1
|
Arendrup MC, Lockhart SR, Wiederhold N. Candida auris MIC testing by EUCAST and clinical and laboratory standards institute broth microdilution, and gradient diffusion strips; to be or not to be amphotericin B resistant? Clin Microbiol Infect 2025; 31:108-112. [PMID: 39426481 PMCID: PMC11931498 DOI: 10.1016/j.cmi.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Reported amphotericin B resistance rates for Candida auris vary considerably. This may reflect clinically relevant differences in susceptibility, technical issues with testing, or adoption of a clinical breakpoint that bisects the wild-type population. We compared reference methods and two gradient diffusion strips using a shared C. auris strain collection. METHODS Forty C. auris strains from nine U.S. states and ≥3 clades were included. Fourteen MIC data sets were generated using European Committee on Antimicrobial Susceptibility Testing (EUCAST) E.Def 7.4, Clinical and Laboratory Standards Institute (CLSI) M27Ed4, Etest, and MIC gradient test strip (MTS, Liofilchem) MICs. MICs ≤1 mg/L were classified as susceptible. RESULTS EUCAST and CLSI amphotericin B MIC testing were robust across the included method variables. The modal MIC was 1 mg/L, distributions unimodal and narrow with similar geometric mean (GM)-MICs (0.745-1.072); however, susceptibility classification varied (0-28% resistance). Gradient diffusion strip testing resulted in wider and bimodal distributions for 8/9 data sets. If adopting, per manufacturer's protocol, double inoculation for the Etest method, the modal MIC increased to 2-4 mg/L and resistance rates to 45-63% versus 25-30% with the single inoculation. The EUCAST, CLSI, Etest, and MTS strip MICs correlated to the optical density of drug-free control EUCAST wells, suggesting that some isolates grew better than others and that this was associated with MIC. DISCUSSION The EUCAST and CLSI MIC results were in close agreement, whereas the strip test showed wider and bimodal distributions with reader to reader and centre to centre variation. Our study adds to the concern for commercial MIC testing of amphotericin B against C. auris and suggests the current breakpoint leads to random susceptibility classification.
Collapse
Affiliation(s)
- Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institut, Copenhagen, Denmark; Department Clin Microbiol, Rigshospitalet, Copenhagen University, Copenhagen, Denmark.
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| | - Nathan Wiederhold
- Department Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Branda Dos Reis C, Otenio MH, Júnior AMDM, Maia Dornelas JC, Fonseca do Carmo PH, Viana RO, Santos Ricoy AC, de Souza Alves V. Virulence profile of Candida spp. isolated from an anaerobic biodigester supplied with dairy cattle waste. Microb Pathog 2024; 187:106516. [PMID: 38176462 DOI: 10.1016/j.micpath.2023.106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Anaerobic biodigesters play a crucial role in enhancing animal waste management. However, the presence of pathogens in the biodigestion process poses a significant concern. Candida spp., a widespread fungus known for its opportunistic nature and adaptability to diverse environmental conditions, including reciprocal transmission between humans and animals, is one such pathogen of concern. Therefore, it is imperative to assess the virulence profile of Candida spp. originating from anaerobic biodigestion processes. Here we demonstrate that strains isolated from the biodigestion process of dairy cattle waste exhibit noteworthy virulence mechanisms, surpassing the virulence of clinical control strains. After we identified strains from affluent, effluent, and biofertilizer, we observed that all analyzed isolates produced biofilm. Additionally, a substantial proportion of these isolates demonstrated phospholipase production, while only a few strains exhibited protease production. Furthermore, all strains exhibited resistance or dose-dependent responses to amphotericin B and itraconazole, with the majority displaying resistance to fluconazole. In the in vivo test, we observed a significant correlation (p < 0.05) between the LT50 and biofilm formation as well as hyphae/pseudohyphae production. Additionally, some isolates demonstrated a quicker nematode-killing capacity compared to clinical controls. Our findings underscore the considerable pathogenic potential of certain Candida species present in the dynamics of anaerobic biodigestion. Importantly, the anaerobic biodigester system did not eliminate Candida strains from dairy cattle waste, highlighting the need for caution in utilizing biodigester products. We advocate for further studies to explore the virulence of other microorganisms in various animal production contexts. Furthermore, our results emphasize the urgency of enhancing waste treatment methods to effectively eliminate pathogens and curb their potential dissemination.
