1
|
Jiang Y, Yan Q, Liu CX, Peng CW, Zheng WJ, Zhuang HF, Huang HT, Liu Q, Liao HL, Zhan SF, Liu XH, Huang XF. Insights into potential mechanisms of asthma patients with COVID-19: A study based on the gene expression profiling of bronchoalveolar lavage fluid. Comput Biol Med 2022; 146:105601. [PMID: 35751199 PMCID: PMC9117163 DOI: 10.1016/j.compbiomed.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Background The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. Methods The “Limma” package or “DESeq2” package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. Results 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. Conclusions This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Qian Yan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Cheng-Xin Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Chen-Wen Peng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Wen-Jiang Zheng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Li Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
2
|
Lata S, Mishra R, Arya RP, Arora P, Lahon A, Banerjea AC, Sood V. Where all the Roads Meet? A Crossover Perspective on Host Factors Regulating SARS-CoV-2 infection. J Mol Biol 2022; 434:167403. [PMID: 34914966 PMCID: PMC8666384 DOI: 10.1016/j.jmb.2021.167403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023]
Abstract
COVID-19 caused by SARS-CoV-2 is the latest pandemic which has thrown the world into an unprecedented social and economic uncertainties along with huge loss to humanity. Identification of the host factors regulating the replication of SARS-CoV-2 in human host may help in the development of novel anti-viral therapies to combat the viral infection and spread. Recently, some research groups used genome-wide CRISPR/Cas screening to identify the host factors critical for the SARS-CoV-2 replication and infection. A comparative analysis of these significant host factors (p < 0.05) identified fifteen proteins common in these studies. Apart from ACE2 (receptor for SARS-CoV-2 attachment), other common host factors were CSNK2B, GDI2, SLC35B2, DDX51, VPS26A, ARPP-19, C1QTNF7, ALG6, LIMA1, COG3, COG8, BCOR, LRRN2 and TLR9. Additionally, viral interactome of these host factors revealed that many of them were associated with several SARS-CoV-2 proteins as well. Interestingly, some of these host factors have already been shown to be critical for the pathogenesis of other viruses suggesting their crucial role in virus-host interactions. Here, we review the functions of these host factors and their role in other diseases with special emphasis on viral diseases.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ravi P. Arya
- KSBS, Indian Institute of Technology, New Delhi, India
| | - Pooja Arora
- Hansraj College, University of Delhi, New Delhi, India
| | | | - Akhil C. Banerjea
- Institute of Advanced Virology, Kerala, India,Corresponding authors
| | - Vikas Sood
- Biochemistry Department, Jamia Hamdard, New Delhi, India,Corresponding authors
| |
Collapse
|
3
|
Descamps D, Peres de Oliveira A, Gonnin L, Madrières S, Fix J, Drajac C, Marquant Q, Bouguyon E, Pietralunga V, Iha H, Morais Ventura A, Tangy F, Vidalain PO, Eléouët JF, Galloux M. Depletion of TAX1BP1 Amplifies Innate Immune Responses during Respiratory Syncytial Virus Infection. J Virol 2021; 95:e0091221. [PMID: 34431698 PMCID: PMC8549506 DOI: 10.1128/jvi.00912-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.
Collapse
Affiliation(s)
| | - Andressa Peres de Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lorène Gonnin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Sarah Madrières
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Hidekatsu Iha
- Department of Infectious Diseases, Faculty of Medicine, Oita University Idaiga-oka, Hasama Yufu, Japan
| | - Armando Morais Ventura
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
4
|
Cakir M, Obernier K, Forget A, Krogan NJ. Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. mSystems 2021; 6:e0038821. [PMID: 34519533 PMCID: PMC8547474 DOI: 10.1128/msystems.00388-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current epidemics, such as AIDS or flu, and the emergence of new threatening pathogens, such as the one causing the current coronavirus disease 2019 (COVID-19) pandemic, represent major global health challenges. While vaccination is an important part of the arsenal to counter the spread of viral diseases, it presents limitations and needs to be complemented by efficient therapeutic solutions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify host-dependent vulnerabilities that can be exploited to dampen viral replication. Such host-directed antiviral therapies are promising and are less prone to the development of drug-resistant viral strains. Here, we first describe proteomics-based strategies that allow the rapid characterization of host-pathogen interactions. We then discuss how such data can be exploited to help prioritize compounds with potential host-directed antiviral activity that can be tested in preclinical models.
