1
|
Mancia A, Abelli L, Palladino G, Candela M, Lucon-Xiccato T, Bertolucci C, Fossi MC, Baini M, Panti C. Sorbed environmental contaminants increase the harmful effects of microplastics in adult zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106544. [PMID: 37105865 DOI: 10.1016/j.aquatox.2023.106544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Aquatic animals ingest Microplastics (MPs) which have the potential to affect the uptake and bioavailability of sorbed co-contaminants. However, the effects on living organisms still need to be properly understood. The present study was designed to assess the combined effects of MPs and environmental contaminants on zebrafish (Danio rerio) health and behavior. Adult specimens were fed according to three different protocols: 1) untreated food (Control group); 2) food supplemented with 0.4 mg/L pristine polyethylene-MPs (PE-MPs; 0.1-0.3 mm diameter) (PEv group); 3) food supplemented with 0.4 mg/L PE-MPs previously incubated (PEi group) for 2 months in seawater. Analysis of contaminants in PEi detected trace elements, such as lead and copper. After 15 days of exposure, zebrafish underwent behavioral analysis and were then dissected to sample gills and intestine for histology, and the latter also for microbiome analysis. Occurrence of PEv and PEi in the intestine and contaminants in the fish carcass were analyzed. Both PEv- and PEi-administered fish differed from controls in the assays performed, but PEi produced more harmful effects in most instances. Overall, MPs after environmental exposure revealed higher potential to alter fish health through combined effects (e.g. proportion of microplastics, pollutants and/or microorganisms).
Collapse
Affiliation(s)
- Annalaura Mancia
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy.
| | - Luigi Abelli
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, via Belmeloro, 6, Bologna 40126, Italy; Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, vialeAdriatico 1/N, Fano, Pesaro Urbino 61032, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, via Belmeloro, 6, Bologna 40126, Italy; Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, vialeAdriatico 1/N, Fano, Pesaro Urbino 61032, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, via P.A. Mattioli, 4, Siena 53100, Italy
| | - Matteo Baini
- Department of Environmental, Earth and Physical Sciences, University of Siena, via P.A. Mattioli, 4, Siena 53100, Italy
| | - Cristina Panti
- Department of Environmental, Earth and Physical Sciences, University of Siena, via P.A. Mattioli, 4, Siena 53100, Italy
| |
Collapse
|
2
|
Draft Genome Sequences of 25 Mycobacterium marinum Strains Isolated from Animals and Environmental Components in Aquaria and an Aquaculture Farm. Microbiol Resour Announc 2022; 11:e0085122. [PMID: 36154152 PMCID: PMC9584300 DOI: 10.1128/mra.00851-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium marinum
is a ubiquitous nontuberculous
mycobacterium
that causes infections in various animals. Here, we report the annotated draft genome sequences of 25 strains isolated from vertebrates, invertebrates, and environmental components in aquaria and an aquaculture farm in Japan, sampled between 2015 and 2020.
Collapse
|
3
|
Mocho JP, Collymore C, Farmer SC, Leguay E, Murray KN, Pereira N. FELASA-AALAS Recommendations for Monitoring and Reporting of Laboratory Fish Diseases and Health Status, with an Emphasis on Zebrafish ( Danio Rerio). Comp Med 2022; 72:127-148. [PMID: 35513000 PMCID: PMC9334007 DOI: 10.30802/aalas-cm-22-000034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 11/05/2022]
Abstract
The exchange of fish for research may expose an aquatic laboratory to pathogen contamination as incoming fish can introduce bacteria, fungi, parasites, and viruses capable of affecting both experimental results and fish and personnel health and welfare. To develop risk mitigation strategies, FELASA and AALAS established a joint working group to recommend good practices for health monitoring of laboratory fish. The recommendations address all fish species used for research, with a particular focus on zebrafish (Danio rerio). First, the background of the working group and key definitions are provided. Next, fish diseases of high impact are described. Third, recommendations are made for health monitoring of laboratory fishes. The recommendations emphasize the importance of daily observation of the fish and strategies to determine fish colony health status. Finally, report templates are proposed for historical screening data and aquatic facility description to facilitate biohazard risk assessment when exchanging fish.
