor S. Baidyshev
- Department of Computer Engineering and Automated Systems Software, Katanov Khakas State University, Pr. Lenin 90, Abakan 655017, Russia;
| | - Zakhar I. Popov
- Emanuel Institute of Biochemical Physics RAS, Kosygina 4, Moscow 119334, Russia;
| | - Lucie Blahová
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Marek Eliáš
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Lenka Zajíčková
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Andrey M. Kovalskii
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Alexander N. Sheveyko
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Philipp V. Kiryukhantsev-Korneev
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - Dmitry V. Shtansky
- Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, Moscow 119049, Russia; (A.M.K.); (A.N.S.); (P.V.K.-K.); (D.V.S.)
| | - David Nečas
- Central European Institute of Technology CEITEC-BUT, Purkyňova 123, 61200 Brno, Czech Republic; (L.B.); (M.E.); (L.Z.); (D.N.)
| | - Anastasiya O. Solovieva
- Research Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RAS, 2 Timakova st., Novosibirsk 630060, Russia; (E.S.P.); (N.A.S.)
| |
Collapse
|
12
|
Gentili V, Pazzi D, Rizzo S, Schiuma G, Marchini E, Papadia S, Sartorel A, Di Luca D, Caccuri F, Bignozzi CA, Rizzo R. Transparent Polymeric Formulations Effective against SARS-CoV-2 Infection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54648-54655. [PMID: 34752084 PMCID: PMC8592126 DOI: 10.1021/acsami.1c10404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The main route of the transmission of the SARS-CoV-2 virus is through airborne small aerosol particles containing viable virus as well as through droplets transmitted between people within close proximity. Transmission via contaminated surfaces has also been recognized as an important route for the spread of SARS-CoV-2 coronavirus. Among a variety of antimicrobial agents currently in use, polymers represent a class of biocides that have become increasingly important as an alternative to existing biocidal approaches. Two transparent polymeric compounds, containing silver and benzalkonium ions electrostatically bound to a polystyrene sulfonate backbone, were synthesized, through simple procedures, and evaluated for their antimicrobial properties against Gram-positive and Gram-negative bacteria and Candida albicans (ISO EN 1276) and for their antiviral activity toward 229E and SARS-CoV-2 coronaviruses (ISO UNI EN 14476:2019). The results showed that the two tested formulations are able to inhibit the growth of (1.5-5.5) × 1011 CFU of Gram-positive bacteria, Gram-negative bacteria, and of the fungal species Candida albicans. Both compounds were able to control the 229E and SARS-CoV-2 infection of a target cell in a time contact of 5 min, with a virucidal effect from 24 to 72 h postinfection, according to the European Medicines Agency (EMA) guidelines, where a product is considered virucidal upon achieving a reduction of 4 logarithms. This study observed a decrease of more than 5 logarithms, which implies that these formulations are likely ideal candidates for the realization of transparent surface coatings that are capable of maintaining remarkable antibacterial activity and SARS-CoV-2 antiviral properties over time.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| | - Daniele Pazzi
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| | - Edoardo Marchini
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| | - Stefania Papadia
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| | - Andrea Sartorel
- Department of Chemical Sciences,
University of Padova, Padova 35131,
Italy
| | - Dario Di Luca
- Department of Medical Sciences, University
of Ferrara, Ferrara 44100, Italy
| | - Francesca Caccuri
- Department of Microbiology and Virology,
Spedali Civili, Brescia 25125, Italy
| | - Carlo Alberto Bignozzi
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and
Agricultural Sciences, University of Ferrara, Ferrara 44100,
Italy
| |
Collapse
|
13
|
Behzadinasab S, Williams MD, Hosseini M, Poon LLM, Chin AWH, Falkinham JO, Ducker WA. Transparent and Sprayable Surface Coatings that Kill Drug-Resistant Bacteria Within Minutes and Inactivate SARS-CoV-2 Virus. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54706-54714. [PMID: 34766745 PMCID: PMC8609913 DOI: 10.1021/acsami.1c15505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Antimicrobial coatings are one method to reduce the spread of microbial diseases. Transparent coatings preserve the visual properties of surfaces and are strictly necessary for applications such as antimicrobial cell phone screens. This work describes transparent coatings that inactivate microbes within minutes. The coatings are based on a polydopamine (PDA) adhesive, which has the useful property that the monomer can be sprayed, and then the monomer polymerizes in a conformal film at room temperature. Two coatings are described (1) a coating where PDA is deposited first and then a thin layer of copper is grown on the PDA by electroless deposition (PDA/Cu) and (2) a coating where a suspension of Cu2O particles in a PDA solution is deposited in a single step (PDA/Cu2O). In the second coating, PDA menisci bind Cu2O particles to the solid surface. Both coatings are transparent and are highly efficient in inactivating microbes. PDA/Cu kills >99.99% of Pseudomonas aeruginosa and 99.18% of methicillin-resistant Staphylococcus aureus (MRSA) in only 10 min and inactivates 99.98% of SARS-CoV-2 virus in 1 h. PDA/Cu2O kills 99.94% of P. aeruginosa and 96.82% of MRSA within 10 min and inactivates 99.88% of SARS-CoV-2 in 1 h.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohsen Hosseini
