1
|
Yao N, Liu Y, Zhang ZY, Tian M, Xie WJ, Zhao H, Yang H, Rodewald LE, Wen N, Yin ZD, Wang FZ, Wang Q, Xu JW. Excretion and clearance of Sabin-like type 3 poliovirus in a child diagnosed with severe combined immunodeficiency. Hum Vaccin Immunother 2025; 21:2484882. [PMID: 40170570 PMCID: PMC11970734 DOI: 10.1080/21645515.2025.2484882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025] Open
Abstract
Children with primary immunodeficiency disorder (PID) are at higher risk of developing vaccine-associated paralytic poliomyelitis (VAPP) or vaccine-derived polioviruses (VDPV) infection when inadvertently expose to poliovirus vaccine, oral (OPV). A pilot study was initiated to describe the epidemiology of immunodeficiency-associated VDPV (iVDPV) and to estimate the risk of iVDPV shedding among individuals with PID. Children under 18 years of age newly diagnosed with PID were recruited for investigation and tested for poliovirus excretion. Children with poliovirus-positive stool samples had regular follow-up testing for poliovirus excretion and determination of clinical prognosis. A patient with severe combined immunodeficiency (SCID) with compound heterozygous mutations in the RAG1 gene was found to be excreting Sabin-like type 3 (SL3) poliovirus. Excretion stopped six weeks after hematopoietic stem-cell transplantation (HSCT). Graft versus host disease (GVHD) and poor graft function (PGF) occurred after HSCT, resulting in failure of hematopoiesis and immune system reconstitution. Given deficient innate and adaptive immunity, immune-mediated destruction of gastrointestinal (GI) tract caused by GVHD and inflammatory diarrheal illness of the girl may have contributed to her clearance of SL3 poliovirus. Intermittent surveillance of immune system parameters for iVDPV excreters receiving HSCT should be included in the PID surveillance program for further understanding poliovirus clearance mechanisms.
Collapse
Affiliation(s)
- Ning Yao
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Yang Liu
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Zhi-Yong Zhang
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Min Tian
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Wu-Juan Xie
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Hua Zhao
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Hong Yang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lance E. Rodewald
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Wen
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zun-Dong Yin
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fu-Zhen Wang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Wang
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Jia-Wei Xu
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| |
Collapse
|
2
|
Zhang H, Wang W, Zhou Q, Hou J, Ying W, Hui X, Sun J, Liu L, Liu L, Wang C, Zhang H, Sun B, Wang X. Characterization of the epidemiology, susceptibility genes and clinical features of viral infections among children with inborn immune errors: a retrospective study. Virol J 2025; 22:91. [PMID: 40176105 PMCID: PMC11963556 DOI: 10.1186/s12985-025-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Although viral infections are one of the common clinical manifestations in patients with inborn errors of immunity (IEIs), little is known about the epidemiology, susceptibility genes, and clinical status of viral infections in patients with IEIs. METHODS The demographic information, clinical diagnoses, and laboratory findings of 931 IEI patients who underwent viral testing from January 2016 to December 2022 were collected and analyzed. RESULTS In total, 47.15% (439/931) patients with IEI tested positive for at least one virus during hospitalization. There were a total of 640 viral infections during the study period, mainly from EBV 131 (20.47%), HRV 102(15.94%), CMV 100(15.63%), and RV 84(13.13%). CMV and RV infections were more common in the combined immunodeficiencies (IEI_I) group during the infant stage, whereas EBV infection was more common in the immune dysregulation (IEI_IV) group during the preschool stage. Mutations in SH2D1A (57.14%), PIK3CD (56.41%) and LRBA (50%) make individuals susceptible to EBV infection; mutations in WAS (30%) make individuals susceptible to CMV infection; and mutations in IL2RG (56.52%) and RAG1 (37.5%) make individuals susceptible to RV infection. Joinpoint analysis revealed trends in viral positivity in different years. CONCLUSION These data suggest that it is possible to target the prevention, treatment, and management of IEI patients who are infected with a virus by accounting for the age at infection, type of IEI, and mutant genes, but special attention needs to be paid to viral infections in IEI_I and IEI_IV patients during the infant stage.
Collapse
Affiliation(s)
- Haiqiao Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lipin Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chenhao Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hai Zhang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Xiaochuan Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Raglow Z, Lauring AS. Virus Evolution in Prolonged Infections of Immunocompromised Individuals. Clin Chem 2025; 71:109-118. [PMID: 39749520 DOI: 10.1093/clinchem/hvae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands. CONTENT In this review, we provide an overview of populations at risk for prolonged viral shedding, clinical manifestations of persistent viral infection, and methods of assessing viral evolution. We then review the literature on viral evolution in immunocompromised patients across an array of RNA viruses, including SARS-CoV-2, norovirus, influenza, and poliovirus, and discuss the global implications of persistent viral infections in these hosts. SUMMARY There is significant evidence for accelerated viral evolution and accumulation of mutations in antigenic sites in immunocompromised hosts across many viral pathogens. However, the implications of this phenomenon are not clear; while there are rare reports of transmission of these variants, they have not clearly been shown to predict disease outbreaks or have significant global relevance. Emerging methods including wastewater monitoring may provide a more sophisticated understanding of the impact of variants that evolve in immunocompromised hosts on the wider host population.
Collapse
Affiliation(s)
- Zoe Raglow
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Estivariz CF, Krow-Lucal ER, Mach O. Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Infections: A Review of Epidemiology and Progress in Detection and Management. Pathogens 2024; 13:1128. [PMID: 39770387 PMCID: PMC11677883 DOI: 10.3390/pathogens13121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in communities with low immunity. We reviewed the efforts for detection and management of PID patients with iVDPV infections and the epidemiology through an analysis of 184 cases reported to the World Health Organization (WHO) during 1962-2024 and a review of polio program and literature reports. Most iVDPV patients (79%) reported in the WHO Registry were residents in middle-income countries and almost half (48%) in the Eastern Mediterranean Region. Type 2 iVDPV was most frequently isolated (53%), but a sharp decline was observed after the switch to bivalent OPV in 2016, with only six cases reported during 2017-2024 compared to 63 during 2009-2016. Patients with common variable immunodeficiency have longer excretion of iVDPV than with other PID types. Implementation of sensitive sentinel surveillance to detect cases of iVDPV infection in high-risk countries and offer antiviral treatment to patients is challenged by competition with other health priorities and regulatory hurdles to the compassionate use of investigational antiviral drugs.
