1
|
da Silveira EF, Ferreira LM, Gehrcke M, Cruz L, Pedra NS, Ramos PT, Bona NP, Soares MSP, Rodrigues R, Spanevello RM, Cunico W, Stefanello FM, Azambuja JH, Horn AP, Braganhol E. 2-(2-Methoxyphenyl)-3-((Piperidin-1-yl)ethyl)thiazolidin-4-One-Loaded Polymeric Nanocapsules: In Vitro Antiglioma Activity and In Vivo Toxicity Evaluation. Cell Mol Neurobiol 2019; 39:783-797. [PMID: 31115733 PMCID: PMC11462846 DOI: 10.1007/s10571-019-00678-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Among gliomas types, glioblastoma is considered the most malignant and the worst form of primary brain tumor. It is characterized by high infiltration rate and great angiogenic capacity. The presence of an inflammatory microenvironment contributes to chemo/radioresistance, resulting in poor prognosis for patients. Recent data show that thiazolidinones have a wide range of pharmacological properties, including anti-inflammatory and antiglioma activities. Nanocapsules of biodegradable polymers become an alternative to cancer treatment since they provide targeted drug delivery and could overcome blood-brain barrier. Therefore, here we investigated the in vitro antiglioma activity and the potential in vivo toxicity of 2- (2-methoxyphenyl) -3- ((piperidin-1-yl) ethyl) thiazolidin-4-one-loaded polymeric nanocapsules (4L-N). Nanocapsules were prepared and characterized in terms of particle size, polydispersity index, zeta potential, pH, molecule content and encapsulation efficiency. Treatment with 4L-N selectively decreased human U138MG and rat C6 cell lines viability and proliferation, being even more efficient than the free-form molecule (4L). In addition, 4L-N did not promote toxicity to primary astrocytes. We further demonstrated that the treatment with sub-therapeutic dose of 4L-N did not alter weight, neither resulted in mortality, toxicity or peripheral damage to Wistar rats. Finally, 4L as well as 4L-N did not alter makers of oxidative damage, such as TBARS levels and total sulfhydryl content, and did not change antioxidant enzymes SOD and CAT activity in liver and brain of treated rats. Taken together, these data indicate that the nanoencapsulation of 4L has potentiated its antiglioma effect and does not cause in vivo toxicity.
Collapse
Affiliation(s)
- Elita Ferreira da Silveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Luana Mota Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mailine Gehrcke
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Nathália Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Priscila Treptow Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rosélia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| |
Collapse
|
2
|
da Silveira EF, Azambuja JH, de Carvalho TR, Kunzler A, da Silva DS, Teixeira FC, Rodrigues R, Beira FT, de Cássia Sant Anna Alves R, Spanevello RM, Cunico W, Stefanello FM, Horn AP, Braganhol E. Synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones exhibit selective in vitro antitumoral activity and inhibit cancer cell growth in a preclinical model of glioblastoma multiforme. Chem Biol Interact 2017; 266:1-9. [PMID: 28174097 DOI: 10.1016/j.cbi.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/03/2017] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the worst form of primary brain tumor, which has a high rate of infiltration and resistance to radiation and chemotherapy, resulting in poor prognosis for patients. Recent studies show that thiazolidinones have a wide range of pharmacological properties including antimicrobial, anti-inflammatory, anti-oxidant and anti-tumor. Here, we investigate the effect antiglioma in vitro of a panel of sixteen synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones where 13 of these decreased the viability of glioma cells 30-65% (100 μM) compared with controls. The most promising compounds such as 4d, 4l, 4m and 4p promoted glioma reduction of viability greater than 50%, were further tested at lower concentrations (12.5, 25, 50 and 100 μM). Also, the data showed that the compounds 4d, 4l, 4m and 4p induced cell death primarily through necrosis and late apoptosis mechanisms. Interestingly, none of these 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones were cytotoxic for primary astrocytes, which were used as a non-transformed cell model, indicating selectivity. Our results also show that the treatment with sub-therapeutic doses of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones (4d, 4l and 4p) reduced in vivo glioma growth as well as malignant characteristics of implanted tumors such as intratumoral hemorrhage and peripheral pseudopalisading. Importantly, 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones treatment did not induce mortality or peripheral damage to animals. Finally, 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones also changed the nitric oxide metabolism which may be associated with reduced growth and malignity characteristics of gliomas. These data indicates for the first time the therapeutic potential of synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones to GBM treatment.
