1
|
McCallinhart PE, Stone KR, Lucchesi PA, Trask AJ. Coronary cytoskeletal modulation of coronary blood flow in the presence and absence of type 2 diabetes: the role of cofilin. Front Physiol 2025; 16:1561867. [PMID: 40171115 PMCID: PMC11959307 DOI: 10.3389/fphys.2025.1561867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
Background Coronary resistance microvessels (CRMs) from type 2 diabetic (T2DM) mice and pigs are less stiff compared to normal, a finding that is dictated by less stiff coronary vascular smooth muscle cells (VSMCs). Cofilin is an endogenous actin regulatory protein that depolymerizes filamentous (F)-actin, and portions of F-actin bound to cofilin are less stiff compared to their unbound F-actin counterparts. In this study, we hypothesized that altering the actin cytoskeleton modifies VSMC stiffness, which contributes to changes in coronary blood flow in normal and T2DM conditions. Methods and results Utilizing phalloidin staining, we found that F-actin was significantly reduced in T2DM CRM VSMCs, and we showed cofilin expression was increased in T2DM by proteomics and Western blot analysis. Cofilin knockdown in both human and mouse coronary VSMCs using siRNA significantly increased F/G actin ratio. Cofilin knockdown also caused a significant increase in elastic modulus by atomic force microscopy of coronary VSMCs. Treatment with Latrunculin B, an actin disruptor, significantly decreased VSMC elastic modulus. Acute Latrunculin B infusion into the coronary circulation of ex vivo isolated Langendorff mouse hearts increased peak coronary blood flow. Conclusion Together, we demonstrated that the CRM VSMC actin cytoskeleton is altered in T2DM to favor less stiff cells, and pharmacological manipulation of the actin cytoskeleton alters VSMC biomechanics. This study is also the first to demonstrate that coronary cellular modulation of mechanics can acutely modulate coronary blood flow.
Collapse
Affiliation(s)
- Patricia E. McCallinhart
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathlyene R. Stone
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Pamela A. Lucchesi
- Department of Undergraduate Medical Education, University of Texas Tyler School of Medicine, Tyler, TX, United States
| | - Aaron J. Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College ofMedicine, Columbus, OH, United States
| |
Collapse
|
2
|
Tarafder S, Ghataure J, Langford D, Brooke R, Kim R, Eyen SL, Bensadoun J, Felix JT, Cook JL, Lee CH. Advanced bioactive glue tethering Lubricin/PRG4 to promote integrated healing of avascular meniscus tears. Bioact Mater 2023; 28:61-73. [PMID: 37214259 PMCID: PMC10199165 DOI: 10.1016/j.bioactmat.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone, but no regenerative therapy exist. Previously, we showed that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) via fibrin-based bio-glue facilitate meniscus healing by inducing recruitment and stepwise differentiation of synovial mesenchymal stem/progenitor cells. Here, we first explored the potential of genipin, a natural crosslinker, to enhance fibrin-based glue's mechanical and degradation properties. In parallel, we identified the harmful effects of lubricin on meniscus healing and investigated the mechanism of lubricin deposition on the injured meniscus surface. We found that the pre-deposition of hyaluronic acid (HA) on the torn meniscus surface mediates lubricin deposition. Then we implemented chemical modifications with heparin conjugation and CD44 on our bioactive glue to achieve strong initial bonding and integration of lubricin pre-coated meniscal tissues. Our data suggested that heparin conjugation significantly enhances lubricin-coated meniscal tissues. Similarly, CD44, exhibiting a strong binding affinity to lubricin and hyaluronic acid (HA), further improved the integrated healing of HA/lubricin pre-coated meniscus injuries. These findings may represent an important foundation for developing a translational bio-active glue guiding the regenerative healing of meniscus injuries.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jaskirti Ghataure
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - David Langford
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Rachel Brooke
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Ryunhyung Kim
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Samantha Lewis Eyen
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Julian Bensadoun
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jeffrey T. Felix
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia, MO, 65212, USA
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
3
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
4
|
Vining KH, Marneth AE, Adu-Berchie K, Grolman JM, Tringides CM, Liu Y, Wong WJ, Pozdnyakova O, Severgnini M, Stafford A, Duda GN, Hodi FS, Mullally A, Wucherpfennig KW, Mooney DJ. Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. NATURE MATERIALS 2022; 21:939-950. [PMID: 35817965 PMCID: PMC10197159 DOI: 10.1038/s41563-022-01293-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/18/2022] [Indexed: 05/05/2023]
Abstract
Myelofibrosis is a progressive bone marrow malignancy associated with monocytosis, and is believed to promote the pathological remodelling of the extracellular matrix. Here we show that the mechanical properties of myelofibrosis, namely the liquid-to-solid properties (viscoelasticity) of the bone marrow, contribute to aberrant differentiation of monocytes. Human monocytes cultured in stiff, elastic hydrogels show proinflammatory polarization and differentiation towards dendritic cells, as opposed to those cultured in a viscoelastic matrix. This mechanically induced cell differentiation is blocked by inhibiting a myeloid-specific isoform of phosphoinositide 3-kinase, PI3K-γ. We further show that murine bone marrow with myelofibrosis has a significantly increased stiffness and unveil a positive correlation between myelofibrosis grading and viscoelasticity. Treatment with a PI3K-γ inhibitor in vivo reduced frequencies of monocyte and dendritic cell populations in murine bone marrow with myelofibrosis. Moreover, transcriptional changes driven by viscoelasticity are consistent with transcriptional profiles of myeloid cells in other human fibrotic diseases. These results demonstrate that a fibrotic bone marrow niche can physically promote a proinflammatory microenvironment.
Collapse
Affiliation(s)
- Kyle H Vining
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna E Marneth
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Joshua M Grolman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Materials Science and Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology Immune Assessment Laboratory at the Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Georg N Duda
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration at Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ann Mullally
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
5
|
Munawar MA, Schubert DW. Thermal-Induced Percolation Phenomena and Elasticity of Highly Oriented Electrospun Conductive Nanofibrous Biocomposites for Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158451. [PMID: 35955588 PMCID: PMC9369359 DOI: 10.3390/ijms23158451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Highly oriented electrospun conductive nanofibrous biocomposites (CNBs) of polylactic acid (PLA) and polyaniline (PANi) are fabricated using electrospinning. At the percolation threshold (φc), the growth of continuous paths between PANi particles leads to a steep increase in the electrical conductivity of fibers, and the McLachlan equation is fitted to identify φc. Annealing generates additional conductive channels, which lead to higher conductivity for dynamic percolation. For the first time, dynamic percolation is investigated for revealing time-temperature superposition in oriented conductive nanofibrous biocomposites. The crystallinity (χc) displays a linear dependence on annealing temperature within the confined fiber of CNBs. The increase in crystallinity due to annealing also increases the Young’s modulus E of CNBs. The present study outlines a reliable approach to determining the conductivity and elasticity of nanofibers that are highly desirable for a wide range of biological tissue applications.
Collapse
Affiliation(s)
- Muhammad A. Munawar
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| | - Dirk W. Schubert
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| |
Collapse
|
6
|
Jeon B, Jung HG, Lee SW, Lee G, Shim JH, Kim MO, Kim BJ, Kim SH, Lee H, Lee SW, Yoon DS, Jo SJ, Choi TH, Lee W. Melanoma Detection by AFM Indentation of Histological Specimens. Diagnostics (Basel) 2022; 12:1736. [PMID: 35885640 PMCID: PMC9323377 DOI: 10.3390/diagnostics12071736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is visible unlike other types of cancer, but it is still challenging to diagnose correctly because of the difficulty in distinguishing between benign nevus and melanoma. We conducted a robust investigation of melanoma, identifying considerable differences in local elastic properties between nevus and melanoma tissues by using atomic force microscopy (AFM) indentation of histological specimens. Specifically, the histograms of the elastic modulus of melanoma displayed multimodal Gaussian distributions, exhibiting heterogeneous mechanical properties, in contrast with the unimodal distributions of elastic modulus in the benign nevus. We identified this notable signature was consistent regardless of blotch incidence by sex, age, anatomical site (e.g., thigh, calf, arm, eyelid, and cheek), or cancer stage (I, IV, and V). In addition, we found that the non-linearity of the force-distance curves for melanoma is increased compared to benign nevus. We believe that AFM indentation of histological specimens may technically complement conventional histopathological analysis for earlier and more precise melanoma detection.
Collapse
Affiliation(s)
- Byoungjun Jeon
- Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul 08826, Korea;
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea; (H.G.J.); (S.W.L.); (D.S.Y.)
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea; (H.G.J.); (S.W.L.); (D.S.Y.)
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea;
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| | - Jung Hee Shim
- Department of Plastic and Reconstructive Surgery, Research Services, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Mi Ok Kim
- Department of Plastic and Reconstructive Surgery, Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03087, Korea; (M.O.K.); (B.J.K.)
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03087, Korea; (M.O.K.); (B.J.K.)
| | - Sang-Hyon Kim
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu 41931, Korea;
| | - Hyungbeen Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (S.W.L.)
- R&D Center of Curigin Ltd., Seoul 04778, Korea
| | - Sang Woo Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (S.W.L.)
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea; (H.G.J.); (S.W.L.); (D.S.Y.)
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
- Astrion Inc., Seoul 02841, Korea
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03087, Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03087, Korea; (M.O.K.); (B.J.K.)