Collapse
Affiliation(s)
| | - Chereen Collymore
- Veterinary Care and Services, Charles River Laboratories, Senneville, Quebec, Canada
| | - Susan C Farmer
- Zebrafish Research Facility, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Nuno Pereira
- Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon; Faculty of Veterinary Medicine, Lusophone University of Humanities and Technologies, Lisbon, Portugal; Gulbenkian Institute of Science, Oeiras. Portugal; ISPA - University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal; Lisbon Oceanarium, Lisbon, Portugal
| |
Collapse
|
4
|
Mugetti D, Varello K, Pastorino P, Tomasoni M, Menconi V, Bozzetta E, Dondo A, Prearo M. Investigation of Potential Reservoirs of Non-Tuberculous Mycobacteria in a European Sea Bass ( Dicentrarchus labrax) Farm. Pathogens 2021; 10:pathogens10081014. [PMID: 34451479 PMCID: PMC8401025 DOI: 10.3390/pathogens10081014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Fish mycobacteriosis is a widespread global problem caused by species of non-tuberculous mycobacteria (NTM). Mycobacterium marinum is one of the species most often involved in disease episodes of aquarium and farmed fish. Since there is currently no available effective therapy or vaccine, a prompt search for routes of entry is key to limiting the damage induced by the disease. Here we report a case of mycobacteriosis follow up in a European sea bass (Dicentrarchus labrax) farm located in Northern Italy, in which environmental samples and newly added fish batches were analyzed. Samples from fish present on the farm, sediment, and periphyton all resulted positive for M. marinum, whereas the new fish batches and the water samples resulted negative. The environmental resistance of NTM (alcohol-acid resistance, biofilm formation) and the lack of prophylactic and therapeutic strategies make these diseases difficult to manage. Prompt identification of biotic and abiotic reservoirs, combined with good zootechnical hygiene practices, are the most effective measures to control fish mycobacteriosis in intensive farms.
Collapse
|
5
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
6
|
Fogelson SB, Camus AC, Lorenz WW, Vasireddy R, Vasireddy S, Smith T, Brown-Elliott BA, Wallace RJ, Hasan NA, Reischl U, Sanchez S. Variation among human, veterinary and environmental Mycobacterium chelonae-abscessus complex isolates observed using core genome phylogenomic analysis, targeted gene comparison, and anti-microbial susceptibility patterns. PLoS One 2019; 14:e0214274. [PMID: 30908517 PMCID: PMC6433289 DOI: 10.1371/journal.pone.0214274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium chelonae is a member of the Mycobacterium chelonae-abscessus complex and a cause of opportunistic disease in fish, reptiles, birds, and mammals including humans. Isolates in the complex are often difficult to identify and have differing antimicrobial susceptibilities. Thirty-one previously identified rapidly-growing, non-tuberculous Mycobacterium sp. isolates cultured from biofilms, fish, reptiles, mammals, including humans, and three ATCC reference strains were evaluated with nine M. chelonae-abscessus complex whole genome sequences from GenBank by phylogenomic analysis, targeted gene comparisons, and in-vitro antimicrobial susceptibility patterns to assess strain variation among isolates from different sources. Results revealed minimal genetic variation among the M. chelonae strains. However, the core genomic alignment and SNP pattern of the complete 16S rRNA sequence clearly separated the turtle type strain ATCC 35752T from the clinical isolates and human reference strain “M. chelonae chemovar niacinogenes” ATCC 19237, providing evidence of two distinct subspecies. Concatenation of the partial rpoB (752 bp) and complete hsp65 (1,626 bp) sequence produced the same species/subspecies delineations as the core phylogeny. Partial rpoB and hsp65 sequences identified all the clinical isolates to the appropriate species level when respective cut-offs of 98% and 98.4% identity to the M. chelonae type strain ATCC 35752T were employed. The human strain, ATCC19237, was the most representative strain for the evaluated human, veterinary, and environmental strains. Additionally, two isolates were identified as Mycobacterium saopaulense, its first identification in a non-fish or non-human host.