Collapse
Affiliation(s)
| | - Elisabeth R. Krow-Lucal
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30033, USA;
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| | - Ondrej Mach
- World Health Organization Headquarters, Av Appia 10, 1211 Geneva, Switzerland;
| |
Collapse
|
5
|
Bricks LF, Macina D, Vargas-Zambrano JC. Polio Epidemiology: Strategies and Challenges for Polio Eradication Post the COVID-19 Pandemic. Vaccines (Basel) 2024; 12:1323. [PMID: 39771986 PMCID: PMC11680066 DOI: 10.3390/vaccines12121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The Global Polio Eradication Initiative (GPEI), launched in 1988, has successfully reduced wild poliovirus (WPV) cases by over 99.9%, with WPV type 2 and WPV3 declared eradicated in 2015 and 2019, respectively. However, as of 2024, WPV1 remains endemic in Afghanistan and Pakistan. Since 2000, outbreaks of circulating virus derived of polio vaccines (cVDPVs) have emerged in multiple regions, primary driven by low vaccine coverage rates (VCRs). The COVID-19 pandemic disrupted routine immunization, resulting in millions of unvaccinated children, and leaving many countries vulnerable to both WPV1 and cVDPVs outbreaks. This paper reviews the epidemiological landscape of poliomyelitis post the COVID-19 pandemic, and the strategies and challenges to achieve the global polio eradication.
Collapse
Affiliation(s)
- Lucia F. Bricks
- Sanofi Vaccines Medical, Av Nações Unidas, São Paulo 14401, Brazil
| | - Denis Macina
- Sanofi Vaccines Medical, 14 Espace Henri Vallee, 69007 Lyon, France; (D.M.); (J.C.V.-Z.)
| | | |
Collapse
|
6
|
Xie H, Rhoden EE, Liu HM, Ogunsemowo F, Mainou BA, Burke RM, Burns CC. Antiviral Development for the Polio Endgame: Current Progress and Future Directions. Pathogens 2024; 13:969. [PMID: 39599522 PMCID: PMC11597170 DOI: 10.3390/pathogens13110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
As the world is approaching the eradication of wild poliovirus serotype 1, the last of the three wild types, the question of how to maintain a polio-free world becomes imminent. To mitigate the risk of sporadic vaccine-associated paralytic polio (VAPP) caused by oral polio vaccines (OPVs) that are routinely used in global immunization programs, the Polio Antivirals Initiative (PAI) was established in 2006. The primary goal of the PAI is to facilitate the discovery and development of antiviral drugs to stop the excretion of immunodeficiency-associated vaccine-derived poliovirus (iVDPV) in B cell-deficient individuals. This review summarizes the major progress that has been made in the development of safe and effective poliovirus antivirals and highlights the candidates that have shown promising results in vitro, in vivo, and in clinical trials.
Collapse
Affiliation(s)
- Hang Xie
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Eric E. Rhoden
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Hong-Mei Liu
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Folake Ogunsemowo
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Bernardo A. Mainou
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | | | - Cara C. Burns
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| |
Collapse
|
7
|
Ben Salem I, Khemiri H, Drechsel O, Arbi M, Böttcher S, Mekki N, Ben Fraj I, Souiai O, Yahyaoui M, Ben Farhat E, Meddeb Z, Touzi H, Ben Mustapha I, BenKahla A, Ouederni M, Barbouche MR, Diedrich S, Triki H, Haddad-Boubaker S. Reversion of neurovirulent mutations, recombination and high intra-host diversity in vaccine-derived poliovirus excreted by patients with primary immune deficiency. J Med Virol 2024; 96:e29918. [PMID: 39311394 DOI: 10.1002/jmv.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Patients with Primary immunodeficiency (PIDs) may be infected by Polioviruses (PVs), especially when vaccinated with live Oral Polio Vaccine before diagnosis. They may establish long-term shedding of divergent strains and may act as reservoirs of PV transmission. This study delved into the effect of the genetic evolution of complete PV genomes, from MHC class II-deficient patients, on the excretion duration and clinical outcomes. Stool samples from three PID patients underwent analysis for PV detection through inoculation on cell culture and real-time PCR, followed by VP1 partial sequencing and full genome sequencing using the Illumina technology. Our findings revealed a low number of mutations for one patient who cleared the virus, while two exhibited a high intra-host diversity favoring the establishment of severe outcomes. Neurovirulence-reverse mutations were detected in two patients, possibly leading to paralysis development. Furthermore, a recombination event, between type 3 Vaccine-Derived Poliovirus and Sabin-like1 (VDPV3/SL1), occurred in one patient. Our findings have suggested an association between intra-host diversity, recombination, prolonged excretion of the virus, and emergence of highly pathogenic strains. Further studies on intra-host diversity are crucial for a better understanding of the virus evolution as well as for the success of the Global Polio Eradication Initiative.