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
7
|
Hossack M, Fisher R, Torella F, Madine J, Field M, Akhtar R. Micromechanical and Ultrastructural Properties of Abdominal Aortic Aneurysms. Artery Res 2022. [DOI: 10.1007/s44200-022-00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AbstractAbdominal aortic aneurysms are a common condition of uncertain pathogenesis that can rupture if left untreated. Current recommended thresholds for planned repair are empirical and based entirely on diameter. It has been observed that some aneurysms rupture before reaching the threshold for repair whilst other larger aneurysms do not rupture. It is likely that geometry is not the only factor influencing rupture risk. Biomechanical indices aiming to improve and personalise rupture risk prediction require, amongst other things, knowledge of the material properties of the tissue and realistic constitutive models. These depend on the composition and organisation of the vessel wall which has been shown to undergo drastic changes with aneurysmal degeneration, with loss of elastin, smooth muscle cells, and an accumulation of isotropically arranged collagen. Most aneurysms are lined with intraluminal thrombus, which has an uncertain effect on the underlying vessel wall, with some authors demonstrating a reduction in wall stress and others a reduction in wall strength. The majority of studies investigating biomechanical properties of ex vivo abdominal aortic aneurysm tissues have used low-resolution techniques, such as tensile testing, able to measure the global material properties at the macroscale. High-resolution engineering techniques such as nanoindentation and atomic force microscopy have been modified for use in soft biological tissues and applied to vascular tissues with promising results. These techniques have the potential to advance the understanding and improve the management of abdominal aortic aneurysmal disease.
Collapse
|
8
|
Park GY, Tarafder S, Eyen SL, Park S, Kim R, Siddiqui Z, Kumar V, Lee CH. Oxo-M and 4-PPBP Delivery via Multi-Domain Peptide Hydrogel Toward Tendon Regeneration. Front Bioeng Biotechnol 2022; 10:773004. [PMID: 35155388 PMCID: PMC8829701 DOI: 10.3389/fbioe.2022.773004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 12/01/2022] Open
Abstract
We have recently identified novel small molecules, Oxo-M and 4-PPBP, which specifically stimulate endogenous tendon stem/progenitor cells (TSCs), leading to potential regenerative healing of fully transected tendons. Here, we investigated an injectable, multidomain peptide (MDP) hydrogel providing controlled delivery of the small molecules for regenerative tendon healing. We investigated the release kinetics of Oxo-M and 4-PPBP from MDP hydrogels and the effect of MDP-released small molecules on tenogenic differentiation of TSCs and in vivo tendon healing. In vitro, MDP showed a sustained release of Oxo-M and 4-PPBP and a slower degradation than fibrin. In addition, tenogenic gene expression was significantly increased in TSC with MDP-released Oxo-M and 4-PPBP as compared to the fibrin-released. Invivo, MDP releasing Oxo-M and 4-PPBP significantly improved tendon healing, likely associated with prolonged effects of Oxo-M and 4-PPBP on suppression of M1 macrophages and promotion of M2 macrophages. Comprehensive analyses including histomorphology, digital image processing, and modulus mapping with nanoindentation consistently suggested that Oxo-M and 4-PPBP delivered via MDP further improved tendon healing as compared to fibrin-based delivery. In conclusion, MDP delivered with Oxo-M and 4-PPBP may serve as an efficient regenerative therapeutic for in situ tendon regeneration and healing.
Collapse
Affiliation(s)
- Ga Young Park
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Samantha Lewis Eyen
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Soomin Park
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Ryunhyung Kim
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Zain Siddiqui
- Department of Bio-Medical Engineering, New Jersey Institute of Technology, Hoboken, NJ, United States
| | - Vivek Kumar
- Department of Bio-Medical Engineering, New Jersey Institute of Technology, Hoboken, NJ, United States
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Chang H. Lee,
| |
Collapse
|
9
|
Badreddine AH, Couitt S, Kerbage C. Histopathological and biomechanical changes in soft palate in response to non-ablative 9.3-μm CO 2 laser irradiation: an in vivo study. Lasers Med Sci 2021; 36:413-420. [PMID: 32621126 DOI: 10.1007/s10103-020-03087-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/23/2020] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate in vivo the biomechanical and morphological changes in soft palates of Wistar rats from non-ablative irradiation with a 9.3-μm CO2 laser. A blinded, randomized, controlled study was designed with 45 Wistar rats categorized into treated and control sets. The treated set was exposed to 9.3-μm CO2 laser irradiation at an average power of 1.0 W and a single pulse fluence of 0.16 J/cm2 scanned using an automated system at a repetition rate of 315 Hz in a patterned area covering 0.4 cm2 in 6 s. The tissue of each animal was excised and divided into two halves. One-half was sectioned for histopathology, and the other half was used to measure tissue stiffness, which was reported as the effective Young's modulus. Measurements for both sets were taken at three time points: days 1, 21, and 35. There were no significant adverse events or changes in the behavior of the rats over the duration of the study. The treated set exhibited an order of magnitude increase in stiffness relative to the controls, which was maintained over the three time points. Histopathology showed a moderate contraction/disruption of the lamina propria collagen observed at day 1 and collagen accumulation observed at days 21 and 35 in the tissue remodeling phase. Non-ablative 9.3-μm CO2 laser irradiation can safely increase oral mucosal stiffness and can be used as an effective treatment to reduce tissue vibrations that are associated with snoring.
Collapse
|
10
|
Liu L, Dharmadhikari S, Shontz KM, Tan ZH, Spector BM, Stephens B, Bergman M, Manning A, Zhao K, Reynolds SD, Breuer CK, Chiang T. Regeneration of partially decellularized tracheal scaffolds in a mouse model of orthotopic tracheal replacement. J Tissue Eng 2021; 12:20417314211017417. [PMID: 34164107 PMCID: PMC8188978 DOI: 10.1177/20417314211017417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Decellularized tracheal scaffolds offer a potential solution for the repair of long-segment tracheal defects. However, complete decellularization of trachea is complicated by tracheal collapse. We created a partially decellularized tracheal scaffold (DTS) and characterized regeneration in a mouse model of tracheal transplantation. All cell populations except chondrocytes were eliminated from DTS. DTS maintained graft integrity as well as its predominant extracellular matrix (ECM) proteins. We then assessed the performance of DTS in vivo. Grafts formed a functional epithelium by study endpoint (28 days). While initial chondrocyte viability was low, this was found to improve in vivo. We then used atomic force microscopy to quantify micromechanical properties of DTS, demonstrating that orthotopic implantation and graft regeneration lead to the restoration of native tracheal rigidity. We conclude that DTS preserves the cartilage ECM, supports neo-epithelialization, endothelialization and chondrocyte viability, and can serve as a potential solution for long-segment tracheal defects.
Collapse
Affiliation(s)
- Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sayali Dharmadhikari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Zheng Hong Tan
- Collage of Medicine, The Ohio State University, Columbus, OH, USA
| | - Barak M Spector
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Brooke Stephens
- Collage of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maxwell Bergman
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Amy Manning
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kai Zhao
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
11
|
Birjiniuk J, Oshinski JN, Ku DN, Veeraswamy RK. Endograft exclusion of the false lumen restores local hemodynamics in a model of type B aortic dissection. J Vasc Surg 2020; 71:2108-2118. [PMID: 32446515 DOI: 10.1016/j.jvs.2019.06.222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/10/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Endovascular intervention in uncomplicated type B dissection has not been shown conclusively to confer benefit on patients. The hemodynamic effect of primary entry tear coverage is not known. Endovascular stent grafts were deployed in a model of aortic dissection with multiple fenestrations to study these effects. It is hypothesized that endograft deployment will lead to restoration of parabolic true lumen flow as well as elimination of false lumen flow and transluminal jets and vortices locally while maintaining distal false lumen canalization. METHODS Thoracic stent grafts were placed in silicone models of aortic dissection with a compliant and mobile intimal flap and installed in a flow loop. Pulsatile fluid flow was established with a custom positive displacement pump, and the models were imaged by four-dimensional flow magnetic resonance imaging. Full flow fields were acquired in the models, and velocities were extracted to calculate flow rates, reverse flow indices, and oscillatory shear index, the last two of which are measures of stagnant and disturbed flows. RESULTS Complete obliteration of the false lumen was achieved in grafted aorta, with normal parabolic flow profiles in the true lumen (maximal velocity, 30.4 ± 8.4 cm/s). A blind false lumen pouch was created distal to this with low-velocity (5.8 ± 2.7 cm/s) and highly reversed (27.9% ± 13.9% reverse flow index) flows. In distal free false lumen segments, flows were comparable to ungrafted conditions with maximal velocities on the order of 7.0 ± 2.1 cm/s. Visualization studies revealed forward flow in these regions with left-handed vortices from true to false lumen. Shear calculations in free false lumen regions demonstrated reduced oscillatory shear index. CONCLUSIONS Per the initial hypothesis, endovascular grafting improved true lumen hemodynamics in the grafted region. Just distally, a prothrombotic flow regimen was noted in the false lumen, yet free false lumen distal to this remained canalized. Clinically, this suggests a need for advancing endovascular intervention beyond sole entry tear coverage to prevent further false lumen canalization through uncovered fenestrations.
Collapse
Affiliation(s)
- Joav Birjiniuk
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga.