Collapse
Affiliation(s)
- Elita F da Silveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Juliana H Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Taíse Rosa de Carvalho
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Alice Kunzler
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Daniel S da Silva
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernanda C Teixeira
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fátima T Beira
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rita de Cássia Sant Anna Alves
- Departamento de Patologia e de Medicina Legal, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselia M Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana P Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep 2015; 12:1050-8. [PMID: 25777142 PMCID: PMC4438970 DOI: 10.3892/mmr.2015.3492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) was previously shown to exhibit low expression in glioma tissue as compared with that in normal brain tissue; however, the role of NDRG1 in human glioma cells has remained to be elucidated. The present study used the U87 MG and SHG-44 human glioma cell lines as well as the normal human astrocyte cell line 1800, which are known to have differential NDRG1 expression. Small interfering (si)RNA targeting NDRG1, and NDRG1 overexpression vectors were transfected into the SHG-44 and U87 MG glioma cells, respectively. Cell proliferation, invasion, apoptosis and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model was used to investigate the effects of NDRG1 on the growth of glioma cells in vivo. Overexpression of NDRG1 was shown to inhibit cell proliferation and invasion, and induce apoptosis in the U87 MG glioma cells, whereas NDRG1 downregulation increased proliferation, suppressed apoptosis and promoted invasion of the SHG-44 glioma cells. In addition, in the subcutaneous tumor mouse model, overexpression of NDRG1 in U-87 MG cells suppressed tumorigenicity in vivo. The findings of the present study indicated that NDRG1 is required for the inhibition of gliomagenesis; therefore, targeting NDRG1 and its downstream targets may represent novel therapies for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
4
|
|
5
|
da Silveira EF, Chassot JM, Teixeira FC, Azambuja JH, Debom G, Beira FT, Del Pino FAB, Lourenço A, Horn AP, Cruz L, Spanevello RM, Braganhol E. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Invest New Drugs 2013; 31:1424-35. [DOI: 10.1007/s10637-013-0016-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
|
6
|
Xia L, Huang Q, Nie D, Shi J, Gong M, Wu B, Gong P, Zhao L, Zuo H, Ju S, Chen J, Shi W. PAX3 is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Brain Res 2013; 1521:68-78. [PMID: 23701726 DOI: 10.1016/j.brainres.2013.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/28/2013] [Accepted: 05/11/2013] [Indexed: 01/04/2023]
Abstract
Paired box 3 (PAX3) is overexpressed in glioma tissues compared to normal brain tissues, however, the pathogenic role of PAX3 in human glioma cells remains to be elucidated. In this study, we selected the human glioma cell lines U251, U87, SHG-44, and the normal human astrocytes, 1800, which have differential PAX3 expression depending upon the person. SiRNA targeting PAX3 and PAX3 overexpression vectors were transfected into U87 and SHG-44 glioma cell lines, and cell proliferation, invasion, apoptosis, and differentiation were examined by CCK-8 assays, transwell chamber assays, tunnel staining, Annexin V/PI analysis, and Western blotting, respectively. In addition, we used subcutaneous tumor models to study the effect of PAX3 on the growth of glioma cells in vivo. We found that PAX3 was upregulated in the three glioma cell lines. PAX3 knockdown inhibited cell proliferation and invasion, and induced apoptosis in the U87MG glioblastoma cell line, whereas PAX3 upregulation promoted proliferation, inhibited apoptosis, and increased invasion in the SHG-44 glioma cell line. Moreover, we found that targeting PAX3 expression in glioma cell lines together with chemotherapeutic treatment could increase glioma cell susceptibility to the drug. In subcutaneous tumor models in nude mice using glioma cell lines U-87MG and SHG-44, inhibition of PAX3 expression in glioblastoma U-87MG cells suppressed tumorigenicity, and upregulation of PAX3 expression in glioma SHG-44 cells promoted tumor formation in vivo. These results indicate that PAX3 in glioma is essential for gliomagenesis; thus, targeting PAX3 or its downstream targets may lead to novel therapies for this disease.