Collapse
Affiliation(s)
- Merve Cakir
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
5
|
Rajagopala SV, Bakhoum NG, Pakala SB, Shilts MH, Rosas-Salazar C, Mai A, Boone HH, McHenry R, Yooseph S, Halasa N, Das SR. Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples. CELL REPORTS METHODS 2021; 1:100091. [PMID: 34790908 PMCID: PMC8594859 DOI: 10.1016/j.crmeth.2021.100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA virome with sufficient sequencing depth required to assemble complete genomes. We find a surprisingly high frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregulation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to sequence RNA viruses directly from clinical samples.
Collapse
Affiliation(s)
- Seesandra V. Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole G. Bakhoum
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman B. Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meghan H. Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christian Rosas-Salazar
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Annie Mai
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Helen H. Boone
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rendie McHenry
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
| | - Natasha Halasa
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Otolaryngology and Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Gupta R, Leimanis ML, Adams M, Bachmann AS, Uhl KL, Bupp CP, Hartog NL, Kort EJ, Olivero R, Comstock SS, Sanfilippo DJ, Lunt SY, Prokop JW, Rajasekaran S. Balancing precision versus cohort transcriptomic analysis of acute and recovery phase of viral bronchiolitis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1147-L1157. [PMID: 33851876 DOI: 10.1152/ajplung.00440.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Viral infections affecting the lower respiratory tract place enormous burdens on hospitals. As neither vaccines nor antiviral agents exist for many viruses, understanding risk factors and outcomes in each patient using minimally invasive analysis, such as blood, can lead to improved health care delivery. A cohort of PAXgene RNA sequencing of infants admitted with moderate or severe acute bronchiolitis and respiratory syncytial virus were compared with case-control statistical analysis and cohort-based outlier mapping for precision transcriptomics. Patients with severe bronchiolitis had signatures connected to the immune system, interferon signaling, and cytokine signaling, with marked sex differences in XIST, RPS4Y1, KDM5D, and LINC00278 for severity. Several patients had unique secondary infections, cytokine activation, immune responses, biological pathways, and immune cell activation, highlighting the need for defining patient-level transcriptomic signatures. Balancing relative contributions of cohort-based biomarker discoveries with patient's biological responses is needed to understand the totality of mechanisms of adverse outcomes in viral bronchiolitis.
Collapse
Affiliation(s)
- Ruchir Gupta
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Mara L Leimanis
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Marie Adams
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Caleb P Bupp
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | | | - Eric J Kort
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,DeVos Cardiovascular Research Program, Spectrum Health and Van Andel Institute, Grand Rapids, Michigan
| | - Rosemary Olivero
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Infectious Disease, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| | - Dominic J Sanfilippo
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Sophia Y Lunt
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Office of Research, Spectrum Health, Grand Rapids, Michigan
| |
Collapse
|
7
|
Lu G, Shan S, Zainab B, Ayaz Z, He J, Xie Z, Rashid U, Zhang D, Mehmood Abbasi A. Novel vaccine design based on genomics data analysis: A review. Scand J Immunol 2021; 93:e12986. [PMID: 33043473 DOI: 10.1111/sji.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
Modification of pathogenic strains with the passage of time is responsible for evolution in the timeline of vaccine development for last 30 years. Recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. The aim of this review was to discuss the evolution of vaccines, their characteristics and limitations. In this review, we highlighted the evolution of vaccines, from first generation to the current status, pointing out how different vaccines have emerged and different approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. Data were collected using Google Scholar, Web of Science, Science Direct, Web of Knowledge, Scopus and Science Hub, whereas computational tools such as NCBI, GeneMANIA and STRING were used to analyse the pathways of vaccine action. Innovative tools, such as computational tools, recombinant technologies and intra-dermal devices, are currently being investigated in order to improve the immunological response. New technologies enlightened the interactions of host proteins with pathogenic proteins for vaccine candidate development, but still there is a need of integrating transcriptomic and proteomic approaches. Although immunization with genomics data is a successful approach, its advantages must be assessed case by case and its applicability depends on the nature of the agent to be immunized, the nature of the antigen and the type of immune response required to achieve effective protection.