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Ga
| | - David N Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Ga; Division of Vascular Surgery, Joseph B. Whitehead Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Ravi K Veeraswamy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
12
|
Ghosh B, Mandal M, Mitra P, Chatterjee J. Structural mechanics modeling reveals stress-adaptive features of cutaneous scars. Biomech Model Mechanobiol 2020; 20:371-377. [PMID: 32920729 DOI: 10.1007/s10237-020-01384-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
The scar is a predominant outcome of adult mammalian wound healing despite being associated with partial function loss. Here in this paper, we have described the structure of a full-thickness normal scar as a "di-fork" with dual biomechanical compartments using in vivo and ex vivo experiments. We used structural mechanics simulations to model the deformation fields computationally and stress distribution in the scar in response to external forces. Despite its loss of tissue components, we have found that the scar has stress-adaptive features that cushion the underlying tissues from external mechanical impacts. Thus, this new finding can motivate research to understand the biomechanical advantages of a scar in maintaining the primary function of the skin, i.e., mechanical barrier despite permanent loss of some tissues and specialized functions.
Collapse
Affiliation(s)
- Biswajoy Ghosh
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India.
| | - Mousumi Mandal
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Pabitra Mitra
- Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur, India
| | | |
Collapse
|
13
|
Gargus ES, Jakubowski KL, Arenas GA, Miller SJ, Lee SSM, Woodruff TK. Ultrasound Shear Wave Velocity Varies Across Anatomical Region in Ex Vivo Bovine Ovaries. Tissue Eng Part A 2020; 26:720-732. [PMID: 32609070 DOI: 10.1089/ten.tea.2020.0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physical properties of the ovarian extracellular matrix (ECM) regulate the function of ovarian cells, specifically the ability of the ovary to maintain a quiescent primordial follicle pool while allowing a subset of follicles to grow and mature in the estrous cycle. Design of a long-term, cycling artificial ovary has been hindered by the limited information regarding the mechanical properties of the ovary. In particular, differences in the mechanical properties of the two ovarian compartments, the cortex and medulla, have never been quantified. Shear wave (SW) ultrasound elastography is an imaging modality that enables assessment of material properties, such as the mechanical properties, based on the velocity of SWs, and visualization of internal anatomy, when coupled with B-mode ultrasound. We used SW ultrasound elastography to assess whole, ex vivo bovine ovaries. We demonstrated, for the first time, a difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, as measured along the length (cortex: 2.57 ± 0.53 m/s, medulla: 2.87 ± 0.77 m/s, p < 0.0001) and width (cortex: 2.99 ± 0.81 m/s, medulla: 3.24 ± 0.97 m/s, p < 0.05) and that the spatial distribution and magnitude of SW velocity vary between these two anatomical planes. This work contributes to a larger body of literature assessing the mechanical properties of the ovary and related cells and specialized ECMs and will enable the rational design of biomimetic tissue engineered models and durable bioprostheses. Impact Statement Shear wave (SW) ultrasound elastography can be used to simultaneously assess the material properties and tissue structures when accompanied with B-mode ultrasound. We report a quantitative difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, with SW velocity being 11.4% and 8.4% higher in the medulla than the cortex when measured along the length and width, respectively. This investigation into the spatial and temporal variation in SW velocity in bovine ovaries will encourage and improve design of more biomimetic scaffolds for ovarian tissue engineering.
Collapse
Affiliation(s)
- Emma S Gargus
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Kristen L Jakubowski
- Department of Physical Therapy and Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.,Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Gabriel A Arenas
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott J Miller
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sabrina S M Lee
- Department of Physical Therapy and Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Langton AK, Tsoureli-Nikita E, Merrick H, Zhao X, Antoniou C, Stratigos A, Akhtar R, Derby B, Sherratt MJ, Watson RE, Griffiths CE. The systemic influence of chronic smoking on skin structure and mechanical function. J Pathol 2020; 251:420-428. [PMID: 32472631 DOI: 10.1002/path.5476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
Abstract
One of the major functions of human skin is to provide protection from the environment. Although we cannot entirely avoid, for example, sun exposure, it is likely that exposure to other environmental factors could affect cutaneous function. A number of studies have identified smoking as one such factor that leads to both facial wrinkle formation and a decline in skin function. In addition to the direct physical effects of tobacco smoke on skin, its inhalation has additional profound systemic effects for the smoker. The adverse effects on the respiratory and cardiovascular systems from smoking are well known. Central to the pathological changes associated with smoking is the elastic fibre, a key component of the extracellular matrices of lungs. In this study we examined the systemic effect of chronic smoking (>40 cigarettes/day; >5 years) on the histology of the cutaneous elastic fibre system, the nanostructure and mechanics of one of its key components, the fibrillin-rich microfibril, and the micromechanical stiffness of the dermis and epidermis. We show that photoprotected skin of chronic smokers exhibits significant remodelling of the elastic fibre network (both elastin and fibrillin-rich microfibrils) as compared to the skin of age- and sex-matched non-smokers. This remodelling is not associated with increased gelatinase activity (as identified by in situ zymography). Histological remodelling is accompanied by significant ultrastructural changes to extracted fibrillin-rich microfibrils. Finally, using scanning acoustic microscopy, we demonstrated that chronic smoking significantly increases the stiffness of both the dermis and the epidermis. Taken together, these data suggest an unappreciated systemic effect of chronic inhalation of tobacco smoke on the cutaneous elastic fibre network. Such changes may in part underlie the skin wrinkling and loss of skin elasticity associated with smoking. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Abigail K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Evridiki Tsoureli-Nikita
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Holly Merrick
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Xuegen Zhao
- School of Materials, The University of Manchester, Manchester, UK
| | - Christina Antoniou
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Alexander Stratigos
- First Department of Dermatology, Andreas Syggros Hospital of Cutaneous & Venereal Diseases, Athens University Medical School, Athens, Greece
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Brian Derby
- School of Materials, The University of Manchester, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Rachel Eb Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Christopher Em Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
15
|
Yi B, Shen Y, Tang H, Wang X, Zhang Y. Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomater 2020; 108:237-249. [PMID: 32205213 DOI: 10.1016/j.actbio.2020.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/24/2023]
Abstract
Promoting healthy endothelialization of the tissue-engineered vascular grafts is of great importance in preventing the occurrence of undesired post-implantation complications including neointimal hyperplasia, late thrombosis, and neoatherosclerosis. Previous researches have demonstrated the crucial role of scaffold topography or stiffness in modulating the behavior of the monolayer endothelial cells (ECs). However, effects of the stiffness of scaffolds with anisotropic topography on ECs within vivo like oriented morphology has received little attention. In this study, aligned fibrous substrates (AFSs) with tunable stiffness (14.68-2141.72 MPa), similar to the range of stiffness of the healthy and diseased subendothelial matrix, were used to investigate the effects of fiber stiffness on ECs' attachment, orientation, proliferation, function, remodeling and dysfunction. The results demonstrate that stiffness of the AFSs, capable of providing topographical cues, is a crucial endothelium-protective microenvironmental factor by maintaining stable and quiescent endothelium with in vivo like orientation and strong cell-cell junctions. Stiffer AFSs exacerbated the disruption of endothelium integrity, the occurrence of endothelial-to-mesenchymal transition (EndMT), and the inflammation-induced activation in the endothelial monolayer. This study provides new insights into the understanding on how the stiffness of biomimicking anisotropic substrate regulates the structural and functional integrity of the in vivo like endothelial monolayer, and offers essential designing parameters in engineering biomimicking small-diameter vascular grafts for the regeneration of viable blood vessels. STATEMENT OF SIGNIFICANCE: In vascular tissue engineering, promoting endothelialization on scaffold surface has been considered as a paramount strategy to reduce post-implantation complications. Electrospun aligned fibers have been known to provide contact guidance effect in directing endothelial cells' oriented growth, however, whether the formed EC monolayer in 'correct' orientation shape is of 'correct' function hasn't been explored yet. Given the recognized important role of substrate stiffness in endothelial function, AFSs across physiologically relevant range of moduli (14.68-2141.72 MPa) while maintaining consistent surface chemistry and topographical features were employed to investigate the fiber stiffness effects on ECs function in anisotropic morphology. This study will provide more insightful perspectives in the physiologically remodeling progression of vascular endothelium and design of vascular scaffolds.