Collapse
Affiliation(s)
- Imene Ben Salem
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Khemiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oliver Drechsel
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sindy Böttcher
- National Reference Laboratory for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunology of Infections (LR11IPT02), Department of Immunobiology of infections, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ilhem Ben Fraj
- National Bone Marrow Transplantation Center, Pediatric Hematology-Immunology Unit, Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mahrez Yahyaoui
- National Program of Immunization Basic Health Care Division, Ministry of Health, Tunis, Tunisia
| | - Essia Ben Farhat
- National Program of Immunization Basic Health Care Division, Ministry of Health, Tunis, Tunisia
| | - Zina Meddeb
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imene Ben Mustapha
- Laboratory of Transmission, Control and Immunology of Infections (LR11IPT02), Department of Immunobiology of infections, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Alia BenKahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Monia Ouederni
- National Bone Marrow Transplantation Center, Pediatric Hematology-Immunology Unit, Tunis, Tunisia
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed-R Barbouche
- Laboratory of Transmission, Control and Immunology of Infections (LR11IPT02), Department of Immunobiology of infections, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sabine Diedrich
- National Reference Laboratory for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Virus, Hosts and Vectors (LR20IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- National Program of Immunization Basic Health Care Division, Ministry of Health, Tunis, Tunisia
| |
Collapse
|
8
|
Nejati A, Tabatabaei SM, Mahmoudi S, Zahraei SM, Tabatabaie H, Razaghi M, Khodakhah F, Yousefi M, Mollaei-Kandelousi Y, Keyvanlou M, Soheili P, Pouyandeh S, Samimi-Rad K, Shahmahmoodi S. Environmental Surveillance of Poliovirus and Non-polio Enteroviruses in Iran, 2017-2023: First Report of Imported Wild Poliovirus Type 1 Since 2000. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:391-397. [PMID: 38658427 DOI: 10.1007/s12560-024-09600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
In Iran, which is at high risk of the Wild Poliovirus (WPV) and Vaccine-Derived Poliovirus (VDPV) importation due to its neighborhood with two polio endemic countries, Pakistan and Afghanistan, Environmental Surveillance (ES) was established in November 2017. Sistan-Balouchestan province was chosen for the ES due to its vicinity with Pakistan and Afghanistan. Five sewage collection sites in 4 cities (Zahedan, Zabol, Chabahar and Konarak) were selected in the high-risk areas. Since the establishment of ES in November 2017 till the end of 2023, 364 sewage specimens were collected and analyzed. The ES detected polioviruses which have the highest significance for polio eradication program, that is, Wild Poliovirus type 1 (WPV1) and Poliovirus type 2 (PV2). In April and May 2019, three of 364 (0.8%) sewage specimens from Konarak were positive for imported WPV1. According to phylogenetic analysis, they were highly related to WPV1 circulating in Karachi (Sindh province) in Pakistan. PV2 was also detected in 5.7% (21/364) of the sewage specimens, most of which proved to be imported from the neighboring countries. Of 21 isolated PV2s, 7 were VDPV2, of which 5 proved to be imported from the neighboring countries as there was VDPV2 circulating in Pakistan at the time of sampling, and 2 were ambiguous VDPVs (aVDPV) with unknown source. According to the findings of this study, as long as WPV1 and VDPV2 outbreaks are detected in Iran's neighboring countries, there is a definite need for continuation and expansion of the environmental surveillance.
Collapse
Affiliation(s)
- Ahmad Nejati
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Tabatabaei
- Health Promotion Research Center, Zahedan University of Medical Sciences, Sistan Balouchestan Province, Zahedan, Iran
| | - Sussan Mahmoudi
- Vaccine Preventable Diseases Department, Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Mohsen Zahraei
- Vaccine Preventable Diseases Department, Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamideh Tabatabaie
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Razaghi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Khodakhah
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yousefi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Mollaei-Kandelousi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Keyvanlou
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Soheili
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Pouyandeh
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Samimi-Rad
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Mohanty MC, Govindaraj G, Ahmad M, Varose SY, Tatkare M, Shete A, Yadav S, Joshi Y, Yadav P, Sharma D, Kumar A, Verma H, Patil AP, Edavazhipurath A, Dhanasooraj D, Othayoth Kandy S, Puthenpurayil JM, Chakyar K, Melarcode Ramanan K, Madkaikar M. Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Excretion in an Infant with Severe Combined Immune Deficiency with Spillover to a Parent. Vaccines (Basel) 2024; 12:759. [PMID: 39066397 PMCID: PMC11281642 DOI: 10.3390/vaccines12070759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
In order to maintain the polio eradication status, it has become evident that the surveillance of cases with acute flaccid paralysis and of environmental samples must be urgently supplemented with the surveillance of poliovirus excretions among individuals with inborn errors of immunity (IEI). All children with IEI were screened for the excretion of poliovirus during a collaborative study conducted by the ICMR-National Institute of Virology, Mumbai Unit, ICMR-National Institute of Immunohaematology, and World Health Organization, India. A seven-month -old male baby who presented with persistent pneumonia and lymphopenia was found to have severe combined immune deficiency (SCID) due to a missense variant in the RAG1 gene. He had received OPV at birth and at 20 weeks. Four stool samples collected at 4 weekly intervals yielded iVDPV type 1. The child's father, an asymptomatic 32-year-old male, was also found to be excreting iVDPV. A haploidentical hematopoietic stem cell transplant was performed, but the child succumbed due to severe myocarditis and pneumonia three weeks later. We report a rare case of transmission of iVDPV from an individual with IEI to a healthy household contact, demonstrating the threat of the spread of iVDPV from persons with IEI and the necessity to develop effective antivirals.
Collapse
Affiliation(s)
- Madhu Chhanda Mohanty
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Geeta Govindaraj
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | - Mohammad Ahmad
- Country Office, World Health Organization, New Delhi 110011, India; (M.A.); (D.S.); (A.K.)
| | - Swapnil Y. Varose
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Manogat Tatkare
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Anita Shete
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Savita Yadav
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Yash Joshi
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Pragya Yadav
- Microbial Containment Laboratory, ICMR-National Institute of Virology, Pune 411021, India; (A.S.); (S.Y.); (Y.J.); (P.Y.)
| | - Deepa Sharma
- Country Office, World Health Organization, New Delhi 110011, India; (M.A.); (D.S.); (A.K.)
| | - Arun Kumar
- Country Office, World Health Organization, New Delhi 110011, India; (M.A.); (D.S.); (A.K.)
| | - Harish Verma
- World Health Organization, 1209 Geneva, Switzerland;
| | - Ankita P. Patil
- Mumbai Unit, ICMR-National Institute of Virology, Haffkine Institute Campus, Acharya Donde Marg, Parel, Mumbai 400012, India; (S.Y.V.); (M.T.); (A.P.P.)
| | - Athulya Edavazhipurath
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | - Dhananjayan Dhanasooraj
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | - Sheena Othayoth Kandy
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | | | - Krishnan Chakyar
- Government Medical College, Kozhikode 673008, India; (G.G.); (A.E.); (D.D.); (S.O.K.); (J.M.P.); (K.C.)