Collapse
Affiliation(s)
- Susan B. Fogelson
- University of Georgia, College of Veterinary Medicine, Department of Pathology, Athens, GA, United States of America
- * E-mail:
| | - Alvin C. Camus
- University of Georgia, College of Veterinary Medicine, Department of Pathology, Athens, GA, United States of America
| | - W. Walter Lorenz
- University of Georgia, Institute of Bioinformatics, Athens, GA, United States of America
| | - Ravikiran Vasireddy
- University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, Tyler, TX, United States of America
| | - Sruthi Vasireddy
- University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, Tyler, TX, United States of America
| | - Terry Smith
- University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, Tyler, TX, United States of America
| | - Barbara A. Brown-Elliott
- University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, Tyler, TX, United States of America
| | - Richard J. Wallace
- University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, Tyler, TX, United States of America
| | - Nabeeh A. Hasan
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States of America
| | - Udo Reischl
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Regensburg, Germany
| | - Susan Sanchez
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States of America
| |
Collapse
|
7
|
Chang CT, Lewis J, Whipps CM. Source or Sink: Examining the Role of Biofilms in Transmission of Mycobacterium spp. in Laboratory Zebrafish. Zebrafish 2019; 16:197-206. [PMID: 30835168 DOI: 10.1089/zeb.2018.1689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zebrafish health is a primary research concern because diseases can have unintended impacts on experimental endpoints. Ideally, research would be conducted using disease-free fish or fish with known disease status. Mycobacteriosis is a common bacterial disease in wild and captive fishes, including zebrafish. Despite its prevalence, the dynamics of transmission and potential sources of mycobacterial infections in zebrafish are only partially understood. One suspected natural infection source is surface biofilms on tanks and other system components. This study investigates the role that tank biofilms play in mycobacteriosis in laboratory zebrafish by evaluating the establishment of biofilms from bacteria shed from fish, and conversely, the acquisition of infections in fish from surface biofilms. We found that zebrafish infected with Mycobacterium chelonae shed bacteria through feces, and bacteria are transmitted to tank biofilms from one to 16 weeks postinfection. We also found that zebrafish acquire M. chelonae infections as soon as 2 weeks when introduced to tanks with established M. chelonae biofilms. The results from this study highlight the role that tank biofilms play as both a reservoir and source of mycobacterial infections in zebrafish. Results support the inclusion of biofilm surveillance and prevention as part of a disease control program in zebrafish research facilities.
Collapse
Affiliation(s)
- Carolyn T Chang
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| | - Jet'aime Lewis
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| | - Christopher M Whipps
- Department of Environment and Forest Biology, State University of New York College of Environmental Science, Syracuse, New York
| |
Collapse
|
8
|
Hashish E, Merwad A, Elgaml S, Amer A, Kamal H, Elsadek A, Marei A, Sitohy M. Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review. Vet Q 2018; 38:35-46. [PMID: 29493404 PMCID: PMC6831007 DOI: 10.1080/01652176.2018.1447171] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium marinum is an opportunistic pathogen inducing infection in fresh and marine water fish. This pathogen causes necrotizing granuloma like tuberculosis, morbidity and mortality in fish. The cell wall-associated lipid phthiocerol dimycocerosates, phenolic glycolipids and ESAT-6 secretion system 1 (ESX-1) are the conserved virulence determinant of the organism. Human infections with Mycobacterium marinum hypothetically are classified into four clinical categories (type I-type IV) and have been associated with the exposure of damaged skin to polluted water from fish pools or contacting objects contaminated with infected fish. Fish mycobacteriosis is clinically manifested and characterized in man by purple painless nodules, liable to develop into superficial crusting ulceration with scar formation. Early laboratory diagnosis of M. marinum including histopathology, culture and PCR is essential and critical as the clinical response to antibiotics requires months to be attained. The pathogenicity and virulence determinants of M. marinum need to be thoroughly and comprehensively investigated and understood. In spite of accumulating information on this pathogen, the different relevant data should be compared, connected and globally compiled. This article is reviewing the epidemiology, virulence factors, diagnosis and disease management in fish while casting light on the potential associated public health hazards.