Collapse
|
16
|
McCallinhart PE, Cho Y, Sun Z, Ghadiali S, Meininger GA, Trask AJ. Reduced stiffness and augmented traction force in type 2 diabetic coronary microvascular smooth muscle. Am J Physiol Heart Circ Physiol 2020; 318:H1410-H1419. [PMID: 32357115 DOI: 10.1152/ajpheart.00542.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetic (T2DM) coronary resistance microvessels (CRMs) undergo inward hypertrophic remodeling associated with reduced stiffness and reduced coronary blood flow in both mice and pig models. Since reduced stiffness does not appear to be due to functional changes in the extracellular matrix, this study tested the hypothesis that decreased CRM stiffness in T2DM is due to reduced vascular smooth muscle cell (VSMC) stiffness, which impacts the traction force generated by VSMCs. Atomic force microscopy (AFM) and traction force microscopy (TFM) were conducted on primary low-passage CRM VSMCs from normal Db/db and T2DM db/db mice in addition to low-passage normal and T2DM deidentified human coronary VSMCs. Elastic modulus was reduced in T2DM mouse and human coronary VSMCs compared with normal (mouse: Db/db 6.84 ± 0.34 kPa vs. db/db 4.70 ± 0.19 kPa, P < 0.0001; human: normal 3.59 ± 0.38 kPa vs. T2DM 2.61 ± 0.35 kPa, P = 0.05). Both mouse and human T2DM coronary microvascular VSMCs were less adhesive to fibronectin compared with normal. T2DM db/db coronary VSMCs generated enhanced traction force by TFM (control 692 ± 67 Pa vs. db/db 1,507 ± 207 Pa; P < 0.01). Immunoblot analysis showed that T2DM human coronary VSMCs expressed reduced β1-integrin and elevated β3-integrin (control 1.00 ± 0.06 vs. T2DM 0.62 ± 0.14, P < 0.05 and control 1.00 ± 0.49 vs. T2DM 3.39 ± 1.05, P = 0.06, respectively). These data show that T2DM coronary VSMCs are less stiff and less adhesive to fibronectin but are able to generate enhanced force, corroborating previously published computational findings that decreasing cellular stiffness increases the cells' ability to generate higher traction force.NEW & NOTEWORTHY We show here that a potential causative factor for reduced diabetic coronary microvascular stiffness is the direct reduction in coronary vascular smooth muscle cell stiffness. These cells were also able to generate enhanced traction force, validating previously published computational models. Collectively, these data show that smooth muscle cell stiffness can be a contributor to overall tissue stiffness in the coronary microcirculation, and this may be a novel area of interest for therapeutic targets.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Youjin Cho
- Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
17
|
Tarafder S, Gulko J, Kim D, Sim KH, Gutman S, Yang J, Cook JL, Lee CH. Effect of dose and release rate of CTGF and TGFβ3 on avascular meniscus healing. J Orthop Res 2019; 37:1555-1562. [PMID: 30908692 PMCID: PMC6601329 DOI: 10.1002/jor.24287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Meniscus tears in the avascular region rarely functionally heal due to poor intrinsic healing capacity, frequently resulting in tear propagation, followed by meniscus deterioration. Recently, we have reported that time-controlled application of connective tissue growth factor (CTGF) and transforming tissue growth factor β3 (TGFβ3) significantly improved healing of avascular meniscus tears by inducing recruitment and step-wise fibrocartilaginous differentiation of mesenchymal stem/progenitor cells (MSCs). In this study, we investigated effects of the dose of CTGF and the release rate of TGFβ3 on avascular meniscus healing in our existing explant model. Our hypothesis was that dose and release rate of CTGF and TGFβ3 are contributing factors for functional outcome in avascular meniscus healing by stem cell recruitment. Low (100 ng/ml) and high (1,000 ng/ml) doses of CTGF as well as fast (0.46 ± 0.2 ng/day) and slow (0.29 ± 0.1 ng/day) release rates of TGFβ3 were applied to our established meniscus explant model for meniscus tears in the inner-third avascular region. The release rate of TGFβ3 was controlled by varying compositions of poly(lactic-co-glycolic acids) (PLGA) microspheres. The meniscus explants were then cultured for 8 weeks on top of mesenchymal stem/progenitor cells (MSCs). Among the tested combinations, we found that a high CTGF dose and slow TGFβ3 release are most effective for integrated healing of avascular meniscus, demonstrating improvements in alignment of collagen fibers, fibrocartilaginous matrix elaboration and mechanical properties. This study may represent an important step toward the development of a regenerative therapy to improve healing of avascular meniscus tears by stem cell recruitment. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1555-1562, 2019.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, 630 W. 168 St. — VC12-230, New York 10032, New York
| | - Joseph Gulko
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, 630 W. 168 St. — VC12-230, New York 10032, New York
| | - Daniel Kim
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, 630 W. 168 St. — VC12-230, New York 10032, New York
| | - Kun Hee Sim
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, 630 W. 168 St. — VC12-230, New York 10032, New York
| | - Shawn Gutman
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, 630 W. 168 St. — VC12-230, New York 10032, New York
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park 16802-4400, Pennsylvania
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia 65212, Missouri
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Columbia University Irving Medical Center, 630 W. 168 St. — VC12-230, New York 10032, New York
| |
Collapse
|
18
|
Birjiniuk J, Veeraswamy RK, Oshinski JN, Ku DN. Intermediate fenestrations reduce flow reversal in a silicone model of Stanford Type B aortic dissection. J Biomech 2019; 93:101-110. [PMID: 31326118 DOI: 10.1016/j.jbiomech.2019.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022]
Abstract
Pulsatile, three-dimensional hemodynamic forces influence thrombosis, and may dictate progression of aortic dissection. Intimal flap fenestration and blood pressure are clinically relevant variables in this pathology, yet their effects on dissection hemodynamics are poorly understood. The goal of this study was to characterize these effects on flow in dissection models to better guide interventions to prevent aneurysm formation and false lumen flow. Silicone models of aortic dissection with mobile intimal flap were fabricated based on patient images and installed in a flow loop with pulsatile flow. Flow fields were acquired via 4-dimensional flow MRI, allowing for quantification and visualization of relevant fluid mechanics. Pulsatile vortices and jet-like structures were observed at fenestrations immediately past the proximal entry tear. False lumen flow reversal was significantly reduced with the addition of fenestrations, from 19.2 ± 3.3% in two-tear dissections to 4.67 ± 1.5% and 4.87 ± 1.7% with each subsequent fenestration. In contrast, increasing pressure did not cause appreciable differences in flow rates, flow reversal, and vortex formation. Increasing the number of intermediate tears decreased flow reversal as compared to two-tear dissection, which may prevent false lumen thrombosis, promoting persistent false lumen flow. Vortices were noted to result from transluminal fluid motion at distal tear sites, which may lead to degeneration of the opposing wall. Increasing pressure did not affect measured flow patterns, but may contribute to stress concentrations in the aortic wall. The functional and anatomic assessment of disease with 4D MRI may aid in stratifying patient risk in this population.
Collapse
Affiliation(s)
- Joav Birjiniuk
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0405, United States.
| | - Ravi K Veeraswamy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, 114 Doughty Street Suite BM 654 MSC 295, Charleston, SC 29425, United States
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0405, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton Road NE Suite D112, Atlanta, GA 30322, United States
| | - David N Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0405, United States; Division of Vascular Surgery, Joseph B. Whitehead Department of Surgery, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA 30322, United States
| |
Collapse
|
19
|
Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1772-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Rafuse M, Xu X, Stenmark K, Neu CP, Yin X, Tan W. Layer-specific arterial micromechanics and microstructure: Influences of age, anatomical location, and processing technique. J Biomech 2019; 88:113-121. [PMID: 31010593 DOI: 10.1016/j.jbiomech.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/24/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023]
Abstract
The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1-10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.
Collapse
Affiliation(s)
- Michael Rafuse
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xiaobo Yin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
21
|
Grant R, Hay D, Callanan A. From scaffold to structure: the synthetic production of cell derived extracellular matrix for liver tissue engineering. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aacbe1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Tarafder S, Gulko J, Sim KH, Yang J, Cook JL, Lee CH. Engineered Healing of Avascular Meniscus Tears by Stem Cell Recruitment. Sci Rep 2018; 8:8150. [PMID: 29802356 PMCID: PMC5970239 DOI: 10.1038/s41598-018-26545-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone. Upon injury, the outer zone of the meniscus can be repaired and expected to functionally heal but tears in the inner avascular region are unlikely to heal. To date, no regenerative therapy has been proven successful for consistently promoting healing in inner-zone meniscus tears. Here, we show that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) can induce seamless healing of avascular meniscus tears by inducing recruitment and step-wise differentiation of synovial mesenchymal stem/progenitor cells (syMSCs). A short-term release of CTGF, a selected chemotactic and profibrogenic cue, successfully recruited syMSCs into the incision site and formed an integrated fibrous matrix. Sustain-released TGFβ3 then led to a remodeling of the intermediate fibrous matrix into fibrocartilaginous matrix, fully integrating incised meniscal tissues with improved functional properties. Our data may represent a novel clinically relevant strategy to improve healing of avascular meniscus tears by recruiting endogenous stem/progenitor cells.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Joseph Gulko
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Kun Hee Sim
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, Pennsylvania, PA, 16802-4400, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics Missouri Orthopaedic institute, University of Missouri, 1100 Virginia Avenue, Columbia, Missouri, 65212, USA
| | - Chang H Lee
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. NANOMATERIALS 2018; 8:nano8050296. [PMID: 29751516 PMCID: PMC5977310 DOI: 10.3390/nano8050296] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
Abstract
In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.
Collapse
|
24
|
Mattson JM, Zhang Y. Structural and Functional Differences Between Porcine Aorta and Vena Cava. J Biomech Eng 2018; 139:2612941. [PMID: 28303272 DOI: 10.1115/1.4036261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Elastin and collagen fibers are the major load-bearing extracellular matrix (ECM) constituents of the vascular wall. Arteries function differently than veins in the circulatory system; however as a result from several treatment options, veins are subjected to sudden elevated arterial pressure. It is thus important to recognize the fundamental structure and function differences between a vein and an artery. Our research compared the relationship between biaxial mechanical function and ECM structure of porcine thoracic aorta and inferior vena cava. Our study suggests that aorta contains slightly more elastin than collagen due to the cyclical extensibility, but vena cava contains almost four times more collagen than elastin to maintain integrity. Furthermore, multiphoton imaging of vena cava showed longitudinally oriented elastin and circumferentially oriented collagen that is recruited at supraphysiologic stress, but low levels of strain. However in aorta, elastin is distributed uniformly, and the primarily circumferentially oriented collagen is recruited at higher levels of strain than vena cava. These structural observations support the functional finding that vena cava is highly anisotropic with the longitude being more compliant and the circumference stiffening substantially at low levels of strain. Overall, our research demonstrates that fiber distributions and recruitment should be considered in addition to relative collagen and elastin contents. Also, the importance of accounting for the structural and functional differences between arteries and veins should be taken into account when considering disease treatment options.
