1
|
Bryant VF, Patrikeeva SL, Wang X, Nanovskaya TN. Bidirectional transfer of pritelivir across term human placenta and its effect on placental functions. J Pharmacol Exp Ther 2025; 392:103581. [PMID: 40334585 DOI: 10.1016/j.jpet.2025.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Genital herpes in pregnancy is treated with nucleoside analog drugs such as acyclovir to reduce the risk of mother-to-neonate transfer of the virus. Pritelivir is a novel anti-herpes simplex virus drug that is effective against acyclovir-resistant viral strains and is currently in phase 3 clinical trial for nonpregnant subjects. Here, we determined bidirectional transfer of pritelivir across dually perfused term human placental lobule and its effect on placental tissue viability and functionality ex vivo. We also assessed potential cytotoxicity of pritelivir in vitro using human choriocarcinoma-derived trophoblast-like cells (BeWo, b30 clone) and human umbilical vein endothelial cells. Our data demonstrated the transfer of pritelivir across the placenta ex vivo from the maternal to the fetal circuit and vice versa. Clearance index of pritelivir (ie, the transfer of pritelivir normalized to the transfer of a freely diffusible reference compound antipyrine) in the fetal-to-maternal direction (0.98 ± 0.07, n = 9) exceeded its clearance index in the maternal-to-fetal direction (0.86 ± 0.08, n = 9, P = .006), suggesting involvement of mechanisms other than diffusion in the placental disposition of this drug (possibly, efflux membrane transporters P-glycoprotein and breast cancer resistance protein that accept pritelivir as a substrate in vitro). Although our data suggested plausible fetal exposure to the drug, pritelivir did not affect the production of lactate, the consumption of glucose and oxygen, and the release of human chorionic gonadotropin from the perfused placental tissue, indicating its favorable safety profile. Moreover, pritelivir did not alter the viability of the tested cells in vitro. SIGNIFICANCE STATEMENT: Preclinical data on placental disposition of pritelivir are crucial to advance the development of this novel antiherpetic drug for its use in pregnancy. The results revealed bidirectional transfer of pritelivir across dually perfused term human placenta ex vivo. Although fetal exposure to the drug is plausible, pritelivir did not impact the viability and functionality of the placenta. Higher transplacental transfer of pritelivir in the fetal-to-maternal direction rather than maternal-to-fetal direction suggested the involvement of placental membrane transporters.
Collapse
Affiliation(s)
- Valentina F Bryant
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas.
| | - Svetlana L Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Xiaoming Wang
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Tatiana N Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
2
|
Hopkins J, Volety I, Qatanani F, Shukla D. Heparanase 2 Modulation Inhibits HSV-2 Replication by Regulating Heparan Sulfate. Viruses 2024; 16:1832. [PMID: 39772142 PMCID: PMC11680312 DOI: 10.3390/v16121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication. We show that higher HPSE 2 negatively affects HSV-2 replication which may be through the regulation of cell surface HS. By acting as a competitive inhibitor of HPSE, HPSE 2 may be interfering with HPSE's interactions with HS. We demonstrate that the enhanced expression of HPSE 2, either via viral infection or plasmid transfection, reduces HPSE's ability to cleave HS, thereby hindering viral egress. Conversely, low HPSE 2 levels achieved through siRNA transfection allow HPSE to cleave more HS, reducing viral entry. Altogether, we propose a hypothetical model in which the modulation of HPSE 2 impedes HSV-2 replication by regulating HS availability on the cell surface. This dual role of HPSE 2 in viral replication and potential tumor suppression underscores its significance in cellular processes and viral pathogenesis.
Collapse
Affiliation(s)
- James Hopkins
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
- Department of Pathology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Farreh Qatanani
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Dass D, Banerjee A, Dhotre K, Sonawane V, More A, Mukherjee A. HSV-2 Manipulates Autophagy through Interferon Pathway: A Strategy for Viral Survival. Viruses 2024; 16:1383. [PMID: 39339859 PMCID: PMC11437441 DOI: 10.3390/v16091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Autophagy, an evolutionarily conserved cellular process, influences the regulation of viral infections. While the existing understanding indicates that Herpes Simplex Virus type 2 (HSV-2) maintains a basal level of autophagy to support its viral yield, the precise pathways governing the induction of autophagy during HSV-2 infection remain unknown. Therefore, this study aims to explore the role of type I interferons (IFN-I) in modulating autophagy during HSV-2 infection and to decode the associated signaling pathways. Our findings revealed an interplay wherein IFN-I regulates the autophagic response during HSV-2 infection. Additionally, we investigated the cellular pathways modulated during this complex process. Exploring the intricate network of signaling events involved in autophagy induction during HSV-2 infection holds promising therapeutic implications. Identifying these pathways advances our understanding of host-virus interactions and holds the foundation for developing targeted therapeutic strategies against HSV-2. The insight gained from this study provides a platform for exploring potential therapeutic targets to restrict HSV-2 infections, addressing a crucial need in antiviral research.
Collapse
Affiliation(s)
| | | | | | | | | | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India; (D.D.); (A.B.); (K.D.); (V.S.); (A.M.)
| |
Collapse
|
4
|
Wang X, Patrikeeva S, Nanovskaya T, Bryant V. Development and validation of HPLC-ultraviolet method for quantitative determination of pritelivir in human placental perfusion medium. Biomed Chromatogr 2024; 38:e5888. [PMID: 38727008 PMCID: PMC11262560 DOI: 10.1002/bmc.5888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
A simple and reliable HPLC-ultraviolet (HPLC-UV) method was developed and validated for the quantification of pritelivir in the samples of medium from the experiments utilizing the ex vivo technique of dual perfusion of the human placental lobule. Phenacetin was used as an internal standard (IS) in our HPLC-UV method. Chromatographic separation of pritelivir and phenacetin was achieved on a Waters Symmetry C18 HPLC column (100 × 2.1 mm, 3.5 μm) at ambient temperature (22-25°C). The mobile phase was composed of 50% methanol in deionized water (v/v), the flow rate for isocratic elution was established at 0.25 mL/min, and the detection wavelength for pritelivir and IS was set at 254 nm. Pritelivir and IS were extracted with the protein precipitation method using methanol as a solvent. The calibration curve for pritelivir exhibited linearity (r2 > 0.99) within the concentration range from 0.155 to 6.62 μg/mL. Within- and between-day accuracy ranged from 97% to 110% with relative standard deviation (RSD) values not exceeding 10%. The extraction recovery of pritelivir and IS ranged from 89% to 91% with RSD not exceeding 7%. Pritelivir was stable under the storage and sample handling conditions. This validated HPLC-UV method was utilized to quantify pritelivir in the placental perfusion medium samples, and the resulting concentrations were authenticated with incurred sample reanalysis to confirm the reliability of the method.
Collapse
Affiliation(s)
- Xiaoming Wang
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Svetlana Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tatiana Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Valentina Bryant
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Perez J, Lewis KA, Vargas S, Klausner JD, Konda KA. Does genital herpes symptom history predict herpes simplex virus type 2 antibody positivity? Int J STD AIDS 2024; 35:169-175. [PMID: 37937339 DOI: 10.1177/09564624231213116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND Sexually transmitted infections (STIs) associated with genital ulcer disease due to herpes simplex virus-2 (HSV-2) are a prominent cause of morbidity and mortality. Serologic screening for HSV-2 is recommended only for individuals with genital herpes symptom history. However, no validated symptom screening tool currently exists. METHODS Currently asymptomatic adults presenting for routine care at STI clinics in Lima, Peru completed a survey of prior genital herpes symptoms and received HSV-2 serological testing with the Euroimmun Anti-HSV-2 (gG2) ELISA IgG (Lubeck, Germany). A sub-sample of indeterminate results were sent for Western blot confirmatory testing. We assessed associations between past symptoms and anti-HSV-2 positivity and corrected the HSV-2 prevalence by re-classifying indeterminates per Western Blot results. RESULTS We enrolled 131 participants between July and October 2022. HSV-2 antibody test results found 21.4% positive, 41.2% indeterminate, and 37.4% negative. Excluding indeterminate results, 36.4% were positive. Of participants with no prior symptoms 31.2% tested positive, compared to 35.7% with one prior symptom, 50.0% with 2, and 50.0% with 3+ prior symptoms. Among the sub-sample of indeterminates, 92.6% were confirmed positive by Western Blot, bringing the total estimated proportion of participants with HSV-2 antibodies to 59.5%. Either based on the original classification of HSV-2 antibody status or after incorporation of confirmatory testing results, there was no significant association between symptom history and HSV-2 antibody positivity. CONCLUSIONS With currently available tests, recommendations to screen individuals based on genital herpes symptom history may not be useful. More discriminatory symptom screening tools or HSV-2 antibody tests with better performance are needed.