| | | | | |
Collapse
|
10
|
Bandyopadhyay AS, Burke RM, Hawes KM. Polio Eradication: Status, Struggles and Strategies. Pediatr Infect Dis J 2024; 43:e207-e211. [PMID: 38564755 DOI: 10.1097/inf.0000000000004330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Ananda S Bandyopadhyay
- From the Polio, Global Development, Bill & Melinda Gates Foundation, Seattle, Washington
| | | | | |
Collapse
|
11
|
Badizadegan K, Kalkowska DA, Thompson KM. Health Economic Analysis of Antiviral Drugs in the Global Polio Eradication Endgame. Med Decis Making 2023; 43:850-862. [PMID: 37577803 PMCID: PMC10680042 DOI: 10.1177/0272989x231191127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Polio antiviral drugs (PAVDs) may provide a critical tool in the eradication endgame by stopping poliovirus infections in immunodeficient individuals who may not clear the virus without therapeutic intervention. Although prolonged/chronic poliovirus excreters are rare, they represent a source of poliovirus reintroduction into the general population. Prior studies that assumed the successful cessation of all oral poliovirus vaccine (OPV) use estimated the potential upper bound of the incremental net benefits (INBs) of resource investments in research and development of PAVDs. However, delays in polio eradication, OPV cessation, and the development of PAVDs necessitate an updated economic analysis to reevaluate the costs and benefits of further investments in PAVDs. METHODS Using a global integrated model of polio transmission, immunity, vaccine dynamics, risks, and economics, we explore the risks of reintroduction of polio transmission due to immunodeficiency-related vaccine-derived poliovirus (iVDPV) excreters and reevaluate the upper bound of the INBs of PAVDs. RESULTS Under the current conditions, for which the use of OPV will likely continue for the foreseeable future, even with successful eradication of type 1 wild poliovirus by the end of 2023 and continued use of Sabin OPV for outbreak response, we estimate an upper bound INB of 60 million US$2019. With >100 million US$2019 already invested in PAVD development and with the introduction of novel OPVs that are less likely to revert to neurovirulence, our analysis suggests the expected INBs of PAVDs would not offset their costs. CONCLUSIONS While PAVDs could play an important role in the polio endgame, their expected economic benefits drop with ongoing OPV use and poliovirus transmissions. However, stakeholders may pursue the development of PAVDs as a desired product regardless of their economic benefits.HighlightsWhile polio antiviral drugs could play an important role in the polio endgame, their expected economic benefits continue to drop with delays in polio eradication and the continued use of oral poliovirus vaccines.The incremental net benefits of investments in polio antiviral drug development and screening for immunodeficiency-related circulating polioviruses are small.Limited global resources are better spent on increasing global population immunity to polioviruses to stop and prevent poliovirus transmission.
Collapse
|
12
|
Guo Q, Zhu S, Wang D, Li X, Zhu H, Song Y, Liu X, Xiao F, Zhao H, Lu H, Xiao J, Yu L, Wang W, He Y, Liu Y, Li J, Zhang Y, Xu W, Yan D. Genetic characterization and molecular evolution of type 3 vaccine-derived polioviruses from an immunodeficient patient in China. Virus Res 2023; 334:199177. [PMID: 37479187 PMCID: PMC10388201 DOI: 10.1016/j.virusres.2023.199177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
In 2013, a case of immunodeficiency vaccine-derived poliovirus (iVDPV) was identified in Jiangxi Province, China. In this study, we purified 14 type 3 original viral isolates from this case and characterized the molecular evolution of these iVDPVs for 298 days. Genetic variants were found in most of the original viral isolates, with complex genetic and evolutionary relationships among the variants. A phylogenetic tree constructed based on the P1 region showed that these iVDPVs were classified into lineage A and B. The dominant lineage B represents a major trend in virus evolution. The nucleotide substitution rate at the third codon position (3CP) estimated by the BEAST program was 1.76 × 10-2 substitutions/site/year (95% HPD: 1.23-2.39 × 10-2). The initial OPV dose was given dating back to March 2013, which was close to the time of the last OPV vaccination, suggesting that OPV infection may have originated with the last dose of vaccine. Recombinant analysis showed that these iVDPVs were inter-vaccine recombinants with two recombination patterns, S3/S2/S1 and S3/S2/S3/S2/S1. Whole genome sequence analysis revealed that key nucleotide sites (C472U, C2034U, U2493C) associated with the attenuated phenotype of Sabin 3 have been replaced. Temperature sensitivity test showed that all tested strains were temperature-sensitive, except for the variant Day11-5. Interestingly, we observed that the variant Day11-5 temperature resistance properties may be associated with the Lys to Met substitution at the VP2-162 site. Serological test and whole genome sequence analysis showed that the seropositivity rate remained high, and mutations in the antigenic sites did not significantly alter neutralization ability.
Collapse
Affiliation(s)
- Qin Guo
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China; Da Zhou Vocational College of Chinese Medicine, Dazhou, China
| | - Shuangli Zhu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Dongyan Wang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xiaolei Li
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Hui Zhu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Yang Song
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xiaoqing Liu
- Jiangxi Center for Disease Control and Prevention, Nanchang, China
| | - Fang Xiao
- Jiangxi Center for Disease Control and Prevention, Nanchang, China
| | - Hehe Zhao
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Huanhuan Lu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jinbo Xiao
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Liheng Yu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wenhui Wang
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yun He
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Liu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jichen Li
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Yong Zhang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wenbo Xu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Dongmei Yan
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China.
| |
Collapse
|
13
|
Mohanty MC, Desai M, Mohammad A, Aggarwal A, Govindaraj G, Bhattad S, Lashkari HP, Rajasekhar L, Verma H, Kumar A, Sawant U, Varose SY, Taur P, Yadav RM, Tatkare M, Fernandes M, Bargir U, Majumdar S, Edavazhippurath A, Rangarajan J, Manthri R, Madkaikar MR. Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR-WHO Collaborative Study Phase-I. Vaccines (Basel) 2023; 11:1211. [PMID: 37515027 PMCID: PMC10383878 DOI: 10.3390/vaccines11071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of vaccine-derived polioviruses (VDPVs) in patients with Primary Immunodeficiency (PID) is a threat to the polio-eradication program. In a first of its kind pilot study for successful screening and identification of VDPV excretion among patients with PID in India, enteroviruses were assessed in stool specimens of 154 PID patients across India in a period of two years. A total of 21.42% of patients were tested positive for enteroviruses, 2.59% tested positive for polioviruses (PV), whereas 18.83% of patients were positive for non-polio enteroviruses (NPEV). A male child of 3 years and 6 months of age diagnosed with Hyper IgM syndrome was detected positive for type1 VDPV (iVDPV1) with 1.6% nucleotide divergence from the parent Sabin strain. E21 (19.4%), E14 (9%), E11 (9%), E16 (7.5%), and CVA2 (7.5%) were the five most frequently observed NPEV types in PID patients. Patients with combined immunodeficiency were at a higher risk for enterovirus infection as compared to antibody deficiency. The high susceptibility of PID patients to enterovirus infection emphasizes the need for enhanced surveillance of these patients until the use of OPV is stopped. The expansion of PID surveillance and integration with a national program will facilitate early detection and follow-up of iVDPV excretion to mitigate the risk for iVDPV spread.