Collapse
Affiliation(s)
- Guangli Lu
- Institute of Business, School of Business, Henan University, Henan, China
| | - Sharui Shan
- The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou, China
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Bibi Zainab
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zainab Ayaz
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Jialiang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Zhenxing Xie
- Basic School of Medicine, Henan University, Kaifeng, China
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Dalin Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
8
|
Romano A, Casazza M, Gonella F. Addressing Non-linear System Dynamics of Single-Strand RNA Virus-Host Interaction. Front Microbiol 2021; 11:600254. [PMID: 33519741 PMCID: PMC7843927 DOI: 10.3389/fmicb.2020.600254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Positive single-strand ribonucleic acid [(+)ssRNA] viruses can cause multiple outbreaks, for which comprehensive tailored therapeutic strategies are still missing. Virus and host cell dynamics are tightly connected, generating a complex dynamics that conveys in virion assembly to ensure virus spread in the body. Starting from the knowledge of relevant processes in (+ss)RNA virus replication, transcription, translation, virions budding and shedding, and their respective energy costs, we built up a systems thinking (ST)-based diagram of the virus-host interaction, comprehensive of stocks, flows, and processes as well-described in literature. In ST approach, stocks and flows are expressed by a proxy of the energy embedded and transmitted, respectively, whereas processes are referred to the energy required for the system functioning. In this perspective, healthiness is just a particular configuration, in which stocks relevant for the system (equivalent but not limited to proteins, RNA, DNA, and all metabolites required for the survival) are constant, and the system behavior is stationary. At time of infection, the presence of additional stocks (e.g., viral protein and RNA and all metabolites required for virion assembly and spread) confers a complex network of feedbacks leading to new configurations, which can evolve to maximize the virions stock, thus changing the system structure, output, and purpose. The dynamic trajectories will evolve to achieve a new stationary status, a phenomenon described in microbiology as integration and symbiosis when the system is resilient enough to the changes, or the system may stop functioning and die. Application of external driving forces, acting on processes, can affect the dynamic trajectories adding a further degree of complexity, which can be captured by ST approach, used to address these new configurations. Investigation of system configurations in response to external driving forces acting is developed by computational analysis based on ST diagrams, with the aim at designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Romano
- Sezione di Ematologia, Dipartimento di Chirurgia Generale e Specialità Medico Chirurgiche (CHIRMED), Università degli Studi di Catania, Catania, Italy
- Division of Hematology, U.O.C di Ematologia, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico - San Marco”, Catania, Italy
| | - Marco Casazza
- Division of Hematology, U.O.C di Ematologia, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico - San Marco”, Catania, Italy
| | - Francesco Gonella
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy
| |
Collapse
|
9
|
Han Z, Rao J, Xie Z, Wang C, Xu B, Qian S, Wang Y, Zhu J, Yang B, Xu F, Lei X, Guo F, Zhao Z, Ren L, Wang J. Chemokine (C-X-C Motif) Ligand 4 Is a Restrictor of Respiratory Syncytial Virus Infection and an Indicator of Clinical Severity. Am J Respir Crit Care Med 2020; 202:717-729. [PMID: 32543879 DOI: 10.1164/rccm.201908-1567oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Respiratory syncytial virus (RSV) is the leading cause of childhood respiratory infections worldwide; however, no vaccine is available, and treatment options are limited. Identification of host factors pivotal to viral replication may inform the development of novel therapies, prophylaxes, or diagnoses.Objectives: To identify host factors involved in RSV replication and to evaluate their potential for disease management.Methods: A gain-of-function screening was performed on the basis of a genome-wide human complementary DNA library screen for host factors involved in RSV replication. The antiviral mechanism of CXCL4 (chemokine [C-X-C motif] ligand 4) was analyzed. Its clinical role was evaluated via nasopharyngeal aspirates and plasma samples from patients with RSV infection and different disease severities.Measurements and Main Results: Forty-nine host factors restricting RSV replication were identified by gain-of-function screening, with CXCL4 showing the strongest antiviral effect, which was secretion dependent. CXCL4 blocked viral attachment through binding to the RSV main receptor heparan sulfate, instead of through interacting with RSV surface proteins. Intranasal pretreatment with CXCL4 alleviated inflammation in RSV-infected mice, as shown by decreased concentrations of tumor necrosis factor and viral load in BAL fluid samples as well as by viral nucleocapsid protein histological staining in lungs. Compared with non-RSV infections, RSV infections induced elevated CXCL4 concentrations both in plasma and airway samples from mice and pediatric patients. The airway CXCL4 concentration was correlated with viral load and disease severity in patients (P < 0.001).Conclusions: Our results suggest that CXCL4 is an RSV restriction factor that can block viral entry and serve as an indicator of clinical severity in RSV infections.