Collapse
Affiliation(s)
- Jessica Perez
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Katherine A Lewis
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Silver Vargas
- Centro de Investigación Interdisciplinaria en Sexualidad, SIDA y Sociedad, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeffrey D Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kelika A Konda
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Sausen DG, Shechter O, Gallo ES, Dahari H, Borenstein R. Herpes Simplex Virus, Human Papillomavirus, and Cervical Cancer: Overview, Relationship, and Treatment Implications. Cancers (Basel) 2023; 15:3692. [PMID: 37509353 PMCID: PMC10378257 DOI: 10.3390/cancers15143692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
There is a significant body of research examining the role of human papillomavirus (HPV) in the pathogenesis of cervical cancer, with a particular emphasis on the oncogenic proteins E5, E6, and E7. What is less well explored, however, is the relationship between cervical cancer and herpes simplex virus (HSV). To date, studies examining the role of HSV in cervical cancer pathogenesis have yielded mixed results. While several experiments have determined that HPV/HSV-2 coinfection results in a higher risk of developing cervical cancer, others have questioned the validity of this association. However, clarifying the potential role of HSV in the pathogenesis of cervical cancer may have significant implications for both the prevention and treatment of this disease. Should this relationship be clarified, treating and preventing HSV could open another avenue with which to prevent cervical cancer. The importance of this is highlighted by the fact that, despite the creation of an effective vaccine against HPV, cervical cancer still impacts 604,000 women and is responsible for 342,000 deaths annually. This review provides an overview of HSV and HPV infections and then delves into the possible links between HPV, HSV, and cervical cancer. It concludes with a summary of preventive measures against and recent treatment advances in cervical cancer.
Collapse
Affiliation(s)
- Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
8
|
Allan-Blitz LT, Gandhi M, Adamson P, Park I, Bolan G, Klausner JD. A Position Statement on Mpox as a Sexually Transmitted Disease. Clin Infect Dis 2023; 76:1508-1512. [PMID: 36546646 PMCID: PMC10110265 DOI: 10.1093/cid/ciac960] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The global outbreak of mpox virus constituted an international public health emergency. Reports have highlighted (1) a temporal association between sexual activity and mpox, (2) an association between specific sexual practices and location of lesion development, (3) a high frequency of sexual practices conferring risk for other sexually transmitted infections among cases of mpox, (4) that mpox virus can be isolated from sexual fluids, (4) that isolated virus is infectious, and (5) a high frequency of anogenital lesions prior to disease dissemination suggesting direct inoculation during sexual activities. Finally, a growing body of evidence suggests that sexual transmission is the predominant mode of transmission for mpox virus. We therefore conclude that mpox is a sexually transmitted disease. Labeling it as such will help focus public health interventions, such as vaccinations, testing, and treatment, as well as facilitate focused awareness and education programs toward behavioral modifications to reduce exposures.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women’s Hospital, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, USA
- Ward 86 HIV Clinic, San Francisco General Hospital, USA
| | - Paul Adamson
- Division of Infectious Diseases, Department of Medicine, University of California, USA
| | - Ina Park
- Department of Family and Community Medicine and Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Francisco, USA
| | | | - Jeffrey D Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, USA
| |
Collapse
|
9
|
Bragazzi NL, Kong JD, Wu J. Is monkeypox a new, emerging sexually transmitted disease? A rapid review of the literature. J Med Virol 2023; 95:e28145. [PMID: 36101012 DOI: 10.1002/jmv.28145] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 01/11/2023]
Abstract
Monkeypox, a milder disease compared to smallpox, is caused by a virus initially discovered and described in 1958 by the prominent Danish virologist von Magnus, who was investigating an infectious outbreak affecting monkey colonies. Currently, officially starting from May 2022, an outbreak of monkeypox is ongoing, with 51 000 cases being notified as of September 1, 2022-51 408 confirmed, 28 suspected, and 12 fatalities, for a grand total of 51 448 cases. More than 100 countries and territories are affected, from all the six World Health Organization regions. There are some striking features, that make this outbreak rather unusual when compared with previous outbreaks, including a shift on average age and the most affected age group, affected sex/gender, risk factors, clinical course, presentation, and the transmission route. Initially predominantly zoonotic, with an animal-to-human transmission, throughout the last decades, human-to-human transmission has become more and more sustained and effective. In particular, clusters of monkeypox have been described among men having sex with men, some of which have been epidemiologically linked to international travel to nonendemic countries and participation in mass gathering events/festivals, like the "Maspalomas (Gran Canaria) 2022 pride." This review will specifically focus on the "emerging" transmission route of the monkeypox virus, that is to say, the sexual transmission route, which, although not confirmed yet, seems highly likely in the diffusion of the infectious agent.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, Ontario, Canada
| | - Jude Dzevela Kong
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, Ontario, Canada
| | - Jianhong Wu
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, Ontario, Canada
| |
Collapse
|
10
|
LAMP3/CD63 Expression in Early and Late Endosomes in Human Vaginal Epithelial Cells Is Associated with Enhancement of HSV-2 Infection. J Virol 2022; 96:e0155322. [PMID: 36350153 PMCID: PMC9749459 DOI: 10.1128/jvi.01553-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a lifelong sexually transmitted virus that disproportionately infects women through heterosexual transmission in the vaginal tract. The vaginal epithelium is known to be highly susceptible to HSV-2 infection; however, the cellular mechanism of HSV-2 uptake and replication in vaginal epithelium has not been extensively studied. Previously, we observed that lysosomal-associated membrane protein-3 (LAMP3/CD63) was among the highly upregulated genes during HSV-2 infection of human vaginal epithelial cell line VK2, leading us to posit that LAMP3/CD63 may play a role in HSV-2 infection. Consequently, we generated two gene-altered VK2-derived cell lines, a LAMP3-overexpressed (OE) line and a LAMP3 knockout (KO) line. The wild-type VK2 and the LAMP3 OE and KO cell lines were grown in air-liquid interface (ALI) cultures for 7 days and infected with HSV-2. Twenty-four hours postinfection, LAMP3 OE cells produced and released significantly higher numbers of HSV-2 virions than wild-type VK2 cells, while virus production was greatly attenuated in LAMP3 KO cells, indicating a functional association between LAMP3/CD63 expression and HSV-2 replication. Fluorescence microscopy of HSV-2-infected cells revealed that HSV-2 colocalized with LAMP3 in both early endosomes and lysosomal compartments. In addition, blocking endosomal maturation or late endosomal/lysosomal fusion using specific inhibitors resulted in reduced HSV-2 replication in VK2 cells. Similarly, LAMP3 KO cells exhibited very low viral entry and association with endosomes, while LAMP3 OE cells demonstrated large amounts of virus that colocalized with LAMP3/CD63 in endosomes and lysosomes. IMPORTANCE Collectively, these results showed that HSV-2 is taken up by human vaginal epithelial cells through an endosomal-lysosomal pathway in association with LAMP3, which plays a crucial role in the enhancement of HSV-2 replication. These findings provide the basis for the future design of antiviral agents for prophylactic measures against HSV-2 infection.
Collapse
|
11
|
Evaluation of (S)-10-Hydroxycamptothecin Inhibitor of Herpes Simplex Type 1 Identified from Screening of a Library of Natural Products. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-130237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Herpes simplex virus type 1 (HSV-1) causes serious illness in humans, especially in newborns and immunocompromised hosts. Public health requires the development of new, less toxic anti-HSV-1 drugs. Objectives: This study aimed to evaluate the potential anti-herpesvirus activity of natural products in an extensive library of 133 compounds by examining viral titers and the number of viral plaques. Methods: (S)-10-hydroxycamptothecin (10-HCPT) as an inhibitor against viral DNA replication in the lowest concentration ranges from a set of natural products consisting of screening 133 compounds. Each step of the viral replication cycle of HSV-1 on A549 cells was evaluated with different assays, including adsorption, penetration, time-of-addition assay, and quantitative polymerase chain reaction (PCR). The respective antiviral effects on HSV-1AN95 infection were assessed in vitro. Results: 10-HCPT was found to be a potent inhibitor of HSV-1 infection in the lowest concentration range from screening of a natural product library. The results showed that 10-HCPT significantly affects HSV-1 viral plaque formation inhibition, with a half maximal effective concentration (EC50) of 0.07 μM. The time of addition assay suggested that 10-HCPT had a viral inhibitory effect when added 8 hours after infection. It was further confirmed by reducing the expression of late viral genes including glycoprotein (g) and viral protein (VP) (gB, gD, gH, VP1/2, and VP16) 4 hours after infection in the 10-HCPT treatment group compared to positive controls by quantitative real-time PCR. The Western blotting results are inconsistent with other reported results. It showed that 10-HCPT did not affect gD and ICP4 during HSV-1 infection, and 10-HCPT appeared to affect other genes in the immediate-early (IE) and late (L) steps. Conclusions: 10-HCPT demonstrated anti-HSV activity on HSV-1. Their dose-dependent antiviral activity showed that specific cellular components might mediate their function rather than cytotoxicity. This survey suggests a new outlook in exploring effective treatment options for HSV-1 infections.