Collapse
Affiliation(s)
- Camila Branda Dos Reis
- Laboratory of Microorganism Cell Biology, Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Marcelo Henrique Otenio
- Laboratory of Livestock Waste Management, Brazilian Agricultural Research Corporation - Dairy Cattle, Juiz de Fora, Minas Gerais, 36038-330, Brazil.
| | | | - João Carlos Maia Dornelas
- Laboratory of Mycology, Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Paulo Henrique Fonseca do Carmo
- Laboratory of Mycology, Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Roberta Oliveira Viana
- Laboratory of Microorganism Cell Biology, Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Ana Carolina Santos Ricoy
- Laboratory of Microorganism Cell Biology, Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Viviane de Souza Alves
- Microbiology Department, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
4
|
Bienvenu AL, Ballut L, Picot S. Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity. J Fungi (Basel) 2024; 10:90. [PMID: 38392762 PMCID: PMC10889698 DOI: 10.3390/jof10020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
The World Health Organization (WHO) recently published a list of fungal priority pathogens, including Candida albicans and C. auris. The increased level of resistance of Candida is raising concern, considering the availability of only four classes of medicine. The WHO is seeking novel agent classes with different targets and mechanisms of action. Targeting Candida metacaspases to control intrinsic cell death could provide new therapeutic opportunities for invasive candidiasis. In this review, we provide the available evidence for Candida cell death, describe Candida metacaspases, and discuss the potential of Candida metacaspases to offer a new specific target. Targeting Candida cell death has good scientific rationale given that the fungicidal activity of many marketed antifungals is mediated, among others, by cell death triggering. But none of the available antifungals are specifically activating Candida metacaspases, making this target a new therapeutic opportunity for non-susceptible isolates. It is expected that antifungals based on the activation of fungi metacaspases will have a broad spectrum of action, as metacaspases have been described in many fungi, including filamentous fungi. Considering this original mechanism of action, it could be of great interest to combine these new antifungal candidates with existing antifungals. This approach would help to avoid the development of antifungal resistance, which is especially increasing in Candida.
Collapse
Affiliation(s)
- Anne-Lise Bienvenu
- Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France
- Malaria Research Unit, University Lyon, UMR 5246 CNRS-INSA-CPE-University Lyon1, 69100 Villeurbanne, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, 69367 Lyon, France
| | - Stephane Picot
- Malaria Research Unit, University Lyon, UMR 5246 CNRS-INSA-CPE-University Lyon1, 69100 Villeurbanne, France
- Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| |
Collapse
|
5
|
Sahoo S, Sharma S, Singh MP, Singh SK, Vamanu E, Rao KH. Metabolic and Phenotypic Changes Induced during N-Acetylglucosamine Signalling in the Fungal Pathogen Candida albicans. Biomedicines 2023; 11:1997. [PMID: 37509635 PMCID: PMC10377528 DOI: 10.3390/biomedicines11071997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The human commensal yeast Candida albicans is pathogenic and results in a variety of mucosal and deep tissue problems when the host is immunocompromised. Candida exhibits enormous metabolic flexibility and dynamic morphogenetic transition to survive under host niche environmental conditions and to cause virulence. The amino sugar N-acetylglucosamine (GlcNAc) available at the host infection sites, apart from acting as an extremely good carbon and nitrogen source, also induces cellular signalling in this pathogen. In C. albicans, GlcNAc performs multifaceted roles, including GlcNAc scavenging, GlcNAc import and metabolism, morphogenetic transition (yeast-hyphae and white-opaque switch), GlcNAc-induced cell death (GICD), and virulence. Understanding the molecular mechanism(s) involved in GlcNAc-induced cellular processes has become the main focus of many studies. In the current study, we focused on GlcNAc-induced metabolic changes associated with phenotypic changes. Here, we employed gas chromatography-mass spectrometry (GC-MS), which is a high-throughput and sensitive technology, to unveil global metabolomic changes that occur in GlcNAc vs. glucose grown conditions in Candida cells. The morphogenetic transition associated with metabolic changes was analysed by high-resolution field emission scanning electron microscopy (FE-SEM). Metabolite analysis revealed the upregulation of metabolites involved in the glyoxylate pathway, oxidative metabolism, and fatty acid catabolism to probably augment the synthesis of GlcNAc-induced hypha-specific materials. Furthermore, GlcNAc-grown cells showed slightly more sensitivity to amphotericin B treatment. These results all together provide new insights into the development of antifungal therapeutics for the control of candidiasis in humans.