Collapse
Affiliation(s)
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India
| | - Ahmad Mohammad
- World Health Organization, Country Office, New Delhi 110011, India
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Geeta Govindaraj
- Department of Pediatrics, Government Medical College, Kozhikode 673008, India
| | - Sagar Bhattad
- Department of Pediatrics, Aster CMI Hospital, Bangalore 560092, India
| | | | - Liza Rajasekhar
- Department of Clinical Immunology and Rheumatology, Nizam’s Institute of Medical Sciences, Hyderabad 500082, India
| | - Harish Verma
- World Health Organization, CH-1211 Geneva, Switzerland
| | - Arun Kumar
- World Health Organization, Country Office, New Delhi 110011, India
| | - Unnati Sawant
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | | | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India
| | - Reetika Malik Yadav
- ICMR-National Institute of Immunohaematology (ICMR-NIIH), Mumbai 400012, India
| | - Manogat Tatkare
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | - Mevis Fernandes
- Mumbai Unit, ICMR-National Institute of Virology (ICMR-NIV), Mumbai 400012, India
| | - Umair Bargir
- ICMR-National Institute of Immunohaematology (ICMR-NIIH), Mumbai 400012, India
| | - Sanjukta Majumdar
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | | | - Jyoti Rangarajan
- Department of Pediatrics, Aster CMI Hospital, Bangalore 560092, India
| | - Ramesh Manthri
- Department of Clinical Immunology and Rheumatology, Nizam’s Institute of Medical Sciences, Hyderabad 500082, India
| | | |
Collapse
|
14
|
Deng M, Mao H. Inborn errors of immunity in mainland China: the past, present and future. BMJ Paediatr Open 2023; 7:e002002. [PMID: 37474202 PMCID: PMC10357751 DOI: 10.1136/bmjpo-2023-002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Inborn errors of immunity (IEI), also known as primary immunodeficiency diseases, comprise a group of rare genetic disorders that affect the development or/and function of the immune system. These disorders predispose individuals to recurrent infections, autoimmunity, cancer and immune dysregulations. The field of IEI diagnosis and treatment in mainland China has made significant strides in recent years due to advances in genome sequencing, genetics, immunology and treatment strategies. However, the accessibility and affordability of diagnostic facilities and precision treatments remain variable among different regions. With the increasing government emphasis on rare disease prevention, diagnosis, and treatment, the field of IEI is expected to progress further in mainland China. Herein, we reviewed the development and current state of IEI in mainland China, highlighting the achievements made, as well as opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mengyue Deng
- Department of Immunology, Beijing Children's Hospital of Capital Medical University, National Center for Children's Health of China, Beijing, China
| | - Huawei Mao
- Department of Immunology, Beijing Children's Hospital of Capital Medical University, National Center for Children's Health of China, Beijing, China
- Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Key Laboratory for Genetics of Birth Defects, Beijing, China
| |
Collapse
|
15
|
Singanayagam A, Klapsa D, Burton-Fanning S, Hand J, Wilton T, Stephens L, Mate R, Shillitoe B, Celma C, Slatter M, Flood T, Gopal R, Martin J, Zambon M. Asymptomatic immunodeficiency-associated vaccine-derived poliovirus infections in two UK children. Nat Commun 2023; 14:3413. [PMID: 37296153 PMCID: PMC10251316 DOI: 10.1038/s41467-023-39094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Increasing detections of vaccine-derived poliovirus (VDPV) globally, including in countries previously declared polio free, is a public health emergency of international concern. Individuals with primary immunodeficiency (PID) can excrete polioviruses for prolonged periods, which could act as a source of cryptic transmission of viruses with potential to cause neurological disease. Here, we report on the detection of immunodeficiency-associated VDPVs (iVDPV) from two asymptomatic male PID children in the UK in 2019. The first child cleared poliovirus with increased doses of intravenous immunoglobulin, the second child following haematopoetic stem cell transplantation. We perform genetic and phenotypic characterisation of the infecting strains, demonstrating intra-host evolution and a neurovirulent phenotype in transgenic mice. Our findings highlight a pressing need to strengthen polio surveillance. Systematic collection of stool from asymptomatic PID patients who are at high risk for poliovirus excretion could improve the ability to detect and contain iVDPVs.
Collapse
Affiliation(s)
- Anika Singanayagam
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Dimitra Klapsa
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Shirelle Burton-Fanning
- Microbiology and Virology Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Julian Hand
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK
| | - Thomas Wilton
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Laura Stephens
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Ryan Mate
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Benjamin Shillitoe
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Cristina Celma
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK
| | - Mary Slatter
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Terry Flood
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Robin Gopal
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK
| | - Javier Martin
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Potters Bar, London, UK
| | - Maria Zambon
- Polio Reference Service, UK Health Security Agency, Colindale, London, UK.
| |
Collapse
|
16
|
Kim CY, Piamonte B, Allen R, Thakur KT. Threat of resurgence or hope for global eradication of poliovirus? Curr Opin Neurol 2023; 36:229-237. [PMID: 37078665 DOI: 10.1097/wco.0000000000001156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Recent outbreaks of poliomyelitis in countries that have been free of cases for decades highlight the challenges of eradicating polio in a globalized interconnected world beset with a novel viral pandemic. We provide an epidemiological update, advancements in vaccines, and amendments in public health strategy of poliomyelitis in this review. RECENT FINDINGS Last year, new cases of wild poliovirus type 1 (WPV1) were documented in regions previously documented to have eradicated WPV1 and reports of circulating vaccine-derived poliovirus type 2 (cVDPV2) and 3 (cVDPV3) in New York and Jerusalem made international headlines. Sequencing of wastewater samples from environmental surveillance revealed that the WPV1 strains were related to WPV1 lineages from endemic countries and the cVDPV2 strains from New York and Jerusalem were not only related to each other but also to environmental isolates found in London. The evidence of importation of WPV1 cases from endemic countries, and global transmission of cVDPVs justifies renewed efforts in routine vaccination programs and outbreak control measures that were interrupted by the COVID-19 pandemic. After the novel oral poliovirus vaccine type 2 (nOPV2) received emergency authorization for containment of cVDPV2 outbreaks in 2021, subsequent reduced incidence, transmission rates, and vaccine adverse events, alongside increased genetic stability of viral isolates substantiates the safety and efficacy of nOPV2. The nOPV1 and nOPV3 vaccines, against type 1 and 3 cVDPVs, and measures to increase accessibility and efficacy of inactivated poliovirus vaccine (IPV) are in development. SUMMARY A revised strategy utilizing more genetically stable vaccine formulations, with uninterrupted vaccination programs and continued active surveillance optimizes the prospect of global poliomyelitis eradication.