Collapse
|
12
|
Aliabadi N, Jamalidoust M, Pouladfar G, Ziyaeyan A, Ziyaeyan M. Antiviral activity of triptolide on herpes simplex virus in vitro. Immun Inflamm Dis 2022; 10:e667. [PMID: 35759241 PMCID: PMC9208287 DOI: 10.1002/iid3.667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Herpes simplex virus-type 1 (HSV-1) can cause diseases, especially amongst neonates and immunocompromised hosts. Hence, developing a novel anti-HSV-1 drug with low-level toxicity is vital. Triptolide (TP), a diterpenoid triepoxide is a natural product with range of bioactivity qualities. METHODS In this study, viral infection was assessed in different phases of the HSV-1 replication cycle on A549 cells, using various assays, such as adsorption inhibition assay, penetration inhibition assay, time-of-addition assay, and quantitative polymerase chain reaction (qPCR). RESULTS The results indicate that TP can effectively inhibit HSV-1 infection in the lowest range of concentration. TP exhibited significant inhibitory effect on HSV-1 plaque formation, with 50% effective concentration (EC50) of 0.05 µM. Furthermore, the time-of-addition assay suggests that TP has viral inhibitory effects when it was added less than 8 h postinfection (h.p.i.). This result is further confirmed by decline in the expression viral immediate-early genes (ICP4, ICP22, and ICP27) in 6 h.p.i in the TP-treated group compared to the control group, evaluated by real-time qPCR. The Western blotting result was also consistent with the previous findings, which confirms that TP can positively affect ICP4 during HSV-1 infection. CONCLUSIONS The TP also showed antiviral activity against HSV-1. This dose-dependent activity is an indication of a particular cellular component, rather than cytotoxicity that has mediated its function. Finally, the result suggest a new approach for an effective treatment option of the HSV-1 infections.
Collapse
Affiliation(s)
- Nasrin Aliabadi
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| | - Marzieh Jamalidoust
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| | - Gholamreza Pouladfar
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| | - Atoosa Ziyaeyan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroder Arthritis InstituteUniversity Health NetworkTorontoCanada
| | - Mazyar Ziyaeyan
- Department of Clinical Virology, Clinical Microbiology Research Center, Namazi HospitalShiraz University of Medical SciencesShirazIran
| |
Collapse
|
13
|
Safety and efficacy of G2-S16 dendrimer as microbicide in healthy human vaginal tissue explants. J Nanobiotechnology 2022; 20:151. [PMID: 35307031 PMCID: PMC8935742 DOI: 10.1186/s12951-022-01350-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The absence of an effective treatment and vaccine in HIV-1 pandemic place preventive strategies such as safety and effective microbicide development as a central therapeutic approach to control HIV-1 pandemic nowadays. RESULTS Studies of cytotoxicity, immune population status, inflammation or tissue damage and mainly prophylactic inhibition of HIV-1 infection in vaginal human explants demonstrate the biosafety and effectivity of G2-S16 dendrimer. Human explants treated with G2-S16 dendrimer or treated and HIV-1 infected do not presented signs of irritation, inflammation, immune activation or T cell populations deregulation. CONCLUSIONS Herein we conclude that G2-S16 dendrimer has demonstrated sufficient efficacy, biosafety, effectivity and behavior in the closest to the real-life condition model represented by the human healthy donor vaginal tissue explants, to raise G2-S16 dendrimer as a promising candidate to clinical trials to develop an effective microbicide against HIV-1 infection.
Collapse
|
14
|
BX795-Organic Acid Coevaporates: Evaluation of Solid-State Characteristics, In Vitro Cytocompatibility and In Vitro Activity against HSV-1 and HSV-2. Pharmaceutics 2021; 13:pharmaceutics13111920. [PMID: 34834335 PMCID: PMC8623185 DOI: 10.3390/pharmaceutics13111920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
BX795 is a TANK binding kinase-1 inhibitor that has shown excellent therapeutic activity in murine models of genital and ocular herpes infections on topical delivery. Currently, only the BX795 free base and its hydrochloride salt are available commercially. Here, we evaluate the ability of various organic acids suitable for vaginal and/or ocular delivery to form BX795 salts/cocrystals/co-amorphous systems with the aim of facilitating pharmaceutical development of BX795. We characterized BX795-organic acid coevaporates using powder X-ray diffractometry, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, 1H-nuclear magnetic resonance spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the interaction between BX795 and various organic acids such as taurine, maleic acid, fumaric acid, tartaric acid, and citric acid. Furthermore, using human corneal epithelial cells and HeLa cells, we evaluated BX795-organic acid coevaporates for in vitro cytocompatibility and in vitro antiviral activity against herpes simplex virus-type 1 (HSV-1) and type-2 (HSV-2). Our studies indicate that BX795 forms co-amorphous systems with tartaric acid and citric acid. Interestingly, the association of organic acids with BX795 improved its thermal stability. Our in vitro cytocompatibility and in vitro antiviral studies to screen suitable BX795-organic acid coevaporates for further development show that all BX795-organic acid systems, at a concentration equivalent to 10 µM BX795, retained antiviral activity against HSV-1 and HSV-2 but showed differential cytocompatibility. Further, dose-dependent in vitro cytocompatibility and antiviral activity studies on the BX795-fumaric acid system, BX795-tartaric acid co-amorphous system, and BX795-citric acid co-amorphous system show similar antiviral activity against HSV-1 and HSV-2 compared to BX795, whereas only the BX795-citric acid co-amorphous system showed higher in vitro cytocompatibility compared to BX795.
Collapse
|
15
|
VanBenschoten HM, Woodrow KA. Vaginal delivery of vaccines. Adv Drug Deliv Rev 2021; 178:113956. [PMID: 34481031 PMCID: PMC8722700 DOI: 10.1016/j.addr.2021.113956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/06/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Recent estimates suggest that one in two sexually active individuals will acquire a sexually transmitted infection by age 25, an alarming statistic that amounts to over 1 million new infections per day worldwide. Vaccination against STIs is highly desirable for alleviating this global burden of disease. Vaginal immunization is a promising strategy to combat transmission via the vaginal mucosa. The vagina is typically considered a poor inductive site for common correlates of adaptive immunity. However, emerging evidence suggests that immune tolerance may be overcome by precisely engineered vaccination schemes that orchestrate cell-mediated immunity and establish tissue resident memory immune cells. In this review, we will discuss the unique immunological milieu of the vaginal mucosa and our current understanding of correlates of pathogenesis and protection for several common STIs. We then present a summary of recent vaginal vaccine studies and explore the role that mucosal adjuvants and delivery systems play in enhancing protection according to requisite features of immunity. Finally, we offer perspectives on the challenges and future directions of vaginal vaccine delivery, discussing remaining physiological barriers and innovative vaccine formulations that may overcome them.
Collapse
Affiliation(s)
- Hannah M VanBenschoten
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
16
|
Prophylactic treatment with BX795 blocks activation of AKT and its downstream targets to protect vaginal keratinocytes and vaginal epithelium from HSV-2 infection. Antiviral Res 2021; 194:105145. [PMID: 34303747 DOI: 10.1016/j.antiviral.2021.105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022]
Abstract
Genital herpes infections in humans are usually caused by herpes simplex virus type-2 (HSV-2), which result in recurrent lesions in the anogenital region. Past studies have shown that a viral protein translation inhibitor, BX795 is capable of mitigating HSV-2 infection both in vitro and in vivo when dosed therapeutically. However, any preventative benefits of this compound against HSV-2 infection remain poorly understood. In this study, we show that BX795 when added prophylactically to human vaginal keratinocytes generates strong preventative effects against a future HSV-2 infection. As a possible mechanism for this action, we found that BX795 efficiently reduces phosphorylation of AKT and its downstream targets p70S6K and 4EBP1. Our in-silico protein docking studies support our immunoblotting results and provide further credence to the proposed mechanism. Using a murine model of vaginal infection, we show that prior treatment with BX795 is also protective in vivo and leads to lower viral replication in the vaginal tissue.