Collapse
Affiliation(s)
- Liang Xia
- Department of Neurosurgery, Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zuhur SS, Müslüman AM, Tanık C, Karaman O, Oztürk FY, Ozderya A, Ozkayalar H, Aydın Y, Altuntaş Y. MGMT immunoexpression in adamantinomatous craniopharyngiomas. Pituitary 2011; 14:323-7. [PMID: 21318329 DOI: 10.1007/s11102-011-0297-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
At present, no effective medical treatment exists for recurrent and aggressive craniopharyngiomas that are resistant to conventional therapies, including surgery and adjuvant radiotherapy. Temozolomide is an alkylating chemotherapeutic agent used routinely in the management of high grade gliomas. The response to temozolomide is suggested to be dependent on the tumoral expression of O-6 methylguanine DNA methyltransferase (MGMT). Evidence supports that low MGMT immunoexpression correlates with positive response to temozolomide. Therefore, we aimed to assess MGMT immunoexpression in adamantinomatous craniopharyngiomas, in an effort to predict the likelihood of response to temozolomide. The MGMT immunostaining was performed on 23 adamantinomatous craniofaryngiomas operated at the Sisli Etfal Training and Research Hospital and identified by histological analysis. Paraffin embedded tissue sections were immunostained for MGMT and were evaluated semi-quantitatively. Of the 23 cases evaluated, 22 (96%) demonstrated negative (<10%) and 1 (4%) demonstrated low (10%) MGMT immunoexpression. Data from this study suggest a high proportion of adamantinomatous craniopharyngiomas exhibit negative/low MGMT immunoreactivity and could be treated with temozolomide, if conventional therapy fails.
Collapse
Affiliation(s)
- Sayid Shafi Zuhur
- Endocrinology and Metabolism Clinic, Sisli Etfal Training and Research Hospital, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fealey ME, Scheithauer BW, Horvath E, Erickson D, Kovacs K, McLendon R, Lloyd RV. MGMT immunoexpression in silent subtype 3 pituitary adenomas: possible therapeutic implications. Endocr Pathol 2010; 21:161-5. [PMID: 20480258 DOI: 10.1007/s12022-010-9120-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of the study was to assess O(6)-methylguanine-DNA methyltransferase (MGMT) immunoreactivity in pituitary adenomas of silent subtype 3 as a potential indicator of temozolomide susceptibility. The Mayo Clinic Anatomic Pathology Database was searched for all cases of silent subtype 3 pituitary adenoma. Each of the 23 cases identified had been confirmed on the basis of histology, immunohistochemical staining for pituitary hormones, as well as on diagnostic ultrastructural criteria. Unstained microscopic sections were immunostained for MGMT and were semiquantitatively assessed. Of the 23 tumors examined, 18 (78%) showed no MGMT immunoreactivity. The remaining five (22%) showed immunoreactivity in < or =50% of tumor cells. Among eight of the most clinically aggressive tumors in this study, six (75%) lacked MGMT immunoreactivity. The observed lack of or low-level expression of MGMT by this distinctive, clinically aggressive form of pituitary adenoma suggests potential efficacy of treatment with the alkylating agent temozolomide.