Collapse
Affiliation(s)
- Carla Y Kim
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, New York, New York, USA
| | - Bernadeth Piamonte
- University of the Philippines - Philippine General Hospital, Manila, Philippines
| | - Rebecca Allen
- Columbia University College of Physicians and Surgeons, New York, New York
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
17
|
Mbani CJ, Nekoua MP, Moukassa D, Hober D. The Fight against Poliovirus Is Not Over. Microorganisms 2023; 11:1323. [PMID: 37317297 DOI: 10.3390/microorganisms11051323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
Poliovirus (PV), the virus that causes both acute poliomyelitis and post-polio syndrome, is classified within the Enterovirus C species, and there are three wild PV serotypes: WPV1, WPV2 and WPV3. The launch of the Global Polio Eradication Initiative (GPEI) in 1988 eradicated two of the three serotypes of WPV (WPV2 and WPV3). However, the endemic transmission of WPV1 persists in Afghanistan and Pakistan in 2022. There are cases of paralytic polio due to the loss of viral attenuation in the oral poliovirus vaccine (OPV), known as vaccine-derived poliovirus (VDPV). Between January 2021 and May 2023, a total of 2141 circulating VDPV (cVDPV) cases were reported in 36 countries worldwide. Because of this risk, inactivated poliovirus (IPV) is being used more widely, and attenuated PV2 has been removed from OPV formulations to obtain bivalent OPV (containing only types 1 and 3). In order to avoid the reversion of attenuated OPV strains, the new OPV, which is more stable due to genome-wide modifications, as well as sabin IPV and virus-like particle (VLP) vaccines, is being developed and offers promising solutions for eradicating WP1 and VDPV.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
18
|
Bermingham WH, Canning B, Wilton T, Kidd M, Klapsa D, Majumdar M, Sooriyakumar K, Martin J, Huissoon AP. Case report: Clearance of longstanding, immune-deficiency-associated, vaccine-derived polio virus infection following remdesivir therapy for chronic SARS-CoV-2 infection. Front Immunol 2023; 14:1135834. [PMID: 36936936 PMCID: PMC10022663 DOI: 10.3389/fimmu.2023.1135834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
The global polio eradication campaign has had remarkable success in reducing wild-type poliovirus infection, largely built upon the live attenuated Sabin oral poliovirus vaccine. Whilst rare, vaccine poliovirus strains may cause infection and subsequently revert to a neurovirulent type, termed vaccine-derived poliovirus (VDPV). Persistent, vaccine derived infection may occur in an immunocompromised host (iVDPV), where it is a recognised complication following receipt of the Sabin vaccine. This has significant implications for the global polio eradication campaign and there is currently no agreed global strategy to manage such patients.Here we describe a case of a 50-year-old man with common variable immune deficiency, persistently infected with a neurovirulent vaccine-derived type 2 poliovirus following vaccination in childhood. iVDPV infection had proven resistant to multiple prior attempts at treatment with human breast milk, ribavirin and oral administration of a normal human pooled immunoglobulin product. His iVDPV infection subsequently resolved after 12 days treatment with remdesivir, an adenosine analogue prodrug that is an inhibitor of viral RNA-dependent RNA polymerase, administered as treatment for a prolonged, moderate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. iVDPV from the patient, isolated prior to treatment, was subsequently demonstrated to be sensitive to remdesivir in vitro. Based on the observations made in this case, and the mechanistic rationale for use with iVDPV, there is strong justification for further clinical studies of remdesivir treatment as a potentially curative intervention in patients with iVDPV infection.
Collapse
Affiliation(s)
- William Hywel Bermingham
- Department of Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- *Correspondence: William Hywel Bermingham,
| | - Benjamin Canning
- Department of Virology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Thomas Wilton
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Michael Kidd
- Public Health Laboratory, UK Health Security Agency, Birmingham, United Kingdom
| | - Dimitra Klapsa
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Manasi Majumdar
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Kavitha Sooriyakumar
- Department of Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Javier Martin
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Aarnoud P. Huissoon
- Department of Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
19
|
Fan Q, Ma J, Li X, Jorba J, Yuan F, Zhu H, Hu L, Song Y, Wang D, Zhu S, Yan D, Chen H, Xu W, Zhang Y. Molecular evolution and antigenic drift of type 3 iVDPVs excreted from a patient with immunodeficiency in Ningxia, China. J Med Virol 2023; 95:e28215. [PMID: 36224711 DOI: 10.1002/jmv.28215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
A 2.5-year-old pediatric patient with acute flaccid paralysis was diagnosed with primary immunodeficiency (PID) in Ningxia Province, China, in 2011. Twelve consecutive stool specimens were collected from the patient over a period of 10 months (18 February 2011 to 20 November 2011), and 12 immunodeficiency vaccine-derived poliovirus (iVDPV) strains (CHN15017-1 to CHN15017-12) were subsequently isolated. Nucleotide sequencing analysis of the plaque-purified iVDPVs revealed 2%-3.5% VP1-region differences from their parental Sabin 3 strain. Full-length genome sequencing showed they were all Sabin 3/Sabin 1 recombinants, sharing a common 2C-region crossover site, and the two key determinants of attenuation (U472C in the 5' untranslated region and T2493C in the VP1 region) had reverted. Temperature-sensitive experiments demonstrated that the first two iVDPV strains partially retained the temperature-sensitive phenotype's nature, while the subsequent ten iVDPV strains distinctly lost it, possibly associated with increased neurovirulence. Nineteen amino-acid substitutions were detected between 12 iVDPVs and the parental Sabin strain, of which only one (K1419R) was found on the subsequent 10 iVDPV isolates, suggesting this site's potential as a temperature-sensitive determination site. A Bayesian Monte Carlo Markov Chain phylogenetic analysis based on the P1 coding region yielded a mean iVDPV evolutionary rate of 1.02 × 10-2 total substitutions/site/year, and the initial oral-polio-vaccine dose was presumably administered around June 2009. Our findings provide valuable information regarding the genetic structure, high-temperature growth sensitivity, and antigenic properties of iVDPVs following long-term evolution in a single PID patient, thus augmenting the currently limited knowledge regarding the dynamic changes and evolutionary pathway of iVDPV populations with PID during long-term global replication.