Collapse
|
17
|
Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:381. [PMID: 33921724 PMCID: PMC8073840 DOI: 10.3390/ph14040381] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh 171207, India;
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
18
|
Koganti R, Memon A, Shukla D. Emerging Roles of Heparan Sulfate Proteoglycans in Viral Pathogenesis. Semin Thromb Hemost 2021; 47:283-294. [PMID: 33851373 DOI: 10.1055/s-0041-1725068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heparan sulfate is a glycosaminoglycan present in nearly all mammalian tissues. Heparan sulfate moieties are attached to the cell surface via heparan sulfate proteoglycans (HSPGs) which are composed of a protein core bound to multiple heparan sulfate chains. HSPGs contribute to the structural integrity of the extracellular matrix and participate in cell signaling by releasing bound cytokines and chemokines once cleaved by an enzyme, heparanase. HSPGs are often exploited by viruses during infection, particularly during attachment and egress. Loss or inhibition of HSPGs initially during infection can yield significant decreases in viral entry and infectivity. In this review, we provide an overview of HSPGs in the lifecycle of multiple viruses, including herpesviruses, human immunodeficiency virus, dengue virus, human papillomavirus, and coronaviruses.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Abdullah Memon
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Obisesan OS, Sithebe NP, Mufhandu HT. Seroprevalence and characterisation of herpes simplex virus from human immunodeficiency virus in samples collected from two provinces in South Africa: a retrospective study. F1000Res 2021; 10:105. [PMID: 34853674 PMCID: PMC8591517 DOI: 10.12688/f1000research.28105.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 04/05/2024] Open
Abstract
Background: Herpes simplex virus (HSV) is a widely distributed human pathogen that is known for its ulcerative lesions at the infection site. HSV can cause persistent infection in the host that is often followed by a period of latency within the neurons. Considering the high rate of HIV infection in South Africa, it is important to assess the seroprevalence of HSV with a focus to determine the epidemiological association between HSV-DNA and HIV-1 in the population. Methods: A total of 44 sera samples were screened for HSV and HIV-1 using the highly sensitive enzyme-linked immunosorbent assay (ELISA). The ELISA positive samples were characterized using polymerase chain reaction (PCR) to confirm the positivity of both viruses and to further differentiate HSV into HSV-1 and -2. Thereafter, the samples were analysed for relatedness using phylogenetic analysis. Results: Of the 44 samples, 36 (81.8%) were positive for HIV-1, while 35 (79.5%) were positive for HSV when screened with ELISA kits. The PCR results, with the use of type specific primers, showed that 4/35 (11.4%) samples were specific for HSV-1 while 30/35 (85.7%) were specific for HSV-2. Statistical analysis performed using the chi-squared goodness-of-fit test showed that there is a significant relationship between HSV-2 and HIV-1 transmission. Conclusions: The prevalence of HSV in the population is high with an increased HSV-2 infection in women. Our study shows that some of the HSV-2 isolates are not related to the clinical isolate SD90e from South Africa, suggesting diversity in HSV-2 viral transmission.
Collapse
|
20
|
Obisesan OS, Sithebe NP, Mufhandu HT. Seroprevalence and characterisation of herpes simplex virus from human immunodeficiency virus in samples collected from two provinces in South Africa: a retrospective study. F1000Res 2021; 10:105. [PMID: 34853674 PMCID: PMC8591517 DOI: 10.12688/f1000research.28105.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Herpes simplex virus (HSV) is a widely distributed human pathogen that is known for its ulcerative lesions at the infection site. HSV can cause persistent infection in the host that is often followed by a period of latency within the neurons. Considering the high rate of HIV infection in South Africa, it is important to assess the seroprevalence of HSV with a focus to determine the epidemiological association between HSV-DNA and HIV-1 in the population. Methods: A total of 44 sera samples were screened for HSV and HIV-1 using the highly sensitive enzyme-linked immunosorbent assay (ELISA). The ELISA positive samples were characterized using polymerase chain reaction (PCR) to confirm the positivity of both viruses and to further differentiate HSV into HSV-1 and -2. Thereafter, the samples were analysed for relatedness using phylogenetic analysis. Results: Of the 44 samples, 36 (81.8%) were positive for HIV-1, while 35 (79.5%) were positive for HSV when screened with ELISA kits. The PCR results, with the use of type specific primers, showed that 4/35 (11.4%) samples were specific for HSV-1 while 30/35 (85.7%) were specific for HSV-2. Statistical analysis performed using the chi-squared goodness-of-fit test showed that there is a significant relationship between HSV-2 and HIV-1 transmission. Conclusions: There is a significant positive association between HSV-2 and HIV-1 in the study population. Our study shows that some of the HSV-2 isolates are not related to the clinical isolate SD90e from South Africa, suggesting diversity in HSV-2 viral transmission.
Collapse
|
21
|
Obisesan OS, Sithebe NP, Mufhandu HT. Seroprevalence and characterisation of herpes simplex virus from human immunodeficiency virus in samples collected from the North-West and KwaZulu-Natal Provinces: a retrospective study. F1000Res 2021; 10:105. [PMID: 34853674 PMCID: PMC8591517 DOI: 10.12688/f1000research.28105.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 04/05/2024] Open
Abstract
Background: Herpes simplex viruses (HSVs) are highly pervasive and show a strong synergistic interaction with human immunodeficiency virus (HIV). High prevalence of HSV type 1 (HSV-1) has been reported in Africa with a prevalence rate of 20-80% in women and 10-50% in men. Studies on the prevalence of HSV in South Africa are few considering the rate of HIV infection in the country. Our focus was to determine the molecular prevalence of HSV-DNA in HIV-1 sera. Methods: In total, 44 convenience samples were screened for HSV and HIV-1 using the highly sensitive enzyme-linked immunosorbent assay (ELISA). The ELISA positive samples were characterized using polymerase chain reaction (PCR) to confirm the positivity of both viruses and to further differentiate HSV into HSV-1 and -2. Thereafter, the samples were analysed for relatedness using phylogenetic analysis. Results: Of 44 samples, 36 (81.8%) were positive for HIV-1, while 35 (79.5%) were positive for HSV when screened with ELISA kits. The results of PCR with type specific primers showed that 4/35 (11.4%) samples were specific for HSV-1 while 30/35 (85.7%) were specific for HSV-2. Statistical analysis performed using chi-squared goodness-of-fit test showed that there is a significant relationship between HSV-2 and HIV-1 transmission. Conclusions: High prevalence of HSV-2 recorded in HIV-1 sera corroborate with similar studies conducted within different cohorts in the continent. SPSS Pearson's chi-squared test established that there is a significant relationship between HSV-2 and HIV-1 transmission.
Collapse
|
22
|
Obisesan OS, Sithebe NP, Mufhandu HT. Seroprevalence and characterisation of herpes simplex virus from human immunodeficiency virus in samples collected from two provinces in South Africa: a retrospective study. F1000Res 2021; 10:105. [PMID: 34853674 PMCID: PMC8591517 DOI: 10.12688/f1000research.28105.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 04/05/2024] Open
Abstract
Background: Herpes simplex virus (HSV) is a widely distributed human pathogen that is known for its ulcerative lesions at the infection site. HSV can cause persistent infection in the host that is often followed by a period of latency within the neurons. Considering the high rate of HIV infection in South Africa, it is important to assess the seroprevalence of HSV with a focus to determine the epidemiological association between HSV-DNA and HIV-1 in the population. Methods: A total of 44 sera samples were screened for HSV and HIV-1 using the highly sensitive enzyme-linked immunosorbent assay (ELISA). The ELISA positive samples were characterized using polymerase chain reaction (PCR) to confirm the positivity of both viruses and to further differentiate HSV into HSV-1 and -2. Thereafter, the samples were analysed for relatedness using phylogenetic analysis. Results: Of the 44 samples, 36 (81.8%) were positive for HIV-1, while 35 (79.5%) were positive for HSV when screened with ELISA kits. The PCR results, with the use of type specific primers, showed that 4/35 (11.4%) samples were specific for HSV-1 while 30/35 (85.7%) were specific for HSV-2. Statistical analysis performed using the chi-squared goodness-of-fit test showed that there is a significant relationship between HSV-2 and HIV-1 transmission. Conclusions:There is a significant relationship between HSV-2 and HIV-1 in the study population. Our study shows that some of the HSV-2 isolates are not related to the clinical isolate SD90e from South Africa, suggesting diversity in HSV-2 viral transmission.