Collapse
Affiliation(s)
- Zibo Han
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Rao
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases.,Key Laboratory of Major Diseases in Children, Ministry of Education, and.,Laboratory of Infection and Virology, Beijing Pediatric Research Institute, National Clinical Research Center for Respiratory Diseases and National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China; and.,Research Unit of Critical Infection in Children and
| | - Conghui Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Baoping Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases.,Key Laboratory of Major Diseases in Children, Ministry of Education, and.,Laboratory of Infection and Virology, Beijing Pediatric Research Institute, National Clinical Research Center for Respiratory Diseases and National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China; and.,Research Unit of Critical Infection in Children and
| | - Suyun Qian
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases.,Key Laboratory of Major Diseases in Children, Ministry of Education, and.,Laboratory of Infection and Virology, Beijing Pediatric Research Institute, National Clinical Research Center for Respiratory Diseases and National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China; and.,Research Unit of Critical Infection in Children and
| | - Yingying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Junlin Zhu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bin Yang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fengwen Xu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and
| | - Xiaobo Lei
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fei Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and
| | - Zhendong Zhao
- National Health Commission Key Laboratory of Systems Biology of Pathogens and
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and.,Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Zolfaghari Emameh R, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol Proced Online 2020; 22:16. [PMID: 32754004 PMCID: PMC7377208 DOI: 10.1186/s12575-020-00127-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV. Results In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients. Conclusions Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Eftekhari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Barrio R, Sutherland JD, Rodriguez MS. SUMO and Cytoplasmic RNA Viruses: From Enemies to Best Friends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1233:263-277. [PMID: 32274761 PMCID: PMC7144409 DOI: 10.1007/978-3-030-38266-7_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMO is a ubiquitin-like protein that covalently binds to lysine residues of target proteins and regulates many biological processes such as protein subcellular localization or stability, transcription, DNA repair, innate immunity, or antiviral defense. SUMO has a critical role in the signaling pathway governing type I interferon (IFN) production, and among the SUMOylation substrates are many IFN-induced proteins. The overall effect of IFN is increasing global SUMOylation, pointing to SUMO as part of the antiviral stress response. Viral agents have developed different mechanisms to counteract the antiviral activities exerted by SUMO, and some viruses have evolved to exploit the host SUMOylation machinery to modify their own proteins. The exploitation of SUMO has been mainly linked to nuclear replicating viruses due to the predominant nuclear localization of SUMO proteins and enzymes involved in SUMOylation. However, SUMOylation of numerous viral proteins encoded by RNA viruses replicating at the cytoplasm has been lately described. Whether nuclear localization of these viral proteins is required for their SUMOylation is unclear. Here, we summarize the studies on exploitation of SUMOylation by cytoplasmic RNA viruses and discuss about the requirement for nuclear localization of their proteins.
Collapse
Affiliation(s)
- Rosa Barrio
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | | |
Collapse
|
13
|
McClure RS, Wendler JP, Adkins JN, Swanstrom J, Baric R, Kaiser BLD, Oxford KL, Waters KM, McDermott JE. Unified feature association networks through integration of transcriptomic and proteomic data. PLoS Comput Biol 2019; 15:e1007241. [PMID: 31527878 PMCID: PMC6748406 DOI: 10.1371/journal.pcbi.1007241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
High-throughput multi-omics studies and corresponding network analyses of multi-omic data have rapidly expanded their impact over the last 10 years. As biological features of different types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the greatest amount of knowledge can be gained from networks that incorporate multiple types of -omic data. However, biological and technical sources of variation diminish the ability to detect cross-type associations, yielding networks dominated by communities comprised of nodes of the same type. We describe here network building methods that can maximize edges between nodes of different data types leading to integrated networks, networks that have a large number of edges that link nodes of different-omic types (transcripts, proteins, lipids etc). We systematically rank several network inference methods and demonstrate that, in many cases, using a random forest method, GENIE3, produces the most integrated networks. This increase in integration does not come at the cost of accuracy as GENIE3 produces networks of approximately the same quality as the other network inference methods tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional pathways showed centrality differences between the two networks including genes responding to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated vs. receptor-mediated Dengue network. Because a biological system involves the interplay of many different types of molecules, incorporating multiple data types into networks will improve their use as models of biological systems. The methods explored here are some of the first to specifically highlight and address the challenges associated with how such multi-omic networks can be assembled and how the greatest number of interactions can be inferred from different data types. The resulting networks can lead to the discovery of new host response patterns and interactions during viral infection, generate new hypotheses of pathogenic mechanisms and confirm mechanisms of disease.