Collapse
Affiliation(s)
- Qin Fan
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Jiangtao Ma
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Xiaolei Li
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jaume Jorba
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fang Yuan
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Hui Zhu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Lan Hu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yang Song
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hui Chen
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Wenbo Xu
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yong Zhang
- National Laboratory for poliomyelitis, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety and National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Zhang M, Yang J, Bai Y, Zhu H, Wang C, Zhang L, Xu J, Lu M, Zhang X, Xiao Z, Ma Y, Wang Y, Li X, Wang D, Zhu S, Yan D, Xu W, Zhang Y, Zhang Y. Epidemiological survey and genetic characterization of type 3 vaccine-derived poliovirus isolated from a patient with four doses of inactivated polio vaccine in Henan Province, China. Infect Dis Poverty 2022; 11:124. [PMID: 36514167 DOI: 10.1186/s40249-022-01028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Vaccine-derived poliovirus (VDPV) is a potential threat to polio eradication because they can reintroduce into the general population and cause paralytic polio outbreaks, a phenomenon that has recently emerged as a prominent public health concern at the end of global polio eradication. This study aimed to describe the epidemiology and genetic characteristics of the first VDPV identified from a patient with acute flaccid paralysis (AFP), with four doses of inactivated polio vaccine immunization in Henan Province, China in 2017. METHODS The patient was diagnosed with type 3 VDPV. Subsequently, a series of epidemiological approaches was implemented, including a retrospective search of AFP cases, rate of vaccination assessment, study of contacts, and supplementary immunization activities. Fecal samples were collected, viral isolation was performed, and the viral isolates were characterized using full-length genomic sequencing and bioinformatic analysis. RESULTS Phylogenetic analysis showed that the viral isolates from the patient were different from other reported genetic clusters of type 3 VDPV worldwide. They were identified as a Sabin 3/Sabin 1 recombinant VDPV with a crossover site in the P2 region. Nucleotide substitutions, including U → C (472) and C → U (2493), have been identified, both of which are frequently observed as reversion mutations in neurovirulent type 3 poliovirus. A unique aspect of this case is that the patient had been vaccinated with four doses of inactive polio vaccine, and the serum neutralizing antibody for Sabin types 1 and 3 were 1∶16 and 1∶512, respectively. Thus, the patient was speculated to have been infected with type 3 VDPV, and the virus continued to replicate and be excreted for at least 41 d. CONCLUSIONS The existence of this kind of virus in human population is a serious risk and poses a severe challenge in maintaining a polio-free status in China. To the best of our knowledge, this is the first report of VDPV identified in the Henan province of China. Our results highlight the importance of maintaining a high-level vaccination rate and highly sensitive AFP case surveillance system in intercepting VDPV transmission.
Collapse
Affiliation(s)
- Mingyu Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Jianhui Yang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Yiran Bai
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Hui Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Changshuang Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Lu Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Jin Xu
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Mingxia Lu
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Xiaoxiao Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Zhanpei Xiao
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Yating Ma
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Yan Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Xiaolei Li
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| | - Yanyang Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
21
|
Yao N, Liu Y, Xu JW, Wang Q, Yin ZD, Wen N, Yang H, Rodewald LE, Zhang ZY. Detection of a Highly Divergent Type 3 Vaccine-Derived Poliovirus in a Child with a Severe Primary Immunodeficiency Disorder — Chongqing, China, 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:1148-1150. [PMID: 36074738 PMCID: PMC9470223 DOI: 10.15585/mmwr.mm7136a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Kitamura K, Shimizu H. Outbreaks of Circulating Vaccine-derived Poliovirus in the World Health Organization Western Pacific Region, 2000-2021. Jpn J Infect Dis 2022; 75:431-444. [PMID: 36047174 DOI: 10.7883/yoken.jjid.2022.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The World Health Organization Western Pacific Region (WPR) has maintained the polio-free status for more than two decades. At the global level, there were only 6 confirmed polio cases due to wild type 1 poliovirus in Pakistan, Afghanistan, and Malawi in 2021, therefore, the risk of the importation of wild poliovirus from the endemic countries to the WPR is considerably lower than ever before. On the other hand, the risk of polio outbreaks associated with circulating vaccine-derived polioviruses (cVDPVs) still cannot be ignored even in the WPR. Since late 2010s, cVDPV outbreaks in the WPR have appeared to be more extensive in frequency and magnitude. Moreover, the emergence of concomitant polio outbreaks of type 1 and type 2 cVDPVs in the Philippines and Malaysia during 2019-2020 has highlighted the remaining risk of cVDPV outbreaks in high-risk areas and/or communities in the WPR. The previous cVDPV outbreaks in the WPR have been rapidly and effectively controlled, however, the future risk of polio outbreaks associated with cVDPVs needs to be reconsidered and polio immunization and surveillance strategies should be updated accordingly.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Japan
| |
Collapse
|
23
|
Belgasmi H, Miles SJ, Sayyad L, Wong K, Harrington C, Gerloff N, Coulliette-Salmond AD, Guntapong R, Tacharoenmuang R, Ayutthaya AIN, Apostol LNG, Valencia MLD, Burns CC, Benito GR, Vega E. CaFÉ: A Sensitive, Low-Cost Filtration Method for Detecting Polioviruses and Other Enteroviruses in Residual Waters. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10:10.3389/fenvs.2022.914387. [PMID: 35928599 PMCID: PMC9344547 DOI: 10.3389/fenvs.2022.914387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute flaccid paralysis (AFP) surveillance has been used to identify polio cases and target vaccination campaigns since the inception of the Global Poliovirus Eradication Initiative (GPEI) in 1988. To date, only Afghanistan and Pakistan have failed to interrupt wild poliovirus transmission. Circulation of vaccine-derived polioviruses (VDPV) continues to be a problem in high-risk areas of the Eastern Mediterranean, African, and Southeast Asian regions. Environmental surveillance (ES) is an important adjunct to AFP surveillance, helping to identify circulating polioviruses in problematic areas. Stools from AFP cases and contacts (>200,000 specimens/year) and ES samples (>642 sites) are referred to 146 laboratories in the Global Polio Laboratory Network (GPLN) for testing. Although most World Health Organization supported laboratories use the two-phase separation method due to its simplicity and effectiveness, alternative simple, widely available, and cost-effective methods are needed. The CAFÉ (Concentration and Filtration Elution) method was developed from existing filtration methods to handle any type of sewage or residual waters. At $10-20 US per sample for consumable materials, CAFÉ is cost effective, and all equipment and reagents are readily available from markets and suppliers globally. The report describes the results from a parallel study of CAFÉ method with the standard two-phase separation method. The study was performed with samples collected from five countries (Guatemala, Haïti, Thailand, Papua New Guinea, and the Philippines), run in three laboratories-(United States, Thailand and in the Philippines) to account for regional and sample-to-sample variability. Samples from each site were divided into two 500 ml aliquots and processed by both methods, with no other additional concentration or manipulation. The results of 338 parallel-tested samples show that the CAFÉ method is more sensitive than the two-phase separation method for detection of non-polio enteroviruses (p-value < 0.0001) and performed as well as the two-phase separation method for polioviruses detection with no significant difference (p-value > 0.05). The CAFÉ method is a robust, sensitive, and cost-effective method for isolating enteroviruses from residual waters.