Collapse
|
23
|
Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent Advances in Nanosystems and Strategies for Vaginal Delivery of Antimicrobials. NANOMATERIALS 2021; 11:nano11020311. [PMID: 33530510 PMCID: PMC7912580 DOI: 10.3390/nano11020311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Vaginal infections such as bacterial vaginosis (BV), chlamydia, gonorrhea, genital herpes, candidiasis, and trichomoniasis affect millions of women each year. They are caused by an overgrowth of microorganisms, generally sexually transmitted, which in turn can be favored by alterations in the vaginal flora. Conventional treatments of these infections consist in systemic or local antimicrobial therapies. However, in the attempt to reduce adverse effects and to contrast microbial resistance and infection recurrences, many efforts have been devoted to the development of vaginal systems for the local delivery of antimicrobials. Several topical dosage forms such as aerosols, lotions, suppositories, tablets, gels, and creams have been proposed, although they are sometimes ineffective due to their poor penetration and rapid removal from the vaginal canal. For these reasons, the development of innovative drug delivery systems, able to remain in situ and release active agents for a prolonged period, is becoming more and more important. Among all, nanosystems such as liposomes, nanoparticles (NPs), and micelles with tunable surface properties, but also thermogelling nanocomposites, could be exploited to improve local drug delivery, biodistribution, retention, and uptake in vulvovaginal tissues. The aim of this review is to provide a survey of the variety of nanoplatforms developed for the vaginal delivery of antimicrobial agents. A concise summary of the most common vaginal infections and of the conventional therapies is also provided.
Collapse
|
24
|
TRIM26 Facilitates HSV-2 Infection by Downregulating Antiviral Responses through the IRF3 Pathway. Viruses 2021; 13:v13010070. [PMID: 33419081 PMCID: PMC7825454 DOI: 10.3390/v13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is the primary cause of genital herpes which results in significant morbidity and mortality, especially in women, worldwide. HSV-2 is transmitted primarily through infection of epithelial cells at skin and mucosal surfaces. Our earlier work to examine interactions between HSV-2 and vaginal epithelial cells demonstrated that infection of the human vaginal epithelial cell line (VK2) with HSV-2 resulted in increased expression of TRIM26, a negative regulator of the Type I interferon pathway. Given that upregulation of TRIM26 could negatively affect anti-viral pathways, we decided to further study the role of TRIM26 in HSV-2 infection and replication. To do this, we designed and generated two cell lines derived from VK2s with TRIM26 overexpressed (OE) and knocked out (KO). Both, along with wildtype (WT) VK2, were infected with HSV-2 and viral titres were measured in supernatants 24 h later. Our results showed significantly enhanced virus production by TRIM26 OE cells, but very little replication in TRIM26 KO cells. We next examined interferon-β production and expression of two distinct interferon stimulated genes (ISGs), MX1 and ISG15, in all three cell lines, prior to and following HSV-2 infection. The absence of TRIM26 (KO) significantly upregulated interferon-β production at baseline and even further after HSV-2 infection. TRIM26 KO cells also showed significant increase in the expression of MX1 and ISG15 before and after HSV-2 infection. Immunofluorescent staining indicated that overexpression of TRIM26 substantially decreased the nuclear localization of IRF3, the primary mediator of ISG activation, before and after HSV-2 infection. Taken together, our data indicate that HSV-2 utilizes host factor TRIM26 to evade anti-viral response and thereby increase its replication in vaginal epithelial cells.
Collapse
|
25
|
Yadavalli T, Mallick S, Patel P, Koganti R, Shukla D, Date AA. Pharmaceutically Acceptable Carboxylic Acid-Terminated Polymers Show Activity and Selectivity against HSV-1 and HSV-2 and Synergy with Antiviral Drugs. ACS Infect Dis 2020; 6:2926-2937. [PMID: 33078609 DOI: 10.1021/acsinfecdis.0c00368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polyanionic macromolecules including carboxylate-terminated polymers (polycarboxylates) are capable of inhibiting sexually transmitted viruses such as human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Cellulose acetate phthalate (CAP), a pharmaceutically acceptable pH-sensitive polycarboxylate polymer, showed promising prophylactic activity against HIV and HSV, but the instability of CAP in an aqueous environment prevented its clinical development. Interestingly, several pharmaceutically acceptable polycarboxylates have features similar to CAP with an aqueous stability significantly higher than that of CAP. However, their activity against sexually transmitted viruses remains unexplored. Here, we evaluate the activity of various polycarboxylates such as polyvinyl acetate phthalate (PVAP), various grades of hydroxypropyl methylcellulose phthalate (HPMCP-50, HPMCP-55, and HPMCP-55S), and various grades of methacrylic acid copolymers (Eudragit L100-55, Eudragit L100, Eudragit S100, and Kollicoat MAE 100P) against HSV. We, for the first time, demonstrate that PVAP, HPMCP-55S, and Eudragit S100 have activity and selectivity against HSV-1 and HSV-2. Further, we report that polycarboxylates can be easily transformed into nanoparticles (NPs) and in the nanoparticulate form, they show similar or enhanced activity against HSV. Finally, using PVAP NPs, as a model, we demonstrate using in vitro HSV therapy studies that polycarboxylate NPs are capable of synergizing with antiviral drugs such as acyclovir (ACV), tenofovir, and tenofovir disoproxil fumarate. Thus, pharmaceutically acceptable carboxylic acid-terminated polymers and their NPs have the potential to be developed into topical formulations for the prevention and treatment of HSV infection.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, Hawaii 96720, United States
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Abhijit A. Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii Hilo, Hilo, Hawaii 96720, United States
| |
Collapse
|
26
|
Mehta SD, Nandi D, Agingu W, Green SJ, Bhaumik DK, Bailey RC, Otieno F. Vaginal and Penile Microbiome Associations with HSV-2 in Women and their Male Sex Partners. J Infect Dis 2020; 226:644-654. [PMID: 32822500 PMCID: PMC9441199 DOI: 10.1093/infdis/jiaa529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 02/04/2023] Open
Abstract
Background We determined how the vaginal and penile microbiomes contribute to herpes simplex virus type 2 (HSV-2) serostatus within sexual partnerships. Methods Microbiomes were characterized in cervicovaginal lavage and penile meatal swab specimens through high-throughput 16s ribosomal RNA gene amplicon sequencing. HSV-2 antibody was detected in serum specimens. We modeled vaginal and penile taxa and covariates contributing to HSV-2 status in women and men using bivariate probit analysis. Results Among 231 couples, HSV-2 was detected in both partners in 78 couples (33.8%), in the woman only in 52 (22.5%),in the man only in 27 (11.7%), and in neither in 74 (32.0%). Among the women (median age, 22 years) 10.9% had human immunodeficiency virus (HIV), and 21.4% had Bacterial vaginosis. Among men (median age, 26 years), 11.8% had HIV, and 55.0% circumcised. In an analysis with adjustment for sociodemographics and Bacterial vaginosis, enrichment of vaginal Gardnerella vaginalis and Lactobacillus iners was associated with increased likelihood of HSV-2 in both partners. Penile taxa (including Ureaplasma and Aerococcus) were associated with HSV-2 in women. Conclusions We demonstrate that penile taxa are associated with HSV-2 in female partners, and vaginal taxa are associated with HSV-2 in male partners. Our findings suggest that couples-level joint consideration of genital microbiome and sexually transmitted infection or related outcomes could lead to new avenues for prevention.
Collapse
Affiliation(s)
- Supriya D Mehta
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Debarghya Nandi
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | | | - Stefan J Green
- Genome Research Core, University of Illinois at Chicago School of Medicine, Chicago, USA
| | - Dulal K Bhaumik
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Robert C Bailey
- Division of Epidemiology & Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Fredrick Otieno
- Genome Research Core, University of Illinois at Chicago School of Medicine, Chicago, USA
| |
Collapse
|
27
|
In Vitro and In Vivo Activity, Tolerability, and Mechanism of Action of BX795 as an Antiviral against Herpes Simplex Virus 2 Genital Infection. Antimicrob Agents Chemother 2020; 64:AAC.00245-20. [PMID: 32601167 DOI: 10.1128/aac.00245-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) causes recurrent lesions in the anogenital area that may be transmitted through sexual encounters. Nucleoside analogs, such as acyclovir (ACV), are currently prescribed clinically to curb this infection. However, in some cases, reduced efficacy has been observed due to the emergence of resistance against these drugs. In our previous study, we reported the discovery of a novel anti-HSV-1 small molecule, BX795, which was originally used as an inhibitor of TANK-binding kinase 1 (TBK1). In this study, we report the antiviral efficacy of BX795 on HSV-2 infection in vaginal epithelial cells in vitro at 10 μM and in vivo at 50 μM. Additionally, through biochemical assays in vitro and histopathology in vivo, we show the tolerability of BX795 in vaginal epithelial cells at concentrations as high as 80 μM. Our investigations also revealed that the mechanism of action of BX795 antiviral activity stems from the reduction of viral protein translation via inhibition of protein kinase B phosphorylation. Finally, using a murine model of vaginal infection, we show that topical therapy using 50 μM BX795 is well tolerated and efficacious in controlling HSV-2 replication.