Collapse
Affiliation(s)
- Ryan S. McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jason P. Wendler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jesica Swanstrom
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Ralph Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooke L. Deatherage Kaiser
- Signatures Science and Technology Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Kristie L. Oxford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, United States of America
| |
Collapse
|
14
|
Bah SY, Morang'a CM, Kengne-Ouafo JA, Amenga-Etego L, Awandare GA. Highlights on the Application of Genomics and Bioinformatics in the Fight Against Infectious Diseases: Challenges and Opportunities in Africa. Front Genet 2018; 9:575. [PMID: 30538723 PMCID: PMC6277583 DOI: 10.3389/fgene.2018.00575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
Genomics and bioinformatics are increasingly contributing to our understanding of infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis and parasites such as Plasmodium falciparum. This ranges from investigations of disease outbreaks and pathogenesis, host and pathogen genomic variation, and host immune evasion mechanisms to identification of potential diagnostic markers and vaccine targets. High throughput genomics data generated from pathogens and animal models can be combined with host genomics and patients’ health records to give advice on treatment options as well as potential drug and vaccine interactions. However, despite accounting for the highest burden of infectious diseases, Africa has the lowest research output on infectious disease genomics. Here we review the contributions of genomics and bioinformatics to the management of infectious diseases of serious public health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis. Furthermore, we discuss how genomics and bioinformatics can be applied to identify drug and vaccine targets. We conclude by identifying challenges to genomics research in Africa and highlighting how these can be overcome where possible.
Collapse
Affiliation(s)
- Saikou Y Bah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.,Vaccine and Immunity Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Collins Misita Morang'a
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
15
|
Cotton rat lung transcriptome reveals host immune response to Respiratory Syncytial Virus infection. Sci Rep 2018; 8:11318. [PMID: 30054492 PMCID: PMC6063970 DOI: 10.1038/s41598-018-29374-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/11/2018] [Indexed: 11/12/2022] Open
Abstract
Acute respiratory infection (ARI) with respiratory syncytial virus (RSV) is the most common cause of both hospitalizations and mortality in young infants worldwide. Repeat infections with RSV are common throughout life in both pediatric and elderly populations. Thus far, cotton rats (Sigmodon hispidus) are found to be the best animal model to study RSV infection. However, the lack of a cotton rat reference genome limits genome-wide host gene expression studies. We constructed the first lung tissue de novo transcriptome for the cotton rat. Cotton rat lung tissue transcripts were assigned to 12,211 unique UniProt genes, which were then utilized to profile the host immune response after RSV infection. Differential expression analysis showed up-regulation of host genes involved in cellular functions including defense responses to viral infection and immune system processes. A number of transcripts were downregulated during the later stage of infection. A set of transcripts unique to RSV-infected cotton rats was identified. To validate RNA-Seq data of three such transcripts (TR453762, TR529629, and TR5333), their expression was confirmed by quantitative real-time polymerase chain reaction.