Collapse
Affiliation(s)
- Jeffrey M Mattson
- Department of Mechanical Engineering, Boston University, Boston, MA 02215 e-mail:
| | - Yanhang Zhang
- Department of Mechanical Engineering, Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215 e-mail:
| |
Collapse
|
25
|
SUN XINGDONG, FAN ZUNQIANG, ZHANG SHIZHONG, WU DI, ZHONG YUEXI, ZHAO HONGWEI, REN LUQUAN. A DAMAGE MECHANISM OF MICRO-PARTICLES ON ARTICULAR CARTILAGE OF KNEE BY NANOINDENTATION. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519417501160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Articular cartilage plays an important role in organism due to its excellent shock absorbing and buffering functions. Increasing problems about damages of articular cartilage are making a great deal of trouble to human beings. The damage mechanism of articular cartilage is very complicated and keeps unclear. In this research, the damage mechanism was investigated from the perspective of micro-particle attrition by nanoindentation experiments. The micro-particle was simulated by the indenter in experiments. The experimental results demonstrated that the load from micro-particle could not maintain when water content was adequate. However, the load could maintain and increase after dehydration. It was found that the partial surface of articular cartilage was crushed and adhered to the indenter. The plastic energy was bigger than elastic energy in the nanoindentation process. Therefore, water content was the crucial factor to protect the articular cartilage from damage. And the recurring partial dehydration owing to ongoing compression enhanced the damage of micro-particle to articular cartilage. This research may provide a new understanding to the damage mechanism of articular cartilage.
Collapse
Affiliation(s)
- XINGDONG SUN
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, P. R. China
| | - ZUNQIANG FAN
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, P. R. China
| | - SHIZHONG ZHANG
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, P. R. China
| | - DI WU
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, P. R. China
| | - YUEXI ZHONG
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, P. R. China
| | - HONGWEI ZHAO
- School of Mechanical Science and Engineering, Jilin University, Changchun 130025, P. R. China
| | - LUQUAN REN
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, P. R. China
| |
Collapse
|
26
|
Abstract
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Collapse
Affiliation(s)
- Daniel L Marks
- Department of Electrical and Computer Engineering, Duke University, 101 Science Drive, Durham NC 27708, United States of America
| | | | | |
Collapse
|
27
|
Maji D, Das S. Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies. J Biomed Mater Res A 2017; 106:725-737. [PMID: 29094469 DOI: 10.1002/jbm.a.36283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/15/2017] [Accepted: 10/26/2017] [Indexed: 11/08/2022]
Abstract
Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018.
Collapse
Affiliation(s)
- Debashis Maji
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), VIT University, Vellore, Tamil Nadu, 632014, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
28
|
Dion GR, Benedict PA, Coelho PG, Amin MR, Branski RC. Impact of medialization laryngoplasty on dynamic nanomechanical vocal fold structure properties. Laryngoscope 2017; 128:1163-1169. [PMID: 28990693 DOI: 10.1002/lary.26963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVES/HYPOTHESIS Although the primary goal of medialization laryngoplasty is to improve glottic closure, implant placement is also likely to alter the biomechanical properties of the vocal fold (VF). We sought to employ novel, nanoscale technology to quantify these properties following medialization based on the hypothesis that different medialization materials will likely yield differential biomechanical effects. STUDY DESIGN Ex vivo. METHODS Nine pig larynges were divided into three groups: control, Silastic (Dow Corning, Midland, Michigan, U.S.A.) block medialization, or Gore-Tex (W.L. Gore & Associates, Newark, Delaware) medialization. Laryngoplasty was performed on excised, intact larynges. The larynges were then bisected in the sagittal plane and each subjected to dynamic nanomechanical analysis (nano-DMA) at nine locations using a 250-μm flat-tip punch and frequency sweep-load profile across the free edge of the VF and inferiorly along the conus elasticus. RESULTS Silastic block and Gore-Tex implant introduced increased storage and loss moduli. Overall, storage moduli mean (maximum) increased from 38 kilopascals (kPa) (119) to 72 kPa (422) and 129 kPa (978) in control, Gore-Tex, and Silastic implants, respectively. Similarly, loss moduli increased from 13 kPa (43) to 22 kPa (201) and 31 kPa (165), respectively. Moduli values varied widely by location in the Silastic block and Gore-Tex groups. At the free VF edge, mean (maximum) storage moduli were lowest in the Gore-Tex group, 20 kPa (44); compared to control, 34.5 kPa (86); and Silastic, 157.9 kPa (978), with similar loss and complex moduli trends. CONCLUSION Medialization laryngoplasty altered VF structure biomechanical properties; Silastic and Gore-Tex implants differentially impact these properties. LEVEL OF EVIDENCE NA. Laryngoscope, 128:1163-1169, 2018.
Collapse
Affiliation(s)
- Gregory R Dion
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine
- Department of Otolaryngology-Head and Neck Surgery, Brooke Army Medical Center, Fort Sam Houston, Texas, U.S.A
| | - Peter A Benedict
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York
| | - Milan R Amin
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine
| |
Collapse
|
29
|
Grant R, Hay DC, Callanan A. A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering. Tissue Eng Part A 2017; 23:650-662. [PMID: 28437180 DOI: 10.1089/ten.tea.2016.0419] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Liver transplant is the only treatment option for patients with end-stage liver failure, however, there are too few donor livers available for transplant. Whole organ tissue engineering presents a potential solution to the problem of rapidly escalating donor liver shortages worldwide. A major challenge for liver tissue engineers is the creation of a hepatocyte microenvironment; a niche in which liver cells can survive and function optimally. While polymers and decellularized tissues pose an attractive option for scaffold manufacturing, neither alone has thus far proved sufficient. This study exploited cell's native extracellular matrix (ECM) producing capabilities using two different histone deacetylase inhibitors, and combined these with the customizability and reproducibility of electrospun polymer scaffolds to produce a "best of both worlds" niche microenvironment for hepatocytes. The resulting hybrid poly-capro-lactone (PCL)-ECM scaffolds were validated using HepG2 hepatocytes. The hybrid PCL-ECM scaffolds maintained hepatocyte growth and function, as evidenced by metabolic activity and DNA quantitation. Mechanical testing revealed little significant difference between scaffolds, indicating that cells were responding to a biochemical and topographical profile rather than mechanical changes. Immunohistochemistry showed that the biochemical profile of the drug-derived and nondrug-derived ECMs differed in ratio of Collagen I, Laminin, and Fibronectin. Furthermore, the hybrid PCL-ECM scaffolds influence the gene expression profile of the HepG2s drastically; with expression of Albumin, Cytochrome P450 Family 1 Subfamily A Polypeptide 1, Cytochrome P450 Family 1 Subfamily A Polypeptide 2, Cytochrome P450 Family 3 Subfamily A Polypeptide 4, Fibronectin, Collagen I, and Collagen IV undergoing significant changes. Our results demonstrate that drug-induced hybrid PCL-ECM scaffolds provide a viable, translatable platform for creating a niche microenvironment for hepatocytes, supporting in vivo phenotype and function. These scaffolds offer great potential for tissue engineering and regenerative medicine strategies for whole organ tissue engineering.
Collapse
Affiliation(s)
- Rhiannon Grant
- 1 Institute for Bioengineering, School of Engineering, University of Edinburgh , Edinburgh, United Kingdom
| | - David C Hay
- 2 MRC Scottish Centre for Regenerative Medicine, University of Edinburgh , Edinburgh, United Kingdom
| | - Anthony Callanan
- 1 Institute for Bioengineering, School of Engineering, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
30
|
Shanker A, Li C, Kim GH, Gidley D, Pipe KP, Kim J. High thermal conductivity in electrostatically engineered amorphous polymers. SCIENCE ADVANCES 2017; 3:e1700342. [PMID: 28782022 PMCID: PMC5533546 DOI: 10.1126/sciadv.1700342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/26/2017] [Indexed: 05/03/2023]
Abstract
High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m-1 K-1). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m-1 K-1, which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers.