Collapse
Affiliation(s)
- Somnath Sahoo
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara 144411, India
| | - Mahendra P Singh
- Department of Zoology and Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, India
| | - Sandeep K Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Kongara Hanumantha Rao
- Department of Biochemistry/Bioinformatics, School of Sciences, Gandhi Institute of Technology and Management (GITAM Deemed to be University), Visakhapatnam 530045, India
| |
Collapse
|
6
|
Haslene‐Hox H, Nærdal GK, Mørch Y, Hageskal G, Tøndervik A, Turøy AV, Johnsen H, Klinkenberg G, Sletta H. High-throughput assay for effect screening of amphotericin B and bioactive components on filamentous Candida albicans. J Appl Microbiol 2022; 133:3113-3125. [PMID: 35947058 PMCID: PMC9804330 DOI: 10.1111/jam.15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 08/06/2022] [Indexed: 01/05/2023]
Abstract
AIMS The aim of this study was to develop a high-throughput robotic microtiter plate-based screening assay for Candida albicans, optimizing growth conditions to replicate the filamentous biofilm growth found in vivo, and subsequently, to demonstrate the assay by evaluating the effect of nutritional drinks alone and in combination with the antifungal amphotericin B (AmB). METHODS AND RESULTS Candida albicans cultured in a defined growth medium showed filamentous growth in microcolonies, mimicking the morphology of oral mucosal disease (oral candidiasis). Addition of nutrient drinks containing fruit juices, fish oil and whey protein to the medium resulted in changed morphology and promoted growth as free yeast cells and with weak biofilm structures. Minimum inhibitory concentration of AmB on the biofilms was 0.25 μg ml-1 , and this was eightfold reduced (0.0038 μg ml-1 ) in the presence of the nutritional drinks. CONCLUSIONS The established assay demonstrated applicability for screening of antifungal and anti-biofilm effects of bioactive substances on C. albicans biofilm with clinically relevant morphology. SIGNIFICANCE AND IMPACT OF THE STUDY Candida albicans is the causative agent of the majority of fungal infections globally. The filamentous morphology of C. albicans and the ability to form biofilm are traits known to increase virulence and resistance towards antifungals. This study describes the development of a plate-based in vitro screening method mimicking the filamentous morphology of C. albicans found in vivo. The assay established can thus facilitate efficient antifungal drug discovery and development.
Collapse
Affiliation(s)
- Hanne Haslene‐Hox
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Guro Kruge Nærdal
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Yrr Mørch
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Gunhild Hageskal
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Anne Tøndervik
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | | | - Heidi Johnsen
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Geir Klinkenberg
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Håvard Sletta
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| |
Collapse
|
7
|
Roles of the pro-apoptotic factors CaNma111 and CaYbh3 in apoptosis and virulence of Candida albicans. Sci Rep 2022; 12:7574. [PMID: 35534671 PMCID: PMC9085738 DOI: 10.1038/s41598-022-11682-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Candida albicans, a commensal and opportunistic pathogen, undergoes apoptosis in response to various stimuli, including hydrogen peroxide, acetic acid, and antifungal agents. Apoptotic processes are highly conserved among mammals, plants, and fungi, but little is known about the apoptosis-regulating factors in C. albicans. In this study, C. albicans homologs of the putative apoptosis factors were identified by database screening followed by overexpression analysis. CaNma111, a homolog of the pro-apoptotic mammalian HtrA2/Omi, and CaYbh3, a homolog of BH3-only protein, yielded increased apoptotic phenotypes upon overexpression. We showed that CaNma111 and CaYbh3 functions as pro-apoptotic regulators by examining intracellular ROS accumulation, DNA end breaks (TUNEL assay), and cell survival in Canma111/Canma111 and Caybh3/Caybh3 deletion strains. We found that the protein level of CaBir1, an inhibitor-of-apoptosis (IAP) protein, was down-regulated by CaNma111. Interestingly, the Canma111/Canma111 and Caybh3/Caybh3 deletion strains showed hyperfilamentation phenotypes and increased virulence in a mouse infection model. Together, our results suggest that CaNma111 and CaYbh3 play key regulatory roles in the apoptosis and virulence of C. albicans.