Collapse
|
9
|
Salvati M, D'Elia A, Formichella AI, Frati A. Insights into pharmacotherapy of malignant glioma in adults. Expert Opin Pharmacother 2009; 10:2279-90. [DOI: 10.1517/14656560903146910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Braganhol E, Morrone FB, Bernardi A, Huppes D, Meurer L, Edelweiss MIA, Lenz G, Wink MR, Robson SC, Battastini AMO. Selective NTPDase2 expression modulates in vivo rat glioma growth. Cancer Sci 2009; 100:1434-42. [PMID: 19558578 PMCID: PMC11159314 DOI: 10.1111/j.1349-7006.2009.01219.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are a family of ectoenzymes that hydrolyze extracellular nucleotides, thereby modulating purinergic signaling. Gliomas have low expression of all E-NTPDases, particularly NTPDase2, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cultures. We have previously shown that the co-injection of apyrase with gliomas decreases glioma progression. Here, we tested whether selective re-establishment of NTPDase2 expression would affect glioma growth. NTPDase2 overexpression in C6 glioma cells had no effect on in vitro proliferation but dramatically increased tumor growth and malignant characteristics in vivo. Additionally, a sizable platelet sequestration in the tumor area and an increase in CD31 or platelet/endothelial cell adhesion molecule-1 (PECAM-1), vascular endothelial growth factor and OX-42 immunostaining were observed in C6-Enhanced Yellow Fluorescent Protein (EYFP)/NTPDase2-derived gliomas when compared to controls. Treatment with clopidogrel, a P2Y(12) antagonist with anti-platelet properties, decreased these parameters to control levels. These data suggest that the ADP derived from NTPDase2 activity stimulates platelet migration to the tumor area and that NTPDase2, by regulating angiogenesis and inflammation, seems to play an important role in tumor progression. In conclusion, our results point to the involvement of purinergic signaling in glioma progression.
Collapse
Affiliation(s)
- Elizandra Braganhol
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Gliomas account for 42% of all primary CNS neoplasms and 77% of all malignant primary CNS neoplasms. Unfortunately the high-grade variant of gliomas, glioblastoma multiforme (GBM), is difficult to treat and generally considered incurable. Survival rates are generally poor, and neurological morbidity in the setting of disease progression is high. Fortunately, significant progress has been achieved in the past decade in our understanding of the molecular biology of this aggressive tumour histology and, as a consequence, there is renewed clinical trial activity in this area focused on improving quality of life, treatment-related morbidity and outcomes. METHODS A review of literature from June 2005 to June 2008 was conducted on multimodal treatment of malignant glioma (MG) patients, using specific search criteria in Medline, EMBASE, and BIOSIS. Abstracts from relevant US and European medical (cancer) meetings were also evaluated. RESULTS The established therapies for MG include surgery, radiotherapy (RT), and local or systemic chemotherapy. However, over the last 10 years only two chemotherapeutic agents have received regulatory approval for treatment of MG: polifeprosan 20 with carmustine (BCNU implant) and temozolomide (TMZ), an imidazotetrazine derivative of dacarbazine. More recent advances in the treatment of brain tumours have been in the development of multimodal approaches. Specific interest in the combination of BCNU implant and TMZ has arisen due to the demonstrable depletion by TMZ of the DNA repair enzyme responsible for resistance to a nitrosourea such as BCNU. Further interest in this combination stems from the observation that there is a difference in the time to peak effect for each agent. Additional emerging data suggest that multimodal therapy with maximal resection and BCNU implants, followed by adjuvant therapy with radiation and TMZ, is effective and well-tolerated in patients with initial high-grade, resectable MG. CONCLUSIONS The increasing body of efficacy data suggests that this combination of BCNU implants and TMZ within a multimodal treatment strategy including surgery and RT may provide an enhanced benefit compared with the use of either of these agents alone in select patients with high-grade glioma.