Collapse
|
16
|
Francesconi V, Giovannini L, Santucci M, Cichero E, Costi MP, Naesens L, Giordanetto F, Tonelli M. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Eur J Med Chem 2018; 155:229-243. [PMID: 29886325 PMCID: PMC7115377 DOI: 10.1016/j.ejmech.2018.05.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023]
Abstract
Recently we identified cycloguanil-like dihydrotriazine derivatives, which provided host-factor directed antiviral activity against influenza viruses and respiratory syncytial virus (RSV), by targeting the human dihydrofolate reductase (hDHFR) enzyme. In this context we deemed interesting to further investigate the structure activity relationship (SAR) of our first series of cycloguanil-like dihydrotriazines, designing two novel azaspiro dihydrotriazine scaffolds. The present study allowed the exploration of the potential chemical space, around these new scaffolds, that are well tolerated for maintaining the antiviral effect by means of interaction with the hDHFR enzyme. The new derivatives confirmed their inhibitory profile against influenza viruses, especially type B. In particular, the two best compounds shared potent antiviral activity (4: EC50 = 0.29 μM; 6: EC50 = 0.19 μM), which was comparable to that of zanamivir (EC50 = 0.14 μM), and better than that of ribavirin (EC50 = 3.2 μM). In addition, these two compounds proved to be also effective against RSV (4: EC50 = 0.40 μM, SI ≥ 250; 6: EC50 = 1.8 μM, SI ≥ 56), surpassing the potency and selectivity index (SI) of ribavirin (EC50 = 5.8 μM, SI > 43). By a perspective of these results, the above adequately substituted azaspiro dihydrotriazines may represent valuable hit compounds worthy of further structural optimization to develop improved host DHFR-directed antiviral agents.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Luca Giovannini
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Elena Cichero
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227, Dortmund, Germany
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genoa, Italy.
| |
Collapse
|
17
|
Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula. Chin J Nat Med 2018; 16:241-251. [DOI: 10.1016/s1875-5364(18)30054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 01/28/2023]
|
18
|
Do LAH, Pellet J, van Doorn HR, Tran AT, Nguyen BH, Tran TTL, Tran QH, Vo QB, Tran Dac NA, Trinh HN, Nguyen TTH, Le Binh BT, Nguyen HMK, Nguyen MT, Thai QT, Vo TV, Ngo NQM, Dang TKH, Cao NH, Tran TV, Ho LV, De Meulder B, Auffray C, Hofstra JJ, Farrar J, Bryant JE, de Jong M, Hibberd ML. Host Transcription Profile in Nasal Epithelium and Whole Blood of Hospitalized Children Under 2 Years of Age With Respiratory Syncytial Virus Infection. J Infect Dis 2017; 217:134-146. [PMID: 29029245 PMCID: PMC5853303 DOI: 10.1093/infdis/jix519] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background Most insights into the cascade of immune events after acute respiratory syncytial virus (RSV) infection have been obtained from animal experiments or in vitro models. Methods In this study, we investigated host gene expression profiles in nasopharyngeal (NP) swabs and whole blood samples during natural RSV and rhinovirus (hRV) infection (acute versus early recovery phase) in 83 hospitalized patients <2 years old with lower respiratory tract infections. Results Respiratory syncytial virus infection induced strong and persistent innate immune responses including interferon signaling and pathways related to chemokine/cytokine signaling in both compartments. Interferon-α/β, NOTCH1 signaling pathways and potential biomarkers HIST1H4E, IL7R, ISG15 in NP samples, or BCL6, HIST2H2AC, CCNA1 in blood are leading pathways and hub genes that were associated with both RSV load and severity. The observed RSV-induced gene expression patterns did not differ significantly in NP swab and blood specimens. In contrast, hRV infection did not as strongly induce expression of innate immunity pathways, and significant differences were observed between NP swab and blood specimens. Conclusions We conclude that RSV induced strong and persistent innate immune responses and that RSV severity may be related to development of T follicular helper cells and antiviral inflammatory sequelae derived from high activation of BCL6.