Collapse
Affiliation(s)
- Emad Hashish
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Abdallah Merwad
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Shimaa Elgaml
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Ali Amer
- Tuberculosis Unit, Animal Health Research Institute (AHRI), Giza, Egypt
| | - Huda Kamal
- Department of Meat Hygiene, National Research Center (NRC), Zagazig, Egypt
| | - Ahmed Elsadek
- Immunology Research Lab, Immunology Division, Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - Ayman Marei
- Immunology Research Lab, Immunology Division, Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Egypt
| |
Collapse
|
9
|
Rácz A, Dwyer T, Killen SS. Overview of a Disease Outbreak and Introduction of a Step-by-Step Protocol for the Eradication of Mycobacterium haemophilum in a Zebrafish System. Zebrafish 2018; 16:77-86. [PMID: 30358522 PMCID: PMC6357262 DOI: 10.1089/zeb.2018.1628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In 2017, the zebrafish unit at University of Glasgow experienced a detrimental outbreak of pathogenic bacterium, Mycobacterium haemophilum. The presence of other bacterial species was also confirmed by bacteriology growth in the same unit. The affected individuals composed of a wild-origin parental population sourced from India and their F1 offspring generation. Bacteria were diagnostically confirmed to be present systemically in fish and within the water and biofilm of the recirculating zebrafish system. In the absence of a publicly accessible step-by-step disinfectant protocol for these difficult-to-eliminate pathogens, we devised a successful procedure to eradicate mycobacteria and Aeromonas species after colony removal using Cleanline Chlorine tablets (active ingredient Sodium dichloroisocyanurate) and Virkon Aquatic®. Postdisinfection diagnostics did not detect pathogens in the system or in the new fish inhabiting the system that were tested. Newly established fish colonies have not shown similar clinical signs or disease-induced mortality in the 1-year period following system disinfection and repopulation. We present a historical background of the bacterial outbreak and a disinfection method which can be replicated in other zebrafish facilities—at small or large scales—for reliable mycobacterium removal. This procedure can be implemented as a disinfection protocol before the introduction of a new fish population to a previously contaminated system.
Collapse
Affiliation(s)
- Anita Rácz
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Toni Dwyer
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,2 Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Shaun S Killen
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Fogelson SB, Camus AC, Lorenz W, Phillips A, Bartlett P, Sanchez S. Mycobacterium syngnathidarum sp. nov., a rapidly growing mycobacterium identified in syngnathid fish. Int J Syst Evol Microbiol 2018; 68:3696-3700. [PMID: 30272539 DOI: 10.1099/ijsem.0.002978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two closely related isolates, 27335T and 24999, of rapidly growing, non-pigmented mycobacteria, were cultured from two clinically ill fish of the family Syngnathidae. Whole genome sequencing of the two isolates revealed low sequence homology to documented mycobacteria within public databases such as the NCBI. Evaluation of targeted housekeeping genes, including 16S rRNA, ITS, rpoB and hsp65, related the two bacteria distantly to Mycobacterium senegalense CK2 M4421 and Mycobacterium farcinogenes DSM 43637. Phenotypic, biochemical and dDNA-DNA hybridization tests demonstrated that Mycobacterium syngnathidarum is a new species distinct from other recognized rapidly growing mycobacterial species. Phenotypic, chemotaxonomic and phylogenetic data evaluation provided evidence that the two strains represent one novel species. We propose the formal recognition of Mycobacterium syngnathidarum sp. nov., with isolate 27335T as the type strain (=ATCC TSD-89T,=DSM 105112T).
Collapse
Affiliation(s)
- Susan B Fogelson
- 1Department of Pathology, University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Alvin C Camus
- 1Department of Pathology, University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Walt Lorenz
- 2University of Georgia, Institute of Bioinformatics, Athens, GA, USA
| | - Ashley Phillips
- 3Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Paula Bartlett
- 3Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Susan Sanchez
- 3Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
11
|
Fogelson SB, Fast MD, Leary J, Camus AC. Pathologic features of mycobacteriosis in naturally infected Syngnathidae and novel transcriptome assembly in association with disease. JOURNAL OF FISH DISEASES 2017; 40:1681-1694. [PMID: 28449243 DOI: 10.1111/jfd.12634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 02/12/2017] [Indexed: 06/07/2023]
Abstract
Syngnathidae (seahorses, seadragons and pipefish) suffer significant losses from non-tuberculous mycobacteria. However, they produce markedly different lesions in response to the disease compared to other teleost species, notably infrequent granuloma formation. This study evaluated 270 syngnathid fish, from which 92 were diagnosed with mycobacteriosis by histopathology, culture or both. Microscopic lesions variably consisted of random foci of coagulative necrosis in multiple organs, containing high numbers of free bacteria and large aggregates or sheets of macrophages with cytoplasm laden with acid-fast bacilli. Mycobacterial associated granulomas were identified in only six seahorses. Five fish had positive cultures with no observed microscopic changes. RNA-seq of the head kidney was performed to investigate the transcriptome of two infected and six non-infected lined seahorses Hippocampus erectus. Assembled and annotated putative transcripts serve to enrich the database for this species, as well as provide baseline data for understanding the pathogenesis of mycobacteriosis in seahorses. Putative components of the innate immune system (IL-1β, IL-6, TNF, NOS, Toll-like receptor 1, MHC Class I, NF-κβ, transforming growth factor beta, MyD88) were identified in the RNA-seq data set. However, a homolog for a key component in the TH1 adaptive immune response, interferon-gamma, was not identified and may underlie the unique pathologic presentation.