Collapse
|
8
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
9
|
Mannarmannan M, Biswas K. Phytochemical‐Assisted Synthesis of Cuprous Oxide Nanoparticles and Their Antimicrobial Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202004471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Krishnendu Biswas
- Chemistry Division School of Advanced Sciences, VIT- Chennai 600 127 Tamilnadu India
| |
Collapse
|
10
|
Carolus H, Pierson S, Muñoz JF, Subotić A, Cruz RB, Cuomo CA, Van Dijck P. Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio 2021; 12:e03333-20. [PMID: 33820824 PMCID: PMC8092288 DOI: 10.1128/mbio.03333-20] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
Collapse
Affiliation(s)
- Hans Carolus
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - José F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ana Subotić
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Rita B Cruz
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Patrick Van Dijck
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 2020; 242:126621. [PMID: 33096325 DOI: 10.1016/j.micres.2020.126621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Candida auris is a worrisome fungal pathogen of humans which emerged merely about a decade ago. Ever since then the scientific community worked hard to understand clinically relevant traits, such as virulence factors, antifungal resistance mechanisms, and its ability to adhere to human skin and medical devices. Whole-genome sequencing of clinical isolates and epidemiological studies outlining the path of nosocomial outbreaks have been the focus of research into this pathogenic and multidrug-resistant yeast since its first description in 2009. More recently, work was started by several laboratories to explore the biology of C. auris. Here, we review the insights of studies characterizing the mechanisms underpinning antifungal drug resistance, biofilm formation, morphogenetic switching, cell aggregation, virulence, and pathogenicity of C. auris. We conclude that, although some progress has been made, there is still a long journey ahead of us, before we fully understand this novel pathogen. Critically important is the development of molecular tools for C. auris to make this fungus genetically tractable and traceable. This will allow an in-depth molecular dissection of the life cycle of C. auris, of its characteristics while interacting with the human host, and the mechanisms it employs to avoid being killed by antifungals and the immune system.
Collapse
|
12
|
Misas E, Escandón P, McEwen JG, Clay OK. The LUFS domain, its transcriptional regulator proteins, and drug resistance in the fungal pathogen Candida auris. Protein Sci 2020; 28:2024-2029. [PMID: 31503375 DOI: 10.1002/pro.3727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
The LUFS domain (LUG/LUH, Flo8, single-strand DNA-binding protein [SSBP]) is a well-conserved and apparently ancient region found in diverse proteins and taxa. This domain, which has as its most obvious structural feature a series of three helices, has been identified in transcriptional regulator proteins of animals, plants, and fungi. Recently, in these pages (Wang et al., Protein Sci., 2019, 28:788-793), the first crystal structure of a LUFS domain was reported, for the human SSBP2, a transcriptional repressor. We briefly address how the new insights into LUFS structures might contribute to a better understanding of an important transcriptional activator of yeasts that contains the LUFS domain, Flo8, and consider how a focus on the LUFS domain and its variation could help us to understand etiologies of drug resistance in a recently emerged pathogenic fungus, Candida auris.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan G McEwen
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver K Clay
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
13
|
Iyer KR, Whitesell L, Porco JA, Henkel T, Brown LE, Robbins N, Cowen LE. Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris. mBio 2020; 11:e03329-19. [PMID: 32156828 PMCID: PMC7064782 DOI: 10.1128/mbio.03329-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 11/20/2022] Open
Abstract