Collapse
Affiliation(s)
- Hanen Belgasmi
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Stacey Jeffries Miles
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | - Chelsea Harrington
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Nancy Gerloff
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Angela D Coulliette-Salmond
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- U.S Public Health Service, Rockville, MD, United States
| | - Ratigorn Guntapong
- Department of Medical Science, Enteric Viruses Section, National Institute of Health, Nonthaburi, Thailand
| | - Ratana Tacharoenmuang
- Department of Medical Science, Enteric Viruses Section, National Institute of Health, Nonthaburi, Thailand
| | | | | | | | - Cara C. Burns
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gloria-Rey Benito
- Pan American Health Organization, World Health Organization, Washington, DC, United States
| | - Everardo Vega
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
24
|
Xiao T, Leng H, Zhang Q, Chen Q, Guo H, Qi Y. Isolation and characterization of a Sabin 3/Sabin 1 recombinant vaccine-derived poliovirus from a child with severe combined immunodeficiency. Virus Res 2021; 308:198633. [PMID: 34793871 DOI: 10.1016/j.virusres.2021.198633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
An 8-month-old child diagnosed with severe combined immunodeficiency (SCID) was found to be excreting vaccine-derived poliovirus (VDPVs). Five stool samples from the child and stool samples from 24 contacts were collected during the following 7 months. Complete genome sequence by next generation sequencing (NGS) identified 0.7 to 1.4% nucleotide substitutions in the capsid P1 region of the first and the last isolates compared with Sabin 3 strain. Simplot analysis revealed that all isolates were Sabin 3/Sabin 1 recombinants, sharing a single recombination breakpoint in the 2C region. Multiple nucleotide variants were identified in the 5'UTR (T472→C and G395→A); amino acid mutations were identified in residues at VP1-6 (Thr to Ile), VP1-105 (Met to Thr), VP1-286 (Arg to Lys), VP2-155 (Lys to Glu), VP3-59 (Ser to Asn) and VP3-91 (Phe to Ser). These variants were commonly observed in other PV strains, which may contribute to attenuation and temperature sensitivity. None of the 24 tested contacts of the patient and related transmits was found to be infected with poliovirus. Our study provides a rapid and reliable method for the characterization of VDPV research in Poliovirus infection. In post-OPV era, immunodeficient people with persistent and chronic infection remain a major challenge for polio eradication in China.
Collapse
Affiliation(s)
- Tianhe Xiao
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Hongying Leng
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Qian Zhang
- College of pharmacy, Nankai University, Tianjin 300353, China
| | - Qiang Chen
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Hongxiong Guo
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yuhua Qi
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
25
|
Kitamura K, Shimizu H. The Molecular Evolution of Type 2 Vaccine-Derived Polioviruses in Individuals with Primary Immunodeficiency Diseases. Viruses 2021; 13:v13071407. [PMID: 34372613 PMCID: PMC8310373 DOI: 10.3390/v13071407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
The oral poliovirus vaccine (OPV), which prevents person-to-person transmission of poliovirus by inducing robust intestinal immunity, has been a crucial tool for global polio eradication. However, polio outbreaks, mainly caused by type 2 circulating vaccine-derived poliovirus (cVDPV2), are increasing worldwide. Meanwhile, immunodeficiency-associated vaccine-derived poliovirus (iVDPV) is considered another risk factor during the final stage of global polio eradication. Patients with primary immunodeficiency diseases are associated with higher risks for long-term iVDPV infections. Although a limited number of chronic iVDPV excretors were reported, the recent identification of a chronic type 2 iVDPV (iVDPV2) excretor in the Philippines highlights the potential risk of inapparent iVDPV infection for expanding cVDPV outbreaks. Further research on the genetic characterizations and molecular evolution of iVDPV2, based on comprehensive iVDPV surveillance, will be critical for elucidating the remaining risk of iVDPV2 during the post-OPV era.
Collapse
|
26
|
Monogenic susceptibility to live viral vaccines. Curr Opin Immunol 2021; 72:167-175. [PMID: 34107321 PMCID: PMC9586878 DOI: 10.1016/j.coi.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Live attenuated viral vaccines (LAV) have saved millions of lives globally through their capacity to elicit strong, cross-reactive and enduring adaptive immune responses. However, LAV can also act as a Trojan horse to reveal inborn errors of immunity, thereby highlighting important protective elements of the healthy antiviral immune response. In the following article, we draw out these lessons by reviewing the spectrum of LAV-associated disease reported in a variety of inborn errors of immunity. We note the contrast between adaptive disorders, which predispose to both LAV and their wild type counterparts, and defects of innate immunity in which parenterally delivered LAV behave in a particularly threatening manner. Recognition of the underlying pathomechanisms can inform our approach to disease management and vaccination in a wider group of individuals, including those receiving immunomodulators that impact the relevant pathways.
Collapse
|
27
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|