Collapse
Affiliation(s)
- S B Fogelson
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M D Fast
- Department of Pathology and Microbiology, University of Prince Edward Island, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - J Leary
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - A C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Kušar D, Zajc U, Jenčič V, Ocepek M, Higgins J, Žolnir-Dovč M, Pate M. Mycobacteria in aquarium fish: results of a 3-year survey indicate caution required in handling pet-shop fish. JOURNAL OF FISH DISEASES 2017; 40:773-784. [PMID: 27747884 DOI: 10.1111/jfd.12558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Fish are commonly infected with non-tuberculous mycobacteria (NTM), which should be regarded as potential pathogens when handling aquarium fish and equipment. This study examined 107 aquarium fish from pet shops. Cultivation of the fish samples using different selective media was conducted for identification of NTM. Isolates were identified using the GenoType Mycobacterium common mycobacteria and additional species assays, sequencing of the 16S rRNA and rpoB genes, and real-time PCR assay for identification of Mycobacterium (M.) marinum. Among the investigated fish, 79.4% (85/107) were positive for mycobacteria, with 8.2% (7 of 85) having two mycobacterial species present. Among the positive fish, the common pathogens M. marinum, Mycobacterium fortuitum (M. fortuitum group) and Mycobacterium chelonae were identified in approx. 90% of fish and other NTM species in 10%, including Mycobacterium peregrinum/septicum, Mycobacterium gordonae, Mycobacterium arupense, Mycobacterium kansasii, Mycobacterium ulcerans and Mycobacterium setense. The well-known human pathogen M. marinum was present in 10.6% of the positive fish (9 of 85). The species of mycobacteria identified in the study are not only recognized as aquarium fish pathogens, but can also cause pathology in humans. Microbiological and clinical communities should therefore be sensitized to the role of NTM in infections associated with exposure to aquarium fish.
Collapse
Affiliation(s)
- D Kušar
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - U Zajc
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - V Jenčič
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - M Ocepek
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - J Higgins
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, United States Department of Agriculture - Animal and Plant Health Inspection Service (USDA-APHIS), Ames, IA, USA
| | - M Žolnir-Dovč
- National Reference Laboratory for Mycobacteria, University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - M Pate
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Antuofermo E, Pais A, Polinas M, Cubeddu T, Righetti M, Sanna MA, Prearo M. Mycobacteriosis caused by Mycobacterium marinum in reared mullets: first evidence from Sardinia (Italy). JOURNAL OF FISH DISEASES 2017; 40:327-337. [PMID: 27368155 DOI: 10.1111/jfd.12515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Mycobacterium marinum is a slow-growing non-tuberculous mycobacterium, and it is considered the most common aetiologic agent of mycobacteriosis in wild and cultured fish. The diagnosis is principally made by histology when positive Ziehl-Neelsen stain granulomas are detected. The aim of this study was to investigate the occurrence of mycobacteriosis in extensively cultured Mugilidae of two lagoons (Cabras and San Teodoro) from Sardinia by the use of histology, microbiology, PCR and DNA sequencing. Nine of 106 mullets examined were affected by mycobacteriosis, and the spleen was the most affected organ. The histology detected higher rate (100%) of infection in spleen than the culture and PCR (75% and 62.5%, respectively). The sequencing of hsp65 gene identified M. marinum as the primary cause of mycobacteriosis in the mullets examined. Mullets affected by mycobacteriosis were mainly fished in the San Teodoro lagoon characterized by critical environmental conditions. Histology remains the most common method in detecting fish affected by mycobacteriosis, and PCR-based methods are essential for species identification. Our finding are worthy of attention because mycobacteriosis caused by M. marinum in reared mullets was evidenced for the first time in Sardinia, suggesting that this disease may be underestimated also in other cultured fish species.