Fungal infections are a major contributor to infectious disease-related deaths worldwide. Recently, global emergence of the fungal pathogen Candida auris has caused considerable concern because most C. auris isolates are resistant to fluconazole, the most commonly administered antifungal, and some isolates are resistant to drugs from all three major antifungal classes. To identify novel agents with bioactivity against C. auris, we screened 2,454 compounds from a diversity-oriented synthesis collection. Of the five hits identified, most shared a common rocaglate core structure and displayed fungicidal activity against C. auris These rocaglate hits inhibited translation in C. auris but not in its pathogenic relative Candida albicans Species specificity was contingent on variation at a single amino acid residue in Tif1, a fungal member of the eukaryotic initiation factor 4A (eIF4A) family of translation initiation factors known to be targeted by rocaglates. Rocaglate-mediated inhibition of translation in C. auris activated a cell death program characterized by loss of mitochondrial membrane potential, increased caspase-like activity, and disrupted vacuolar homeostasis. In a rocaglate-sensitized C. albicans mutant engineered to express translation initiation factor 1 (Tif1) with the variant amino acid that we had identified in C. auris, translation was inhibited but no programmed cell death phenotypes were observed. This surprising finding suggests divergence between these related fungal pathogens in their pathways of cellular responses to translation inhibition. From a therapeutic perspective, the chemical biology that we have uncovered reveals species-specific vulnerability in C. auris and identifies a promising target for development of new, mechanistically distinct antifungals in the battle against this emerging pathogen.IMPORTANCE Emergence of the fungal pathogen Candida auris has ignited intrigue and alarm within the medical community and the public at large. This pathogen is unusually resistant to antifungals, threatening to overwhelm current management options. By screening a library of structurally diverse molecules, we found that C. auris is surprisingly sensitive to translation inhibition by a class of compounds known as rocaglates (also known as flavaglines). Despite the high level of conservation across fungi in their protein synthesis machinery, these compounds inhibited translation initiation and activated a cell death program in C. auris but not in its relative Candida albicans Our findings highlight a surprising divergence across the cell death programs operating in Candida species and underscore the need to understand the specific biology of a pathogen in attempting to develop more-effective treatments against it.
Collapse
Affiliation(s)
- Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | | | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Escandón P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, Rivera S, Misas E, Duarte C, Moulton-Meissner H, Welsh RM, Parra C, Pescador LA, Villalobos N, Salcedo S, Berrio I, Varón C, Espinosa-Bode A, Lockhart SR, Jackson BR, Litvintseva AP, Beltran M, Chiller TM. Molecular Epidemiology of Candida auris in Colombia Reveals a Highly Related, Countrywide Colonization With Regional Patterns in Amphotericin B Resistance. Clin Infect Dis 2020; 68:15-21. [PMID: 29788045 DOI: 10.1093/cid/ciy411] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Background Candida auris is a multidrug-resistant yeast associated with hospital outbreaks worldwide. During 2015-2016, multiple outbreaks were reported in Colombia. We aimed to understand the extent of contamination in healthcare settings and to characterize the molecular epidemiology of C. auris in Colombia. Methods We sampled patients, patient contacts, healthcare workers, and the environment in 4 hospitals with recent C. auris outbreaks. Using standardized protocols, people were swabbed at different body sites. Patient and procedure rooms were sectioned into 4 zones and surfaces were swabbed. We performed whole-genome sequencing (WGS) and antifungal susceptibility testing (AFST) on all isolates. Results Seven of the 17 (41%) people swabbed were found to be colonized. Candida auris was isolated from 37 of 322 (11%) environmental samples. These were collected from a variety of items in all 4 zones. WGS and AFST revealed that although isolates were similar throughout the country, isolates from the northern region were genetically distinct and more resistant to amphotericin B (AmB) than the isolates from central Colombia. Four novel nonsynonymous mutations were found to be significantly associated with AmB resistance. Conclusions Our results show that extensive C. auris contamination can occur and highlight the importance of adherence to appropriate infection control practices and disinfection strategies. Observed genetic diversity supports healthcare transmission and a recent expansion of C. auris within Colombia with divergent AmB susceptibility.