Collapse
|
28
|
Iqbal A, Suryawanshi R, Yadavalli T, Volety I, Shukla D. BX795 demonstrates potent antiviral benefits against herpes simplex Virus-1 infection of human cell lines. Antiviral Res 2020; 180:104814. [PMID: 32380150 DOI: 10.1016/j.antiviral.2020.104814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus-1 (HSV-1) infection is known to cause skin blisters, keratitis as well as deadly cases of encephalitis in some situations. Only a few therapeutic modalities are available for this globally prevalent infection. Very recently, a small molecule BX795 was identified as an inhibitor of HSV-1 protein synthesis in an ocular model of infection. In order to demonstrate its broader antiviral benefits, this study was aimed at evaluating the antiviral efficacy, mode-of-action, and toxicity of BX795 against HSV-1 infection of three human cell lines: HeLa, HEK, and HCE. Several different assays, including cell survival analysis, imaging, plaque analysis, Immunoblotting, and qRT-PCR, were performed. In all cases, BX795 demonstrated low toxicity at therapeutic concentration and showed strong antiviral benefits. Quite interestingly, cell line-dependent differences in the mechanism of antiviral action and cytokine response to infection were seen upon BX795 treatment. Taken together, our results suggest that BX795 may exert its antiviral benefits via cell-line specific mechanisms.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
29
|
Almonte-Vega L, Colón-Vargas M, Luna-Jarrín L, Martinez J, Rodriguez-Rinc J, Murillo AL, Thakur M, Espinoza B, Patil R, Arriola L, Arunachalam V, Mubayi A. Cost analysis of treatment strategies for the control of HSV-2 infection in the U.S.: A mathematical modeling-based case study. Math Biosci 2020; 324:108347. [PMID: 32360294 DOI: 10.1016/j.mbs.2020.108347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/30/2022]
Abstract
Infection of Herpes Simplex Virus type 2 (HSV-2) is a lifelong sexually transmitted disease. According to the Center for Disease Control and Prevention (CDC), 11.9% of the United States (U.S.) population was infected with HSV-2 in 2015-2016. The HSV-2 pathogen establishes latent infections in neural cells and can reactivate causing lesions later in life, a strategy that increases pathogenicity and allows the virus to evade the immune system. HSV-2 infections are currently treated by Acyclovir only in the non-constitutional stage, marked by genital skin lesions and ulcers. However, patients in the constitutional stage expressing mild and common (with other diseases) symptoms, such as fever, itching and painful urination, remain difficult to detect and are untreated. In this study, we develop and analyze a mathematical model to study the transmission and control of HSV-2 among the U.S. population between the ages of 15-49 when there are options to treat individuals in different stages of their pathogenicity. In particular, the goals of this work are to study the effect on HSV-2 transmission dynamics and to evaluate and compare the cost-effectiveness of treating HSV-2 infections in both constitutional and non-constitutional stages (new strategy) against the current conventional treatment protocol for treating patients in the non-constitutional stage (current strategy). Our results distinguish model parameter regimes where each of the two treatment strategies can optimize the available resources and consequently gives the long-term reduced cost associated with each treatment and incidence. Moreover, we estimated that the public health cost of HSV-2 with the proposed most cost-effective treatment strategy would increase by approximately 1.63% in 4 years of implementation. However, in the same duration, early treatment via the new strategy will reduce HSV-2 incidence by 42.76% yearly and the reproduction number will decrease to 0.84 from its current estimate of 2.5. Thus, the proposed new strategy will be significantly cost-effective in controlling the transmission of HSV-2 if the strategy is properly implemented.
Collapse
Affiliation(s)
- Luis Almonte-Vega
- Department of Mathematics, Universidad de Puerto Rico en Mayagüez, Mayagüez, Puerto Rico, USA
| | - Monica Colón-Vargas
- Department of Mathematics, Universidad de Puerto Rico en Mayagüez, Mayagüez, Puerto Rico, USA
| | - Ligia Luna-Jarrín
- Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Joel Martinez
- Department of Mathematics, Southwestern University, Georgetown, Texas, USA
| | - Jordy Rodriguez-Rinc
- Department of Mathematics, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Anarina L Murillo
- Simon A. Levin Mathematical, Computational, and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, USA.
| | - Mugdha Thakur
- Simon A. Levin Mathematical, Computational, and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, USA
| | - Baltazar Espinoza
- Simon A. Levin Mathematical, Computational, and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, USA
| | - Rohan Patil
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, USA
| | | | | | - Anuj Mubayi
- Simon A. Levin Mathematical, Computational, and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, USA
| |
Collapse
|
30
|
Chandra J, Woo WP, Dutton JL, Xu Y, Li B, Kinrade S, Druce J, Finlayson N, Griffin P, Laing KJ, Koelle DM, Frazer IH. Immune responses to a HSV-2 polynucleotide immunotherapy COR-1 in HSV-2 positive subjects: A randomized double blinded phase I/IIa trial. PLoS One 2019; 14:e0226320. [PMID: 31846475 PMCID: PMC6917347 DOI: 10.1371/journal.pone.0226320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/14/2019] [Indexed: 02/03/2023] Open
Abstract
Background Genital herpes simplex infection affects more than 500 million people worldwide. We have previously shown that COR-1, a therapeutic HSV-2 polynucleotide vaccine candidate, is safe and well tolerated in healthy subjects. Objective Here, we present a single center double-blind placebo-controlled, randomized phase I/IIa trial of COR-1 in HSV-2 positive subjects in which we assessed safety and tolerability as primary endpoints, and immunogenicity and therapeutic efficacy as exploratory endpoints. Methods Forty-four HSV-2+ subjects confirmed by positive serology or pathology, and positive qPCR during baseline shedding, with a recurrent genital HSV-2 history of at least 12 months including three to nine reported lesions in 12 months prior to screening, aged 18 to 50 years females and males with given written informed consent, were randomized into two groups. Three immunizations at 4-week intervals and one booster immunization at 6 months, each of 1 mg COR-1 DNA or placebo, were administered intradermally as two injections of 500 μg each to either one forearm or both forearms. Results No serious adverse events, life-threatening events or deaths occurred throughout the study. As expected, HSV-2 infected subjects displayed gD2-specific antibody titers prior to immunization. COR-1 was associated with a reduction in viral shedding after booster administration compared with baseline. Conclusions This study confirms the previously demonstrated safety of COR-1 in humans and indicates a potential for use of COR-1 as a therapy to reduce viral shedding in HSV-2 infected subjects.
Collapse
Affiliation(s)
- Janin Chandra
- Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Wai-Ping Woo
- Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Julie L. Dutton
- Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Yan Xu
- Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Bo Li
- Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Sally Kinrade
- Medicines Development Limited, Southbank, Victoria, Australia
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
- Doherty Institute, Melbourne, Victoria, Australia
| | - Neil Finlayson
- Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Paul Griffin
- Q-Pharm Pty Ltd, Brisbane, Queensland, Australia
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer, Clinical Tropical Medicine Lab, Brisbane, Queensland, Australia
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Ian H. Frazer
- Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia
- University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
- * E-mail:
| |
Collapse
|
31
|
The Prevalence of HSV, HHV-6, HPV and Mycoplasma genitalium in Chlamydia trachomatis positive and Chlamydia trachomatis Negative Urogenital Samples among Young Women in Finland. Pathogens 2019; 8:pathogens8040276. [PMID: 31805637 PMCID: PMC6963806 DOI: 10.3390/pathogens8040276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022] Open
Abstract
Chlamydia trachomatis, Mycoplasma genitalium, herpes simplex virus (HSV) and human papillomavirus (HPV) cause sexually transmitted infections. In addition, human herpesvirus 6 (HHV-6) may be a genital co-pathogen. The prevalence rates of HSV, HHV-6, HPV, M. genitalium, and the C. trachomatis ompA genotypes were investigated by PCR in urogenital samples of the C. trachomatis nucleic acid amplification test positive (n = 157) and age-, community- and time-matched negative (n = 157) women. The prevalence of HPV DNA was significantly higher among the C. trachomatis positives than the C. trachomatis negatives (66% vs. 25%, p < 0.001). The prevalence of HSV (1.9% vs. 0%), HHV-6 (11% vs. 14%), and M. genitalium DNA (4.5% vs. 1.9%) was not significantly different between the C. trachomatis-positive and -negative women. Thirteen per cent of test-of-cure specimens tested positive for C. trachomatis. The prevalence of HSV, HHV-6, HPV, M. genitalium, and the C. trachomatis ompA genotypes did not significantly differ between those who cleared the C. trachomatis infection (n = 105) and those who did not (n = 16). The higher prevalence of HPV DNA among the C. trachomatis positives suggests greater sexual activity and increased risk for sexually transmitted pathogens.