Collapse
Affiliation(s)
- Apoorv Shanker
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2800, USA
| | - Chen Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109–2125, USA
| | - Gun-Ho Kim
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109–2125, USA
- Department of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2117, USA
| | - David Gidley
- Department of Physics, University of Michigan, Ann Arbor, MI 48109–1040, USA
| | - Kevin P. Pipe
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109–2125, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122, USA
- Corresponding author. (K.P.P.); (J.K.)
| | - Jinsang Kim
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2800, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2117, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109–1055, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109–2136, USA
- Corresponding author. (K.P.P.); (J.K.)
| |
Collapse
|
31
|
Blackmon RL, Sandhu R, Chapman BS, Casbas-Hernandez P, Tracy JB, Troester MA, Oldenburg AL. Imaging Extracellular Matrix Remodeling In Vitro by Diffusion-Sensitive Optical Coherence Tomography. Biophys J 2017; 110:1858-1868. [PMID: 27119645 DOI: 10.1016/j.bpj.2016.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/03/2016] [Accepted: 03/07/2016] [Indexed: 01/06/2023] Open
Abstract
The mammary gland extracellular matrix (ECM) is comprised of biopolymers, primarily collagen I, that are created and maintained by stromal fibroblasts. ECM remodeling by fibroblasts results in changes in ECM fiber spacing (pores) that have been shown to play a critical role in the aggressiveness of breast cancer. However, minimally invasive methods to measure the spatial distribution of ECM pore areas within tissues and in vitro 3D culture models are currently lacking. We introduce diffusion-sensitive optical coherence tomography (DS-OCT) to image the nanoscale porosity of ECM by sensing weakly constrained diffusion of gold nanorods (GNRs). DS-OCT combines the principles of low-coherence interferometry and heterodyne dynamic light scattering. By collecting co- and cross-polarized light backscattered from GNRs within tissue culture, the ensemble-averaged translational self-diffusion rate, DT, of GNRs is resolved within ∼3 coherence volumes (10 × 5 μm, x × z). As GNRs are slowed by intermittent collisions with ECM fibers, DT is sensitive to ECM porosity on the size scale of their hydrodynamic diameter (∼46 nm). Here, we validate the utility of DS-OCT using pure collagen I gels and 3D mammary fibroblast cultures seeded in collagen/Matrigel, and associate differences in artificial ECM pore areas with gel concentration and cell seed density. Across all samples, DT was highly correlated with pore area obtained by scanning electron microscopy (R(2) = 0.968). We also demonstrate that DS-OCT can accurately map the spatial heterogeneity of layered samples. Importantly, DS-OCT of 3D mammary fibroblast cultures revealed the impact of fibroblast remodeling, where the spatial heterogeneity of matrix porosity was found to increase with cell density. This provides an unprecedented view into nanoscale changes in artificial ECM porosity over effective pore diameters ranging from ∼43 to 360 nm using a micron-scale optical imaging technique. In combination with the topical deposition of GNRs, the minimally invasive nature of DS-OCT makes this a promising technology for studying tissue remodeling processes.
Collapse
Affiliation(s)
- Richard L Blackmon
- Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rupninder Sandhu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brian S Chapman
- Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina
| | | | - Joseph B Tracy
- Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amy L Oldenburg
- Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
32
|
Madsen CD, Cox TR. Relative Stiffness Measurements of Tumour Tissues by Shear Rheology. Bio Protoc 2017; 7:e2265. [PMID: 34541251 DOI: 10.21769/bioprotoc.2265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/04/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
The microenvironment of solid tumours is a critical contributor to the progression of tumours and offers a promising target for therapeutic intervention (Cox and Erler, 2011; Barker et al., 2012 ; Cox et al., 2016; Cox and Erler, 2016). The properties of the tumour microenvironment vary significantly from that of the original tissue in both biochemistry and biomechanics. At present, the complex interplay between the biomechanical properties of the microenvironment and tumour cell phenotype is under intense investigation. The ability to measure the biomechanical properties of tumour samples from cancer models will increase our understanding of their importance in solid tumour biology. Here we report a simple method to measure the viscoelastic properties of tumour specimens using a controlled strain rotational rheometer.
Collapse
Affiliation(s)
- Chris D Madsen
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| |
Collapse
|
33
|
Dion GR, Coelho PG, Teng S, Janal MN, Amin MR, Branski RC. Dynamic nanomechanical analysis of the vocal fold structure in excised larynges. Laryngoscope 2016; 127:E225-E230. [PMID: 27873325 DOI: 10.1002/lary.26410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/27/2016] [Accepted: 10/10/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Quantification of clinical outcomes after vocal fold (VF) interventions is challenging with current technology. High-speed digital imaging and optical coherence tomography (OCT) of excised larynges assess intact laryngeal function, but do not provide critical biomechanical information. We developed a protocol to quantify tissue properties in intact, excised VFs using dynamic nanomechanical analysis (nano-DMA) to obtain precise biomechanical properties in the micrometer scale. STUDY DESIGN Experimental animal study. METHODS Three pig larynges were bisected in the sagittal plane, maintaining an intact anterior commissure, and subjected to nano-DMA at nine locations with a 250-μm flat-tip punch and frequency sweep load profile (10-105 Hz, 1,000 μN peak force) across the free edge of the VF and inferiorly along the conus elasticus. RESULTS Storage, loss, and complex moduli increased inferiorly from the free edge. Storage moduli increased from a mean of 32.3 kPa (range, 6.5-55.38 kPa) at the free edge to 46.3kPa (range, 7.4-71.6) 5 mm below the free edge, and 71.4 kPa (range, 33.7-112 kPa) 1 cm below the free edge. Comparable values were 11.6 kPa (range, 5.0-20.0 kPa), 16.7 kPa (range, 5.7-26.8 kPa), and 22.6 kPa (range, 9.7-38.0 kPa) for loss modulus, and 35.7 kPa (range, 14.4-56.4 kPa), 50.1 kPa (range, 18.7-72.8 kPa), and 75.4 kPa (range, 42.0-116.0 kPa) for complex modulus. Another larynx repeatedly frozen and thawed during technique development had similarly increased storage, loss, and complex modulus trends across locations. CONCLUSIONS Nano-DMA of the intact hemilarynx provides a platform for quantification of biomechanical responses to a myriad of therapeutic interventions to complement data from high-speed imaging and OCT. LEVEL OF EVIDENCE NA Laryngoscope, 127:E225-E230, 2017.
Collapse
Affiliation(s)
- Gregory R Dion
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, U.S.A
| | - Stephanie Teng
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, New York, U.S.A
| | - Milan R Amin
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|
34
|
Frequency-modulated atomic force microscopy localises viscoelastic remodelling in the ageing sheep aorta. J Mech Behav Biomed Mater 2016; 64:10-7. [PMID: 27479890 PMCID: PMC5020410 DOI: 10.1016/j.jmbbm.2016.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
Age-related aortic stiffening is associated with cardiovascular diseases such as heart failure. The mechanical functions of the main structural components of the aorta, such as collagen and elastin, are determined in part by their organisation at the micrometer length scale. With age and disease both components undergo aberrant remodelling, hence, there is a need for accurate characterisation of the biomechanical properties at this length scale. In this study we used a frequency-modulated atomic force microscopy (FM-AFM) technique on a model of ageing in female sheep aorta (young: ~18 months, old: >8 years) to measure the micromechanical properties of the medial layer of the ascending aorta. The novelty of our FM-AFM method, operated at 30 kHz, is that it is non-contact and can be performed on a conventional AFM using the ׳cantilever tune’ mode, with a spatial (areal) resolution of around 1.6 μm2. We found significant changes in the elastic and viscoelastic properties within the medial lamellar unit (elastic lamellae and adjacent inter-lamellar space) with age. In particular, there was an increase in elastic modulus (Young; geometric mean (geometric SD)=42.9 (2.26) kPa, Old=113.9 (2.57) kPa, P<0.0001), G′ and G″ (storage and loss modulus respectively) (Young; G′=14.3 (2.26) kPa, Old G′=38.0 (2.57) kPa, P<0.0001; Young; G″=14.5 (2.56) kPa, Old G″=32.8 (2.52) kPa, P<0.0001). The trends observed in the elastic properties with FM-AFM matched those we have previously found using scanning acoustic microscopy (SAM). The utility of the FM-AFM method is that it does not require custom AFM hardware and can be used to simultaneously determine the elastic and viscoelastic behaviour of a biological sample.
Collapse
|
35
|
Birjiniuk J, Ruddy JM, Iffrig E, Henry TS, Leshnower BG, Oshinski JN, Ku DN, Veeraswamy RK. Development and testing of a silicone in vitro model of descending aortic dissection. J Surg Res 2015; 198:502-7. [PMID: 26001674 DOI: 10.1016/j.jss.2015.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Stanford type B dissection of the descending aorta is a potentially fatal condition that is poorly understood. Limited scientific understanding of the role of current interventional techniques, as well as heterogeneity in the condition, contributes to lack of consensus as to the most effective treatment strategy. This study introduces an anatomically accurate model for investigating aortic dissection in a laboratory setting. MATERIALS AND METHODS A silicone model was fabricated and filled with fluid to mimic human blood. Flow was established, and the model was scanned using a four-dimensional flow magnetic resonance imaging protocol. On analysis, luminal flow rates were quantified by multiplying local velocity by included area. RESULTS The upstream total flow was compared with the sum of the flow in the true and false lumens. The two values were within the margin of error. Furthermore, flow rates matched with the relative areas of each compartment. CONCLUSIONS These results validate our model as a novel and unique system that mimics a type B aortic dissection and will allow for more sophisticated analysis of dissection physiology in future studies.
Collapse
Affiliation(s)
- Joav Birjiniuk
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth Iffrig
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Travis S Henry
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Bradley G Leshnower
- Division of Cardiothoracic Surgery, Joseph B. Whitehead Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - David N Ku
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi K Veeraswamy
- Division of Vascular Surgery, Joseph B. Whitehead Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
36
|
Coelho PG, Sobieraj M, Tovar N, Andrews K, Paul B, Govil N, Jeswani S, Amin MR, Janal MN, Branski RC. Preliminary investigation of a novel technique for the quantification of the ex vivo biomechanical properties of the vocal folds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:333-6. [PMID: 25491836 DOI: 10.1016/j.msec.2014.08.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 07/21/2014] [Accepted: 08/29/2014] [Indexed: 11/25/2022]
Abstract
The human vocal fold is a complex structure made up of distinct layers that vary in cellular and extracellular matrix composition. Elucidating the mechanical properties of vocal fold tissues is critical for the study of both acoustics and biomechanics of voice production, and essential in the context of vocal fold injury and repair. Both quasistatic and dynamic behavior in the 10-300 Hz range was explored in this preliminary investigation. The resultant properties of the lamina propria were compared to that of the nearby thyroarytenoid muscle. Er, quantified via quasistatic testing of the lamina propria, was 609±138 MPa and 758±142 MPa in the muscle (p=0.001). E' of the lamina propria as determined by dynamic testing was 790±526 MPa compared to 1061±928 MPa in the muscle. Differences in E' did not achieve statistical significance via linear mixed effect modeling between the tissue types (p=0.95). In addition, frequency dependence was not significant (p=0.18).