Collapse
Affiliation(s)
| | - Nancy A Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Diego H Caceres
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Paige Armstrong
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Elizabeth Misas
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas.,Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Heather Moulton-Meissner
- Division of Healthcare Quality and Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rory M Welsh
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Claudia Parra
- Unidad de Investigación en Proteómica y Micosis Humanas, Facultad de Ciencias, Pontificia Universidad Javeriana
| | | | | | | | - Indira Berrio
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas.,Hospital General de Medellín, Luz Castro Gutiérrez E.S.E., Medellín
| | - Carmen Varón
- Fundación Unidad de Cuidados Intensivos Doña Pilar, Cartagena, Colombia
| | - Andrés Espinosa-Bode
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brendan R Jackson
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Tom M Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
15
|
Leiter É, Csernoch L, Pócsi I. Programmed cell death in human pathogenic fungi - a possible therapeutic target. Expert Opin Ther Targets 2018; 22:1039-1048. [PMID: 30360667 DOI: 10.1080/14728222.2018.1541087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diseases caused by pathogenic fungi are increasing because of antibiotic overuse, the rise of immunosuppressive therapies, and climate change. The limited variety of antimycotics and the rapid adaptation of pathogenic fungi to antifungal agents serve to exacerbate this issue. Unfortunately, about 1.6 million people are killed by fungal infections annually. Areas covered: The discovery of the small antimicrobial proteins produced by microorganisms, animals, humans, and plants will hopefully overcome challenges in the treatment of fungal infections. These small proteins are highly stable and any resistance to them rarely evolves; therefore, they are potentially good candidates for the treatment and prevention of infections caused by pathogenic fungi. Some of these proteins target the programmed cell death machinery of pathogenic fungi; this is potentially a novel approach in antimycotic therapies. In this review, we highlight the elements of apoptosis in human pathogenic fungi and related model organisms and discuss the possible therapeutic potential of the apoptosis-inducing, small, antifungal proteins. Expert opinion: Small antimicrobial proteins may establish a new class of antimycotics in the future. The rarity of resistance and their synergistic effects with other frequently used antifungal agents may help pave the way for their use in the clinic.
Collapse
Affiliation(s)
- Éva Leiter
- a Department of Biotechnology and Microbiology , University of Debrecen , Debrecen , Hungary
| | - László Csernoch
- b Department of Physiology , University of Debrecen , Debrecen , Hungary
| | - István Pócsi
- a Department of Biotechnology and Microbiology , University of Debrecen , Debrecen , Hungary
| |
Collapse
|
16
|
Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microb Pathog 2018; 117:128-138. [DOI: 10.1016/j.micpath.2018.02.028] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
|
17
|
Ding X, Cao C, Zheng Q, Huang G. The Regulatory Subunit of Protein Kinase A (Bcy1) in Candida albicans Plays Critical Roles in Filamentation and White-Opaque Switching but Is Not Essential for Cell Growth. Front Microbiol 2017; 7:2127. [PMID: 28105026 PMCID: PMC5215307 DOI: 10.3389/fmicb.2016.02127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/16/2016] [Indexed: 01/25/2023] Open
Abstract
The conserved cAMP-dependent protein kinase (PKA) is composed of the regulatory and catalytic subunits and acts as the central component of the cAMP signaling pathway. In the human fungal pathogen Candida albicans, the PKA regulatory subunit Bcy1 plays a critical role in the regulation of cell differentiation and death. It has long been considered that Bcy1 is essential for cell viability in C. albicans. In the current study, surprisingly, we found that Bcy1 is not required for cell growth, and we successfully generated a bcy1/bcy1 null mutant in C. albicans. Deletion of BCY1 leads to multiple cellular morphologies and promotes the development of filaments. Filamentous and smooth colonies are two typical morphological types of the bcy1/bcy1 mutant, which can undergo spontaneous switching between the two types. Cells of filamentous colonies grow better on a number of different culture media and have a higher survival rate than cells of smooth colonies. In addition, deletion of BCY1 significantly increased the frequency of white-to-opaque switching on N-acetylglucosamine (GlcNAc)-containing medium. The bcy1/bcy1 null mutant generated herein provides the field a new resource to study the biological functions of the cAMP signaling pathway in C. albicans.
Collapse
Affiliation(s)
- Xuefen Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Chengjun Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|