Collapse
|
32
|
Yadavalli T, Suryawanshi R, Ali M, Iqbal A, Koganti R, Ames J, Aakalu VK, Shukla D. Prior inhibition of AKT phosphorylation by BX795 can define a safer strategy to prevent herpes simplex virus-1 infection of the eye. Ocul Surf 2019; 18:221-230. [PMID: 31770600 DOI: 10.1016/j.jtos.2019.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the prophylactic antiviral efficacy, corneal tolerance and toxicity of topically dosed BX795, a non-nucleoside small-molecule inhibitor of herpes simplex virus type-1 (HSV-1). METHODS Prophylactic treatment with BX795 was performed both in-vitro on human corneal epithelial cells and in-vivo on mice prior to HSV-1 challenge. Viral burden was evaluated using a standard plaque assay. In a separate experiment, mice were treated topically 3-times daily for 4-weeks with BX795 to evaluate corneal tolerance and toxicity. Phenol-red thread measurements, fluorescein staining and optical coherence tomography (OCT) were used to evaluate tear production, dryness and corneal structural changes. Corneal sensitivity and intraocular pressure were measured using esthesiometery and tonometery respectively. RESULTS Both in-vitro and in-vivo results showed a robust suppression of HSV-1 infection when treated prophylactically with BX795. The fluorescein stain and phenol-red results for the BX795-treated eyes did not show signs of corneal surface dryness when compared to trifluridine (TFT), an FDA-approved topical antiviral. The OCT measurements showed no signs of structural changes to the cornea suggesting that BX795 treatment was well tolerated without any apparent signs of toxicity or inflammation. The corneal sensitivity of BX795-treated eyes was not significantly different from TFT-treated eyes. No significant increase in the intraocular pressure of BX795-treated mice was observed. CONCLUSIONS Prophylactic treatment with BX795 protects corneal cells from HSV-1 infection. The antiviral is well-tolerated on murine corneas without any detectable toxicity.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Marwan Ali
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aqsa Iqbal
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
33
|
Reward EE, Muo SO, Orabueze INA, Ike AC. Seroprevalence of herpes simplex virus types 1 and 2 in Nigeria: a systematic review and meta-analyses. Pathog Glob Health 2019; 113:229-237. [PMID: 31645218 DOI: 10.1080/20477724.2019.1678938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A source of comprehensive information on the prevalence of herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) can help researchers and policymakers address HSV related burden in the society. At the moment, this is not readily available. This study aims to fill this gap by attempting to estimate the seroprevalence of HSV-1 and HSV-2 infections in Nigeria on the basis of published data. A systematic review and meta-analysis including cross-sectional studies on HSV-1 and HSV-2 in Nigeria was conducted. Electronic databases including PubMed/MEDLINE, CENTRAL, African Journals Online (AJOL), ScienceDirect, WHO-Afro Library, WHO-IRIS and African Index Medicus were searched for English Language publications on HSV-1 and HSV-2. Seven relevant publications were identified. Seroprevalence measures of 3 and 23 for HSV-1 and HSV-2, respectively, were extracted. The pooled mean seroprevalences for HSV-1 and HSV-2 were 74.0% (37.4-99.4%) and 63.4% (56.1-70.4%) respectively. The mean seroprevalence of HSV-1 was higher among females, 82.4% (n = 509, CI, 36.6-100.0%), than males, 54.5% (n = 198, CI, 47.6-61.4%). The mean seroprevalence of HSV-2 were 51.8% (n = 1414, CI: 39.4-64.0%) and 86.5% (n = 162, CI: 80.8-91.3%) among healthy and clinical populations, respectively. The study was limited by the paucity of quality studies, variations in diagnostic methods and high heterogeneity in seroprevalence estimates. In conclusion, the seroprevalence of HSV-1 and HSV-2 remain high in Nigeria. Large and representative national epidemiological surveys covering all regions and specific groups are recommended.
Collapse
Affiliation(s)
- Eleazar E Reward
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Sophia O Muo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Ibuchukwu N A Orabueze
- Department of Medical Microbiology, College of Medicine, University of Nigeria Enugu Campus, Enugu, Nigeria
| | - Anthony C Ike
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
34
|
Hu Y. Infectious dermatoses that can manifest as vesicles. Infect Drug Resist 2019; 12:3063-3066. [PMID: 31632096 PMCID: PMC6781845 DOI: 10.2147/idr.s221934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/03/2019] [Indexed: 11/23/2022] Open
Abstract
In dermatology, diseases that manifest as blisters or blister-like lesions are common, and some of these features are caused by infectious diseases. Here, we summarize and describe these diseases to increase their clinical awareness and diagnosis.
Collapse
Affiliation(s)
- Yongxuan Hu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
35
|
Jaishankar D, Yakoub AM, Yadavalli T, Agelidis A, Thakkar N, Hadigal S, Ames J, Shukla D. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med 2019; 10:10/428/eaan5861. [PMID: 29444978 DOI: 10.1126/scitranslmed.aan5861] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/04/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) causes recurrent mucocutaneous lesions in the eye that may advance to corneal blindness. Nucleoside analogs exemplified by acyclovir (ACV) form the primary class of antiherpetic drugs, but this class suffers limitations due to the emergence of viral resistance and other side effects. While studying the molecular basis of ocular HSV-1 infection, we observed that BX795, a commonly used inhibitor of TANK-binding kinase 1 (TBK1), strongly suppressed infection by multiple strains of HSV-1 in transformed and primary human cells, cultured human and animal corneas, and a murine model of ocular infection. Our investigations revealed that the antiviral activity of BX795 relies on targeting Akt phosphorylation in infected cells, leading to the blockage of viral protein synthesis. This small-molecule inhibitor, which was also effective against an ACV-resistant HSV-1 strain, shows promise as an alternative to existing drugs and as an effective topical therapy for ocular herpes infection. Collectively, our results obtained using multiple infection models and virus strains establish BX795 as a promising lead compound for broad-spectrum antiviral applications in humans.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
| | - Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94304, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Neel Thakkar
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Satvik Hadigal
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.,Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
36
|
Murphy M, Chedister GR, George V. Non-HPV Perianal and Anorectal Sexually Transmitted Viral Infections. Clin Colon Rectal Surg 2019; 32:340-346. [PMID: 31507343 DOI: 10.1055/s-0039-1687829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This article reviews the epidemiology, diagnosis, and management of common viral infections of the perianal skin and anorectum including herpes simplex virus, human immune deficiency virus, and molluscum contagiosum. Human papilloma virus infection is reviewed in the subsequent article.
Collapse
Affiliation(s)
- Margarita Murphy
- Medical University of South Carolina, Charleston, South Carolina.,Colorectal Endosurgery Institute of the Carolinas, Mount Pleasant, South Carolina
| | | | - Virgilio George
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
37
|
Koujah L, Shukla D, Naqvi AR. CRISPR-Cas based targeting of host and viral genes as an antiviral strategy. Semin Cell Dev Biol 2019; 96:53-64. [PMID: 30953741 DOI: 10.1016/j.semcdb.2019.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022]
Abstract
Viral infections in human are leading cause of mortality and morbidity across the globe. Several viruses (including HIV and Herpesvirus), have evolved ingenious strategies to evade host-immune system and persist life-long. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) is an ancient antiviral system recently discovered in bacteria that has shown tremendous potential as a precise, invariant genome editing tool. Using CRISPR-Cas based system to activate host defenses or genetic modification of viral genome can provide novel, exciting and successful antiviral mechanisms and treatment modalities. In this review, we will provide progress on the CRISPR-Cas based antiviral approaches that facilitate clearance of virus-infected cells and/or prohibit virus infection or replication. We will discuss on the possibilities of CRIPSR-Cas as prophylaxis and therapy in viral infections and review the challenges of this potent gene editing technology.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, IL, 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA.