Collapse
Affiliation(s)
- E Antuofermo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - A Pais
- Laboratory of Aquaculture and Aquatic Resources Management, Section of Animal Sciences, Department of Agriculture, University of Sassari, Sassari, Italy
| | - M Polinas
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - T Cubeddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - M Righetti
- Fish Disease Laboratory, State Veterinary Institute of Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - M A Sanna
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - M Prearo
- Fish Disease Laboratory, State Veterinary Institute of Piedmont, Liguria and Aosta Valley, Torino, Italy
| |
Collapse
|
14
|
Comparison of a semiautomated commercial repetitive-sequence-based PCR method with spoligotyping, 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing, and restriction fragment length polymorphism-based analysis of IS6110 for Mycobacterium tuberculosis typing. J Clin Microbiol 2014; 52:4082-6. [PMID: 25210067 DOI: 10.1128/jcm.02226-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fifty-two multidrug-resistant isolates of Mycobacterium tuberculosis representative of the currently predominant lineages in France were analyzed using repetitive-sequence-based PCR (rep-PCR) DiversiLab (DL), spoligotyping, 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing (MIRU-VNTR), and restriction fragment length polymorphism of IS6110 (IS6110-RFLP). DL, as opposed to MIRU-VNTR and IS6110-RFLP analysis, did not allow discrimination among half of the isolates, an indication of comparatively lower resolving power.
Collapse
|
15
|
Rapid detection and identification of nontuberculous mycobacterial pathogens in fish by using high-resolution melting analysis. Appl Environ Microbiol 2013; 79:7837-45. [PMID: 24123734 DOI: 10.1128/aem.00822-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial infections in fish are commonly referred to as piscine mycobacteriosis, irrespectively of the specific identity of the causal organism. They usually cause a chronic disease and sometimes may result in high mortalities and severe economic losses. Nearly 20 species of Mycobacterium have been reported to infect fish. Among them, Mycobacterium marinum, M. fortuitum, and M. chelonae are generally considered the major agents responsible for fish mycobacteriosis. As no quick and inexpensive diagnostic test exists, we tested the potential of high-resolution melting analysis (HRMA) to rapidly identify and differentiate several Mycobacterium species involved in fish infections. By analyzing both the melting temperature and melting profile of the 16S-23S rRNA internal transcribed spacer (ITS), we were able to discriminate 12 different species simultaneously. Sensitivity tests conducted on purified M. marinum and M. fortuitum DNA revealed a limit of detection of 10 genome equivalents per reaction. The primers used in this procedure did not lead to any amplification signal with 16 control non-Mycobacterium species, thereby demonstrating their specificity for the genus Mycobacterium.
Collapse
|
16
|
Kurokawa S, Kabayama J, Hwang SD, Nho SW, Hikima JI, Jung TS, Sakai M, Kondo H, Hirono I, Aoki T. Comparative genome analysis of fish and human isolates of Mycobacterium marinum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:596-605. [PMID: 23728847 DOI: 10.1007/s10126-013-9511-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Mycobacterium marinum is a major causative agent of mycobacteriosis in fish that has a broad range of hosts, including in human isolates. So far, genomic analyses have focused on the human isolate. Here, we compared the draft genome sequences of two strains of M. marinum isolated from fish (MB2 and Europe) with the M. marinum M isolated from humans. M. marinum MB2 and Europe have single, circular chromosomes of 6,134,389 and 6,029,340 bp, and average G + C contents of 65.7 and 65.5 %, respectively. A total of 5,464 coding DNA sequences were annotated in both M. marinum MB2 and Europe genome. Dot plot analyses showed that M. marinum MB2 and Europe were closer to M. marinum M when compared to three other Mycobacterium species. The insertion/deletion gene analysis showed that M. marinum MB2 and Europe contained 342 and 487 genes that were not found in M. marinum M, and lacked 625 and 776 genes found in M. marinum M, respectively. Most of the inserted and deleted genes were classified in the fatty acid, lipid, and isoprenoid subsystem and the virulence, disease, and defense subsystem. Therefore, these results provide insights into the genomic diversity associated with variable hosts and pathogens.