Collapse
Affiliation(s)
- Lien Anh Ha Do
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Johann Pellet
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | | | | | | | | | - Quoc Bao Vo
- Children Hospital 2, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | - Thanh Vu Vo
- Children Hospital 1, Ho Chi Minh City, Vietnam
| | | | | | | | | | - Lu Viet Ho
- Children Hospital 2, Ho Chi Minh City, Vietnam
| | | | - Charles Auffray
- European Institute for Systems Biology and Medicine, Lyon, France
| | - Jorrit-Jan Hofstra
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Menno de Jong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, in partnership with the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Martin L Hibberd
- Genome Institute of Singapore
- London School of Hygiene & Tropical Medicine, United Kingdom
| |
Collapse
|
19
|
Hägglund S, Blodörn K, Näslund K, Vargmar K, Lind SB, Mi J, Araínga M, Riffault S, Taylor G, Pringle J, Valarcher JF. Proteome analysis of bronchoalveolar lavage from calves infected with bovine respiratory syncytial virus-Insights in pathogenesis and perspectives for new treatments. PLoS One 2017; 12:e0186594. [PMID: 29036182 PMCID: PMC5643112 DOI: 10.1371/journal.pone.0186594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
Human and bovine respiratory syncytial viruses (HRSV/BRSV) are major causes of severe lower respiratory tract infections in children and calves, respectively. Shared epidemiological, clinical, pathological and genetic characteristics of these viruses make comparative research highly relevant. To characterise the host response against BRSV infection, bronchoalveolar lavage supernatant (BAL) from i) non-vaccinated, BRSV-infected ii) vaccinated, BRSV-infected and iii) non-infected calves was analysed by tandem mass spectrometry. Proteins were semi-quantified and protein expression was validated by immunoblotting. Correlations between selected proteins and pathology, clinical signs and virus shedding were investigated. Calves with BRSV-induced disease had increased total protein concentrations and a decreased number of proteins identified in BAL. The protein profile was characterised by neutrophil activation and a reduction in identified antioxidant enzymes. The presence of neutrophils in alveolar septa, the expression level of neutrophil-related or antioxidant proteins and LZTFL1 correlated significantly with disease. Citrullinated histone 3, an indicator of extracellular traps (ETs), was only detected in non-vaccinated, BRSV-infected animals. By bringing disequilibrium in the release and detoxification of reactive oxygen species, generating ETs and causing elastine degradation, exaggerated neutrophil responses might exacerbate RSV-induced disease. Neutrophil-mitigating or antioxidant treatments should be further explored.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
- * E-mail:
| | - Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Katarina Näslund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Karin Vargmar
- Swedish University of Agricultural Sciences, Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Uppsala, Sweden
| | - Sara Bergström Lind
- Uppsala University, Science for Life Laboratory, Analytical Chemistry, Department of Chemistry-BMC, Uppsala, Sweden
| | - Jia Mi
- Uppsala University, Science for Life Laboratory, Analytical Chemistry, Department of Chemistry-BMC, Uppsala, Sweden
- Binzhou Medical University, Medicine and Pharmarcy Research Center, Yantai, China
| | - Mariluz Araínga
- University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States of America
| | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Geraldine Taylor
- The Pirbright Institute Ash Road, Pirbright, Surrey, United Kingdom
| | - John Pringle
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Tonelli M, Naesens L, Gazzarrini S, Santucci M, Cichero E, Tasso B, Moroni A, Costi MP, Loddo R. Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus. Eur J Med Chem 2017; 135:467-478. [PMID: 28477572 PMCID: PMC7115580 DOI: 10.1016/j.ejmech.2017.04.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 11/18/2022]
Abstract
We have identified a series of 1-aryl-4,6-diamino-1,2-dihydrotriazines, structurally related to the antimalarial drug cycloguanil, as new inhibitors of influenza A and B virus and respiratory syncytial virus (RSV) via targeting of the host dihydrofolate reductase (DHFR) enzyme. Most analogues proved active against influenza B virus in the low micromolar range, and the best compounds (11, 13, 14 and 16) even reached the sub-micromolar potency of zanamivir (EC50 = 0.060 μM), and markedly exceeded (up to 327 times) the antiviral efficacy of ribavirin. Activity was also observed for two influenza A strains, including a virus with the S31N mutant form of M2 proton channel, which is the most prevalent resistance mutation for amantadine. Importantly, the compounds displayed nanomolar activity against RSV and a superior selectivity index, since the ratio of cytotoxic to antiviral concentration was >10,000 for the three most active compounds 11, 14 and 16 (EC50 ∼0.008 μM), far surpassing the potency and safety profile of the licensed drug ribavirin (EC50 = 5.8 μM, SI > 43).
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy.
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Sabrina Gazzarrini
- Department of Biosciences and National Research Council (CNR), Biophysics Institute (IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100 Modena, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Bruno Tasso
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Anna Moroni
- Department of Biosciences and National Research Council (CNR), Biophysics Institute (IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41100 Modena, Italy
| | - Roberta Loddo
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| |
Collapse
|