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
38
|
|
39
|
Agelidis A, Koujah L, Suryawanshi R, Yadavalli T, Mishra YK, Adelung R, Shukla D. An Intra-Vaginal Zinc Oxide Tetrapod Nanoparticles (ZOTEN) and Genital Herpesvirus Cocktail Can Provide a Novel Platform for Live Virus Vaccine. Front Immunol 2019; 10:500. [PMID: 30949169 PMCID: PMC6435576 DOI: 10.3389/fimmu.2019.00500] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus type-2 (HSV-2) is a common cause of genital infections throughout the world. Currently no prophylactic vaccine or therapeutic cure exists against the virus that establishes a latent infection for the life of the host. Intravaginal microbivac is a developing out-of-the-box strategy that combines instant microbicidal effects with future vaccine-like benefits. We have recently shown that our uniquely designed zinc oxide tetrapod nanoparticles (ZOTEN) show strong microbivac efficacy against HSV-2 infection in a murine model of genital infection. In our attempts to further understand the antiviral and immune bolstering effects of ZOTEN microbivac and to develop ZOTEN as a platform for future live virus vaccines, we tested a ZOTEN/HSV-2 cocktail and found that prior incubation of HSV-2 with ZOTEN inhibits the ability of the virus to infect vaginal tissue in female Balb/c mice and blocks virus shedding as judged by plaque assays. Quite interestingly, the ZOTEN-neutralized virions elicit a local immune response that is highly comparable with the HSV-2 infection alone with reduced inflammation and clinical manifestations of disease. Information provided by our study will pave the way for the further development of ZOTEN as a microbivac and a future platform for live virus vaccines.
Collapse
Affiliation(s)
- Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| | - Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States
| | | | - Rainer Adelung
- Institute for Materials Science, Kiel University, Kiel, Germany
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| |
Collapse
|
40
|
Parra-Sánchez M. Genital ulcers caused by herpes simplex virus. Enferm Infecc Microbiol Clin 2018; 37:260-264. [PMID: 30580877 DOI: 10.1016/j.eimc.2018.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Genital herpes is a sexually transmitted disease caused by herpes simplex virus type1 (HSV-1) and type2 (HSV-2) belonging to the alphaherpesvirus family, that includes the varicella zoster virus. HSV infection continues to be the most common cause of vulvar ulcers among the sexually active population. Its incidence increases every year. This review summarises the microbiology of the virus, pathogenesis and infection in genitalia, clinical manifestations and correct identification, the different laboratory diagnostic methods, and choice of the correct treatment according to the first infection, recurrence or special cases. Finally, the cost of routine herpes simplex virus infection is analysed.
Collapse
Affiliation(s)
- Manuel Parra-Sánchez
- Molecular Diagnostics Deparment, Vircell Microbiologists, Parque Tecnológico de la Salud, Granada, España.
| |
Collapse
|
41
|
Hopkins J, Yadavalli T, Agelidis AM, Shukla D. Host Enzymes Heparanase and Cathepsin L Promote Herpes Simplex Virus 2 Release from Cells. J Virol 2018; 92:e01179-18. [PMID: 30232188 PMCID: PMC6232460 DOI: 10.1128/jvi.01179-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) can productively infect many different cell types of human and nonhuman origin. Here we demonstrate interconnected roles for two host enzymes, heparanase (HPSE) and cathepsin L, in HSV-2 release from cells. In vaginal epithelial cells, HSV-2 causes heparan sulfate shedding and upregulation in HPSE levels during the productive phase of infection. We also noted increased levels of cathepsin L and show that regulation of HPSE by cathepsin L via cleavage of HPSE proenzyme is important for infection. Furthermore, inhibition of HPSE by a specific inhibitor, OGT 2115, dramatically reduces HSV-2 release from vaginal epithelial cells. Likewise, we show evidence that the inhibition of cathepsin L is detrimental to the infection. The HPSE increase after infection is mediated by an increased NF-κB nuclear localization and a resultant activation of HPSE transcription. Together these mechanisms contribute to the removal of heparan sulfate from the cell surface and thus facilitate virus release from cells.IMPORTANCE Genital infections by HSV-2 represent one of the most common sexually transmitted viral infections. The virus causes painful lesions and sores around the genitals or rectum. Intermittent release of the virus from infected tissues during sexual activities is the most common cause of transmission. At the molecular level, cell surface heparan sulfate (HS) is known to provide attachment sites for HSV-2. While the removal of HS during HSV-1 release has been shown, not much is known about the host factors and their regulators that contribute to HSV-2 release from natural target cell types. Here we suggest a role for the host enzyme heparanase in HSV-2 release. Our work reveals that in addition to the regulation of transcription by NF-κB, HPSE is also regulated posttranslationally by cathepsin L and that inhibition of heparanase activity directly affects HSV-2 release. We provide unique insights into the host mechanisms controlling HSV-2 egress and spread.
Collapse
Affiliation(s)
- James Hopkins
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alex M Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
42
|
Uyangaa E, Choi JY, Patil AM, Hossain FMA, Park SO, Kim B, Kim K, Eo SK. Dual TLR2/9 Recognition of Herpes Simplex Virus Infection Is Required for Recruitment and Activation of Monocytes and NK Cells and Restriction of Viral Dissemination to the Central Nervous System. Front Immunol 2018; 9:905. [PMID: 29760708 PMCID: PMC5936768 DOI: 10.3389/fimmu.2018.00905] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
The importance of TLR2 and TLR9 in the recognition of infection with herpes simplex virus (HSV) and HSV-caused diseases has been described, but some discrepancies remain concerning the benefits of these responses. Moreover, the impact of TLR2/9 on innate and adaptive immune responses within relevant mucosal tissues has not been elucidated using natural mucosal infection model of HSV. Here, we demonstrate that dual TLR2/9 recognition is essential to provide resistance against mucosal infection with HSV via an intravaginal route. Dual TLR2/9 ablation resulted in the highly enhanced mortality with exacerbated symptoms of encephalitis compared with TLR2 or TLR9 deficiency alone, coinciding with highly increased viral load in central nervous system tissues. TLR2 appeared to play a minor role in providing resistance against mucosal infection with HSV, since TLR2-ablated mice showed higher survival rate compared with TLR9-ablated mice. Also, the high mortality in dual TLR2/9-ablated mice was closely associated with the reduction in early monocyte and NK cell infiltration in the vaginal tract (VT), which was likely to correlate with low expression of cytokines and CCR2 ligands (CCL2 and CCL7). More interestingly, our data revealed that dual TLR2/9 recognition of HSV infection plays an important role in the functional maturation of TNF-α and iNOS-producing dendritic cells (Tip-DCs) from monocytes as well as NK cell activation in VT. TLR2/9-dependent maturation of Tip-DCs from monocytes appeared to specifically present cognate Ag, which effectively provided functional effector CD4+ and CD8+ T cells specific for HSV Ag in VT and its draining lymph nodes. TLR2/9 expressed in monocytes was likely to directly facilitate Tip-DC-like features after HSV infection. Also, dual TLR2/9 recognition of HSV infection directly activated NK cells without the aid of dendritic cells through activation of p38 MAPK pathway. Taken together, these results indicate that dual TLR2/9 recognition plays a critical role in providing resistance against mucosal infection with HSV, which may involve a direct regulation of Tip-DCs and NK cells in VT. Therefore, our data provide a more detailed understanding of TLR2/9 role in conferring antiviral immunity within relevant mucosal tissues after mucosal infection with HSV.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sung Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| |
Collapse
|
43
|
Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8 + T EM and T RM Cell Responses against Herpesvirus Infection and Disease. J Virol 2018; 92:JVI.02156-17. [PMID: 29437976 DOI: 10.1128/jvi.02156-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/01/2018] [Indexed: 01/14/2023] Open
Abstract
There is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8+ T cell epitope (HSV-gB498-505) covalently linked with the promiscuous glycoprotein D CD4+ T helper cell epitope (HSV-gD49-89). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections.IMPORTANCE Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser-assisted herpes peptide vaccine triggered skin mobilization of dendritic cells (DCs) that stimulated strong and long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues. The induced local CD8+ T cell response was associated with protection against genital herpes infection and disease. These results draw attention to chemical- and biological-free laser adjuvants as alternatives to currently used conventional adjuvants to enhance mass vaccination for widespread viral infections, such as those caused by HSV-1 and HSV-2.
Collapse
|