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Immunity and Infection, Hong Kong Science Park, Hong Kong, China
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - William A Ducker
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Seidi F, Deng C, Zhong Y, Liu Y, Huang Y, Li C, Xiao H. Functionalized Masks: Powerful Materials against COVID-19 and Future Pandemics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102453. [PMID: 34319644 PMCID: PMC8420174 DOI: 10.1002/smll.202102453] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The outbreak of COVID-19 revealed the vulnerability of commercially available face masks. Without having antibacterial/antiviral activities, the current masks act only as filtering materials of the aerosols containing microorganisms. Meanwhile, in surgical masks, the viral and bacterial filtration highly depends on the electrostatic charges of masks. These electrostatic charges disappear after 8 h, which leads to a significant decline in filtration efficiency. Therefore, to enhance the masks' protection performance, fabrication of innovative masks with more advanced functions is in urgent demand. This review summarizes the various functionalizing agents which can endow four important functions in the masks including i) boosting the antimicrobial and self-disinfectant characteristics via incorporating metal nanoparticles or photosensitizers, ii) increasing the self-cleaning by inserting superhydrophobic materials such as graphenes and alkyl silanes, iii) creating photo/electrothermal properties by forming graphene and metal thin films within the masks, and iv) incorporating triboelectric nanogenerators among the friction layers of masks to stabilize the electrostatic charges and facilitating the recharging of masks. The strategies for creating these properties toward the functionalized masks are discussed in detail. The effectiveness and limitation of each method in generating the desired properties are well-explained along with addressing the prospects for the future development of masks.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chao Deng
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yajie Zhong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yuqian Liu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yang Huang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Chengcheng Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New BrunswickFrederictonNew BrunswickE3B 5A3Canada
| |
Collapse
|
15
|
Wang N, Ferhan AR, Yoon BK, Jackman JA, Cho NJ, Majima T. Chemical design principles of next-generation antiviral surface coatings. Chem Soc Rev 2021; 50:9741-9765. [PMID: 34259262 DOI: 10.1039/d1cs00317h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.
Collapse
Affiliation(s)
- Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
16
|
Gopal V, Nilsson-Payant BE, French H, Siegers JY, Yung WS, Hardwick M, te Velthuis AJW. Zinc-Embedded Polyamide Fabrics Inactivate SARS-CoV-2 and Influenza A Virus. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30317-30325. [PMID: 34180223 PMCID: PMC8262172 DOI: 10.1021/acsami.1c04412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 05/18/2023]
Abstract
Influenza A viruses (IAV) and SARS-CoV-2 can spread via liquid droplets and aerosols. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread of these viruses. However, IAV and SARS-CoV-2 are stable for hours on various materials, which makes frequent and correct disposal of these PPE important. Metal ions embedded into PPE may inactivate respiratory viruses, but confounding factors such as adsorption of viruses make measuring and optimizing the inactivation characteristics difficult. Here, we used polyamide 6.6 (PA66) fibers containing embedded zinc ions and systematically investigated if these fibers can adsorb and inactivate SARS-CoV-2 and IAV H1N1 when woven into a fabric. We found that our PA66-based fabric decreased the IAV H1N1 and SARS-CoV-2 titer by approximately 100-fold. Moreover, we found that the zinc content and the virus inactivating property of the fabric remained stable over 50 standardized washes. Overall, these results provide insights into the development of reusable PPE that offer protection against RNA virus spread.