Collapse
Affiliation(s)
- Satoru Kurokawa
- Animal Health Department of Research and Development Agricultural and Veterinary Division, Meiji Seika Pharma, 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Mycobacteriosis, a chronic bacterial infection, has been associated with severe losses in some zebrafish facilities and low-level mortalities and unknown impacts in others. The occurrence of at least six different described species (Mycobacterium abscessus, M. chelonae, M. fortuitum, M. haemophilum, M. marinum, M. peregrinum) from zebrafish complicates diagnosis and control because each species is unique. As a generalization, mycobacteria are often considered opportunists, but M. haemophilum and M. marinum appear to be more virulent. Background genetics of zebrafish and environmental conditions influence the susceptibility of fish and progression of disease, emphasizing the importance of regular monitoring and good husbandry practices. A combined approach to diagnostics is ultimately the most informative, with histology as a first-level screen, polymerase chain reaction for rapid detection and species identification, and culture for strain differentiation. Occurrence of identical strains of Mycobacterium in both fish and biofilms in zebrafish systems suggests transmission can occur when fish feed on infected tissues or tank detritus containing mycobacteria. Within a facility, good husbandry practices and sentinel programs are essential for minimizing the impacts of mycobacteria. In addition, quarantine and screening of animals coming into a facility is important for eliminating the introduction of the more severe pathogens. Elimination of mycobacteria from an aquatic system is likely not feasible because these species readily establish biofilms on surfaces even in extremely low nutrient conditions. Risks associated with each commonly encountered species need to be identified and informed management plans developed. Basic research on the growth characteristics, disinfection, and pathogenesis of zebrafish mycobacteria is critical moving forward.
Collapse
Affiliation(s)
- Christopher M Whipps
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
18
|
Calvo L, Gregorio I, García A, Fernández MT, Goñi P, Clavel A, Peleato ML, Fillat MF. A new pentaplex-nested PCR to detect five pathogenic bacteria in free living amoebae. WATER RESEARCH 2013; 47:493-502. [PMID: 23168310 DOI: 10.1016/j.watres.2012.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 06/01/2023]
Abstract
Changes in water use and anthropogenic activity have major impacts on the quality of natural aquatic ecosystems, water distribution and wastewater plants. One of the main problems is the presence of some pathogenic microorganisms that are resistant to disinfection procedures when they are hosted by free living amoeba and that in many cases are hardly detectable by culture-based procedures. In this work we report a sensitive, low-cost procedure consisting of a pentaplex-nested PCR that allows simultaneous detection of Legionella pneumophila, Mycobacterium spp., Pseudomonas spp., Vibrio cholerae and the microcystin-producing cyanobacteria Microcystis aeruginosa. The method has been used to detect the presence of these pathogenic bacteria in water and inside free living amoeba. Its validation in 72 samples obtained from different water sources from Aragon (Spain) evidences that Mycobacterium and Pseudomonas spp are prevailing as amoeba-resistant bacteria.
Collapse
Affiliation(s)
- L Calvo
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Szumowski JD, Adams KN, Edelstein PH, Ramakrishnan L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol 2013; 374:81-108. [PMID: 23242857 PMCID: PMC3859842 DOI: 10.1007/82_2012_300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need for lengthy treatment to cure tuberculosis stems from phenotypic drug resistance, also known as drug tolerance, which has been previously attributed to slowed bacterial growth in vivo. We discuss recent findings that challenge this model and instead implicate macrophage-induced mycobacterial efflux pumps in antimicrobial tolerance. Although mycobacterial efflux pumps may have originally served to protect against environmental toxins, in the pathogenic mycobacteria, they appear to have been repurposed for intracellular growth. In this light, we discuss the potential of efflux pump inhibitors such as verapamil to shorten tuberculosis treatment by their dual inhibition of tolerance and growth.
Collapse
Affiliation(s)
- John D Szumowski
- Department of Medicine (Division of Infectious Diseases), University of Washington, Seattle, WA, USA,
| | | | | | | |
Collapse
|