Collapse
Affiliation(s)
- Paulo G Coelho
- Biomaterials and Biomimetics, College of Dentistry, New York University, New York, NY, USA.
| | - Michael Sobieraj
- Orthopedic Surgery, Hospital for Joint Diseases, New York University, New York, NY, USA
| | - Nick Tovar
- Biomaterials and Biomimetics, College of Dentistry, New York University, New York, NY, USA
| | - Kenneth Andrews
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, USA
| | - Benjamin Paul
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, USA
| | - Nandini Govil
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, USA
| | - Seema Jeswani
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, USA
| | - Milan R Amin
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, USA
| | - Malvin N Janal
- Departments of Public Health and Epidemiology, New York University, New York, NY, USA
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Teng W, Long TJ, Zhang Q, Yao K, Shen TT, Ratner BD. A tough, precision-porous hydrogel scaffold: Ophthalmologic applications. Biomaterials 2014; 35:8916-26. [DOI: 10.1016/j.biomaterials.2014.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
|
38
|
Wang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, Mitov G, Müller WEG. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 2014; 67:292-304. [PMID: 25088401 DOI: 10.1016/j.bone.2014.07.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 02/01/2023]
Abstract
Biosilica, a biocompatible, natural inorganic polymer that is formed by an enzymatic, silicatein-mediated reaction in siliceous sponges to build up their inorganic skeleton, has been shown to be morphogenetically active and to induce mineralization of human osteoblast-like cells (SaOS-2) in vitro. In the present study, we prepared beads (microspheres) by encapsulation of β-tricalcium phosphate [β-TCP], either alone (control) or supplemented with silica or silicatein, into the biodegradable copolymer poly(d,l-lactide-co-glycolide) [PLGA]. Under the conditions used, ≈5% β-TCP, ≈9% silica, and 0.32μg/mg of silicatein were entrapped into the PLGA microspheres (diameter≈800μm). Determination of the biocompatibility of the β-TCP microspheres, supplemented with silica or silicatein, revealed no toxicity in the MTT based cell viability assay using SaOS-2 cells. The adherence of SaOS-2 cells to the surface of silica-containing microspheres was higher than for microspheres, containing only β-TCP. In addition, the silica-containing β-TCP microspheres and even more pronounced, a 1:1 mixture of microspheres containing β-TCP and silica, and β-TCP and silicatein, were found to strongly enhance the mineral deposition by SaOS-2 cells. Using these microspheres, first animal experiments with silica/biosilica were performed in female, adult New Zealand White rabbits to study the effect of the inorganic polymer on bone regeneration in vivo. The microspheres were implanted into 5mm thick holes, drilled into the femur of the animals, applying a bilateral comparison study design (3 test groups with 4-8 animals each). The control implant on one of the two hind legs contained microspheres with only β-TCP, while the test implant on the corresponding leg consisted either of microspheres containing β-TCP and silica, or a 1:1 mixture of microspheres, supplemented with β-TCP and silica, and β-TCP and silicatein. The results revealed that tissue/bone sections of silica containing implants and implants, composed of a 1:1 mixture of silica-containing microspheres and silicatein-containing microspheres, show an enhanced regeneration of bone tissue around the microspheres, compared to the control implants containing only β-TCP. The formation of new bone induced by the microspheres is also evident from measurements of the stiffness/reduced Young's modulus of the regenerated bone tissue. The reduced Young's modulus of the regenerating bone tissue around the implants was markedly higher for the silica-containing microspheres (1.1MPa), and even more for the 1:1 mixture of the silica- and silicatein-containing microspheres (1.4MPa), compared to the β-TCP microsphere controls (0.4MPa). We propose that based on their morphogenetic activity on bone-forming cells in vitro and the results of the animal experiments presented here, silica/biosilica-based scaffolds are promising materials for bone repair/regeneration.
Collapse
Affiliation(s)
- Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Dajie, CN-Beijing 100037, China.
| | - Florian G Draenert
- Clinic for Oral & Maxillofacial Surgery, University of Marburg, Baldingerstr., D-35033 Marburg, Germany
| | - Olga Albert
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55129 Mainz, Germany; Medical Clinic, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Gergo Mitov
- Department of Medical Microbiology, Medical University Medical Faculty, Zdrave 2 str., BG-1431 Sofia, Bulgaria
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
39
|
Estrach S, Lee SA, Boulter E, Pisano S, Errante A, Tissot FS, Cailleteau L, Pons C, Ginsberg MH, Féral CC. CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction. Cancer Res 2014; 74:6878-89. [PMID: 25267066 DOI: 10.1158/0008-5472.can-14-0579] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD98hc (SLC3A2) is the heavy chain component of the dimeric transmembrane glycoprotein CD98, which comprises the large neutral amino acid transporter LAT1 (SLC7A5) in cells. Overexpression of CD98hc occurs widely in cancer cells and is associated with poor prognosis clinically, but its exact contributions to tumorigenesis are uncertain. In this study, we showed that genetic deficiency of CD98hc protects against Ras-driven skin carcinogenesis. Deleting CD98hc after tumor induction was also sufficient to cause regression of existing tumors. Investigations into the basis for these effects defined two new functions of CD98hc that contribute to epithelial cancer beyond an intrinsic effect of CD98hc on tumor cell proliferation. First, CD98hc increased the stiffness of the tumor microenvironment. Second, CD98hc amplified the capacity of cells to respond to matrix rigidity, an essential factor in tumor development. Mechanistically, CD98hc mediated this stiffness sensing by increasing Rho kinase (ROCK) activity, resulting in increased transcription mediated by YAP/TAZ, a nuclear relay for mechanical signals. Our results suggest that CD98hc contributes to carcinogenesis by amplifying a positive feedback loop, which increases both extracellular matrix stiffness and resulting cellular responses. This work supports a rationale to explore the use of CD98hc inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. Avenir Team, University of Nice Sophia Antipolis, Nice, France
| | - Sin-Ae Lee
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Etienne Boulter
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. Avenir Team, University of Nice Sophia Antipolis, Nice, France
| | - Sabrina Pisano
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. AFM Core facility, University of Nice Sophia Antipolis, Nice, France
| | - Aurélia Errante
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. Avenir Team, University of Nice Sophia Antipolis, Nice, France
| | - Floriane S Tissot
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. Avenir Team, University of Nice Sophia Antipolis, Nice, France
| | - Laurence Cailleteau
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. Avenir Team, University of Nice Sophia Antipolis, Nice, France
| | - Catherine Pons
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. Avenir Team, University of Nice Sophia Antipolis, Nice, France
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Chloé C Féral
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Nice, France. Avenir Team, University of Nice Sophia Antipolis, Nice, France.
| |
Collapse
|
40
|
Chaterji S, Kim P, Choe SH, Tsui JH, Lam CH, Ho DS, Baker AB, Kim DH. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function. Tissue Eng Part A 2014; 20:2115-26. [PMID: 24694244 DOI: 10.1089/ten.tea.2013.0455] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vascular smooth muscle cells (vSMCs) retain the ability to undergo modulation in their phenotypic continuum, ranging from a mature contractile state to a proliferative, secretory state. vSMC differentiation is modulated by a complex array of microenvironmental cues, which include the biochemical milieu of the cells and the architecture and stiffness of the extracellular matrix. In this study, we demonstrate that by using UV-assisted capillary force lithography (CFL) to engineer a polyurethane substratum of defined nanotopography and stiffness, we can facilitate the differentiation of cultured vSMCs, reduce their inflammatory signature, and potentially promote the optimal functioning of the vSMC contractile and cytoskeletal machinery. Specifically, we found that the combination of medial tissue-like stiffness (11 MPa) and anisotropic nanotopography (ridge width_groove width_ridge height of 800_800_600 nm) resulted in significant upregulation of calponin, desmin, and smoothelin, in addition to the downregulation of intercellular adhesion molecule-1, tissue factor, interleukin-6, and monocyte chemoattractant protein-1. Further, our results allude to the mechanistic role of the RhoA/ROCK pathway and caveolin-1 in altered cellular mechanotransduction pathways via differential matrix nanotopography and stiffness. Notably, the nanopatterning of the stiffer substrata (1.1 GPa) resulted in the significant upregulation of RhoA, ROCK1, and ROCK2. This indicates that nanopatterning an 800_800_600 nm pattern on a stiff substratum may trigger the mechanical plasticity of vSMCs resulting in a hypercontractile vSMC phenotype, as observed in diabetes or hypertension. Given that matrix stiffness is an independent risk factor for cardiovascular disease and that CFL can create different matrix nanotopographic patterns with high pattern fidelity, we are poised to create a combinatorial library of arterial test beds, whether they are healthy, diseased, injured, or aged. Such high-throughput testing environments will pave the way for the evolution of the next generation of vascular scaffolds that can effectively crosstalk with the scaffold microenvironment and result in improved clinical outcomes.