Collapse
Affiliation(s)
- Vikram Gopal
- Ascend
Performance Materials, 1010 Travis Street, Suite 900, Houston, Texas 77002, United States
| | - Benjamin E. Nilsson-Payant
- Department
of Microbiology, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Hollie French
- Division
of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, U.K.
| | - Jurre Y. Siegers
- Department
of Viroscience, Erasmus University Medical
Centre, Rotterdam 3015 GD, the Netherlands
| | - Wai-shing Yung
- Ascend
Performance Materials, 1010 Travis Street, Suite 900, Houston, Texas 77002, United States
| | - Matthew Hardwick
- ResInnova
Laboratories, 8807 Colesville
Rd, 3rd Floor, Silver Spring, Maryland 20910, United
States
| | - Aartjan J. W. te Velthuis
- Division
of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, U.K.
| |
Collapse
|
17
|
Hosseini M, Behzadinasab S, Benmamoun Z, Ducker WA. The viability of SARS-CoV-2 on solid surfaces. Curr Opin Colloid Interface Sci 2021; 55:101481. [PMID: 34149298 PMCID: PMC8205552 DOI: 10.1016/j.cocis.2021.101481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic had a major impact on life in 2020 and 2021. One method of transmission occurs when the causative virus, SARS-CoV-2, contaminates solids. Understanding and controlling the interaction with solids is thus potentially important for limiting the spread of the disease. We review work that describes the prevalence of the virus on common objects, the longevity of the virus on solids, and surface coatings that are designed to inactivate the virus. Engineered coatings have already succeeded in producing a large reduction in viral infectivity from surfaces. We also review work describing inactivation on facemasks and clothing and discuss probable mechanisms of inactivation of the virus at surfaces.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| | - Saeed Behzadinasab
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| | - Zachary Benmamoun
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| | - William A Ducker
- Dept. of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, VA, 24061, USA
| |
Collapse
|
18
|
Schio AL, Michels AF, Fongaro G, Figueroa CA. Trends in the Antiviral Chemical Activity of Material Surfaces Associated With the SARS-CoV-2 Outbreak. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.636075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus designated as SARS-CoV-2 has risen the first pandemic caused by coronavirus and by November 26, 2020 is responsible for more than 1,410 million deaths. This scenario evidences that despite previous pandemics and epidemics in the world’s history, the current worldwide measures to contain and to mitigate viruses’ outbreaks are still disabled and insufficient. Therefore, this perspective reinforces the need for new and practical approaches for antiviral material developments and presents current technologies and its advances in this field of research focusing especially in surface materials since it is one of the most common interaction pathways. Furthermore, the roll that nanotechnology has been playing in the combat of viruses as well as the mechanisms that science has been discovering to inactivate these pathogenic microorganisms is presented. Finally, we suggest introducing new legislation and norms rather more specified on virucidal agents (materials and devices) than bactericidal ones in human environments such as hospitals, nursing homes, buses, and shopping centers to mitigate the current and future virus-based pandemics and epidemics.
Collapse
|
19
|
Sousa BC, Massar CJ, Gleason MA, Cote DL. On the emergence of antibacterial and antiviral copper cold spray coatings. J Biol Eng 2021; 15:8. [PMID: 33627170 PMCID: PMC7904298 DOI: 10.1186/s13036-021-00256-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 11/10/2022] Open
Abstract
In this literature review, the antipathogenic properties and contact-mediated antibacterial and antiviral performance of copper cold spray surfaces are assessed and compared with alternative antimicrobial materials that are able to kill and/or inactivate infectious agents via direct contact. Discussion is also provided concerning the suitability of copper cold spray material consolidations as biocidal and viricidal surfaces that retain long-term functionality as a preventative measure against fomite transmission of pathogenic agents and hospital-acquired infections from contaminated high-touch surfaces. Numerable alternative antimicrobial coatings and surfaces that do not rely upon the oligodynamic action of copper are detailed. Given the ongoing need for recognition of said alternative antimicrobial materials by authoritative agencies, such as the U.S. Environmental Protection Agency, the relevant literature on non-copper-based antipathogenic coatings and surfaces are then described. Furthermore, a wide-ranging take on antipathogenic copper cold spray coatings are provided and consideration is given to the distinctive grain-boundary mediated copper ion diffusion pathways found in optimizable, highly deformed, copper cold spray material consolidations that enable pathogen inactivation on surfaces from direct contact. To conclude this literature review, analysis of how copper cold spray coatings can be employed as a preventative measure against COVID-19 was also presented in light of on-going debates surrounding SARS-CoV-2's non-primary, but non-negligible, secondary transmission pathway, and also presented in conjunction with the inevitability that future pathogens, which will be responsible for forthcoming global pandemics, may spread even more readily via fomite pathways too.
Collapse
Affiliation(s)
- Bryer C Sousa
- Materials Science and Engineering Program, Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609-2280, USA.
| | - Christopher J Massar
- Materials Science and Engineering Program, Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609-2280, USA
| | - Matthew A Gleason
- Materials Science and Engineering Program, Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609-2280, USA
| | - Danielle L Cote
- Materials Science and Engineering Program, Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609-2280, USA.
| |
Collapse
|