Collapse
|
12
|
Abstract
Epigenetic gene regulation of specific genes strongly affects clinical outcome of malignant glioma. MGMT is the best studied gene for the connection of promoter methylation and clinical course in glioblastoma. While MGMT promoter methylation analysis currently does not alter treatment of glioblastoma patients, mainly because of a lack of convincing therapy to radiotherapy and concomitant administration of alkylating drugs, there is increasing interest on the part of patients and physicians in having this molecular parameter assessed. This chapter gives a short overview of the physiological characteristics of the epigenome in normal cells and tissues and the changes in epigenetic gene regulation following malignant transformation. It discusses the technical aspects, advantages, and shortcomings of currently used approaches for single-gene and genome-wide methylation analyses. Finally, an outlook is given on potential therapeutic avenues and targets to overcome tumor-suppressor gene silencing by aberrant promoter methylation in gliomas.
Collapse
Affiliation(s)
- Wolf C Mueller
- Department of Neuropathology, Institute of Pathology, Im Neuenheimer Feld 220/221, Heidelberg 69120, Germany.
| | | |
Collapse
|
13
|
Juzenas P, Chen W, Sun YP, Coelho MAN, Generalov R, Generalova N, Christensen IL. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 2008; 60:1600-14. [PMID: 18840487 PMCID: PMC2695009 DOI: 10.1016/j.addr.2008.08.004] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/16/2008] [Indexed: 12/18/2022]
Abstract
Semiconductor quantum dots and nanoparticles composed of metals, lipids or polymers have emerged with promising applications for early detection and therapy of cancer. Quantum dots with unique optical properties are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous, and toxicity of such quantum dots to living cells, and humans, is not yet systematically investigated. Therefore, search for less toxic materials with similar targeting and optical properties is of further interest. Whereas, the investigation of luminescence nanoparticles as light sources for cancer therapy is very interesting. Despite advances in neurosurgery and radiotherapy the prognosis for patients with malignant gliomas has changed little for the last decades. Cancer treatment requires high accuracy in delivering ionizing radiation to reduce toxicity to surrounding tissues. Recently some research has been focused in developing photosensitizing quantum dots for production of radicals upon absorption of visible light. In spite of the fact that visible light is safe, this approach is suitable to treat only superficial tumours. Ionizing radiation (X-rays and gamma rays) penetrate much deeper thus offering a big advantage in treating patients with tumours in internal organs. Such concept of using quantum dots and nanoparticles to yield electrons and radicals in photodynamic and radiation therapies as well their combination is reviewed in this article.
Collapse
Affiliation(s)
- Petras Juzenas
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
14
|
The role of fascin in the migration and invasiveness of malignant glioma cells. Neoplasia 2008; 10:149-59. [PMID: 18283337 DOI: 10.1593/neo.07909] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/28/2007] [Accepted: 11/28/2007] [Indexed: 11/18/2022] Open
Abstract
Malignant glioma is the most common primary brain tumor, and its ability to invade the surrounding brain parenchyma is a leading cause of tumor recurrence and treatment failure. Whereas the molecular mechanisms of glioma invasion are incompletely understood, there is growing evidence that cytoskeletal-matrix interactions contribute to this process. Fascin, an actin-bundling protein, induces parallel actin bundles in cell protrusions and increases cell motility in multiple human malignancies. The role of fascin in glioma invasion remains unclear. We demonstrate that fascin is expressed in a panel of human malignant glioma cell lines, and downregulation of fascin expression in glioma cell lines by small interfering RNA (siRNA) is associated with decreased cellular attachment to extracellular matrix (ECM) and reduced migration. Using immunofluorescence analysis, we show that fascin depletion results in a reduced number of filopodia as well as altered glioma cell shape. In vitro invasiveness of U251, U87, and SNB19 glioma cells was inhibited by fascin siRNA treatment by 52.2%, 40.3%, and 23.8% respectively. Finally, we show a decreased invasiveness of U251-GFP cells by fascin knockdown in an ex vivo rat brain slice model system. This is the first study to demonstrate a role for fascin in glioma cell morphology, motility, and invasiveness.
Collapse
|