Collapse
Affiliation(s)
- Somali Chaterji
- 1 Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin , Austin, Texas
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Akhtar R. In vitro characterisation of arterial stiffening: From the macro- to the nano-scale. Artery Res 2014. [DOI: 10.1016/j.artres.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
42
|
Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Ghosh P, Papadopoulos A, Muller-Delp JM, Delp MD. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J 2013; 27:2282-92. [PMID: 23457215 PMCID: PMC3659353 DOI: 10.1096/fj.12-222687] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/11/2013] [Indexed: 11/11/2022]
Abstract
Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 μm and GC: 215±5 μm) with no difference in medial wall thickness (SF: 12.4±1.6 μm; GC: 12.2±1.2 μm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.
Collapse
Affiliation(s)
| | - Mina Hanna
- Department of Mechanical and Aerospace Engineering
- Department of Applied Physiology and Kinesiology
| | - Bradley J. Behnke
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - John N. Stabley
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Robert T. Davis
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Judy M. Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA; and
| | - Michael D. Delp
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| |
Collapse
|
43
|
Grant CA, Twigg PC. Pseudostatic and dynamic nanomechanics of the tunica adventitia in elastic arteries using atomic force microscopy. ACS NANO 2013; 7:456-64. [PMID: 23241059 DOI: 10.1021/nn304508x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tunica adventitia, the outer layer of blood vessels, is an important structural feature, predominantly consisting of collagen fibrils. This study uses pseudostatic atomic force microscopy (AFM) nanoindentation at physiological conditions to show that the distribution of indentation modulus and viscous creep for the tunica adventitia of porcine aorta and pulmonary artery are distinct. Dynamic nanoindentation demonstrates that the viscous dissipation of the tunica adventitia of the aorta is greater than the pulmonary artery. We suggest that this mechanical property of the aortic adventitia is functionally advantageous due to the higher blood pressure within this vessel during the cardiac cycle. The effects on pulsatile deformation and dissipative energy losses are discussed.
Collapse
Affiliation(s)
- Colin A Grant
- Advanced Materials Engineering RKT Centre, School of Engineering, Design and Technology, University of Bradford, Bradford, Yorkshire BD7 1DP, UK
| | | |
Collapse
|
44
|
Rettler E, Hoeppener S, Sigusch BW, Schubert US. Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation. J Mater Chem B 2013; 1:2789-2806. [DOI: 10.1039/c3tb20120a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Schröder HC, Wang X, Manfrin A, Yu SH, Grebenjuk VA, Korzhev M, Wiens M, Schlossmacher U, Müller WEG. Acquisition of structure-guiding and structure-forming properties during maturation from the pro-silicatein to the silicatein form. J Biol Chem 2012; 287:22196-22205. [PMID: 22544742 PMCID: PMC3381181 DOI: 10.1074/jbc.m112.351486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/05/2012] [Indexed: 11/06/2022] Open
Abstract
Silicateins are the key enzymes involved in the enzymatic polycondensation of the inorganic scaffold of the skeletal elements of the siliceous sponges, the spicules. The gene encoding pro-silicatein is inserted into the pCold TF vector, comprising the gene for the bacterial trigger factor. This hybrid gene is expressed in Escherichia coli and the synthesized fusion protein is purified. The fusion protein is split into the single proteins with thrombin by cleavage of the linker sequence present between the two proteins. At 23 °C, the 87 kDa trigger factor-pro-silicatein fusion protein is cleaved to the 51 kDa trigger factor and the 35 kDa pro-silicatein. The cleavage process proceeds and results in the release of the 23 kDa mature silicatein, a process which very likely proceeds by autocatalysis. Almost in parallel with its formation, the mature enzyme precipitates as pure 23 kDa protein. When the precipitate is dissolved in an urea buffer, the solubilized protein displays its full enzymatic activity which is enhanced multi-fold in the presence of the silicatein interactor silintaphin-1 or of poly(ethylene glycol) (PEG). The biosilica product formed increases its compactness if silicatein is supplemented with silintaphin-1 or PEG. The elastic modulus of the silicatein-mediated biosilica product increases in parallel with the addition of silintaphin-1 and/or PEG from 17 MPa (silicatein) via 61 MPa (silicatein:silintaphin-1) to 101 MPa (silicatein:silintaphin-1 and PEG). These data show that the maturation process from the pro-silicatein state to the mature form is the crucial step during which silicatein acquires its structure-guiding and structure-forming properties.
Collapse
Affiliation(s)
- Heinz C. Schröder
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
- the National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China, and
| | - Alberto Manfrin
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shu-Hong Yu
- the The Cheung Kong Chair Professor, Division of Nanomaterials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Vlad A. Grebenjuk
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Michael Korzhev
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Matthias Wiens
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Ute Schlossmacher
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E. G. Müller
- From the ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
46
|
Zhao X, Akhtar R, Nijenhuis N, Wilkinson SJ, Murphy L, Ballestrem C, Sherratt MJ, Watson RE, Derby B. Multi-layer phase analysis: quantifying the elastic properties of soft tissues and live cells with ultra-high-frequency scanning acoustic microscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:610-20. [PMID: 22547273 PMCID: PMC3492756 DOI: 10.1109/tuffc.2012.2240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Scanning acoustic microscopy is potentially a powerful tool for characterizing the elastic properties of soft biological tissues and cells. In this paper, we present a method, multi-layer phase analysis (MLPA), which can be used to extract local speed of sound values, for both thin tissue sections mounted on glass slides and cultured cells grown on cell culture plastic, with a resolution close to 1 μm. The method exploits the phase information that is preserved in the interference between the acoustic wave reflected from the substrate surface and internal reflections from the acoustic lens. In practice, a stack of acoustic images are captured beginning with the acoustic focal point 4 μm above the substrate surface and moving down in 0.1-μm increments. Scanning parameters, such as acoustic wave frequency and gate position, were adjusted to obtain optimal phase and lateral resolution. The data were processed offline to extract the phase information with the contribution of any inclination in the substrate removed before the calculation of sound speed. Here, we apply this approach to both skin sections and fibroblast cells, and compare our data with the V(f) (voltage versus frequency) method that has previously been used for characterization of soft tissues and cells. Compared with the V(f) method, the MPLA method not only reduces signal noise but can be implemented without making a priori assumptions with regards to tissue or cell parameters.
Collapse
Affiliation(s)
- Xuegen Zhao
- School of Materials, The University of Manchester UK ()
| | - Riaz Akhtar
- School of Materials and Cardiovascular Sciences Research Group (Manchester Academic Health Science Centre), The University of Manchester UK
| | - Nadja Nijenhuis
- Faculty of Life Sciences, Michael Smith Building, Oxford Road,Manchester,M13 9PT, The University of Manchester UK ()
| | | | - Lilli Murphy
- School of Materials, The University of Manchester UK ()
| | - Christoph Ballestrem
- Faculty of Life Sciences, Michael Smith Building, Oxford Road,Manchester,M13 9PT, The University of Manchester UK ()
| | - Michael. J. Sherratt
- Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, The University of Manchester UK ()
| | - Rachel E.B. Watson
- Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre,, The University of Manchester UK ()
| | - Brian Derby
- School of Materials, The University of Manchester, UK ()
| |
Collapse
|
47
|
Campbell AC, Klapetek P, Valtr M, Buršíková V. Development of reference materials for the investigation of local mechanical properties at the nanoscale. SURF INTERFACE ANAL 2012. [DOI: 10.1002/sia.4850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Petr Klapetek
- Department of Nanometrology; Czech Metrology Institute; Okružní 31 638 00 Brno Czech Republic
| | - Miroslav Valtr
- Department of Nanometrology; Czech Metrology Institute; Okružní 31 638 00 Brno Czech Republic
| | - Vilma Buršíková
- Department of Physical Electronics, Faculty of Science; Masaryk University; Kotlářská 2 611 37 Brno Czech Republic
| |
Collapse
|
48
|
Hemmasizadeh A, Darvish K, Autieri M. Characterization of changes to the mechanical properties of arteries due to cold storage using nanoindentation tests. Ann Biomed Eng 2012; 40:1434-42. [PMID: 22230967 DOI: 10.1007/s10439-011-0506-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022]
Abstract
Understanding the effect of cold storage on arterial tissues is essential in various clinical and experimental practices. Cold storage techniques could significantly affect the post-cryosurgical or post-cryopreservation mechanical behavior of arteries. Previously, arteries were considered homogenous and elastic and the changes in material properties due to cold storage were inconclusive. In this study, using a custom-made nanoindentation device, changes to the local viscoelastic properties of porcine thoracic aorta wall due to three common storage temperatures (+4, -20, and -80 °C) within 24 h, 48 h, 1 week, and 3 weeks were characterized. The changes to both elastic and relaxation behaviors were investigated considering the multilayer, heterogeneous nature of the aortic wall. The results showed that the average instantaneous Young's modulus (E) of +4 °C storage samples decreased while their permanent average relaxation amplitude (G (∞)) increased and after 48 h these changes became significant (10 and 13% for E and G (∞), respectively). Generally, in freezer storage, E increased and G (∞) showed no significant change. In prolonged preservation (>1 week), the results of -20 °C showed significant increase in E (20% after 3 weeks) while this increase for -80 °C was not significant, making it a better choice for tissue cold storage applications.
Collapse
Affiliation(s)
- Ali Hemmasizadeh
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
49
|
|
50
|
Kohl JG, Randall NX, Schwarzer N, Ngo TT, Michael Shockley J, Nair RP. An investigation of scratch testing of silicone elastomer coatings with a thickness gradient. J Appl Polym Sci 2011. [DOI: 10.1002/app.35325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|