1
|
Mehta H, Jain S, Narang T, Chhabra S, Dogra S. Leprosy reactions: New knowledge on pathophysiology, diagnosis, treatment and prevention. Indian J Dermatol Venereol Leprol 2024; 0:1-12. [PMID: 39912169 DOI: 10.25259/ijdvl_915_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/04/2024] [Indexed: 02/07/2025]
Abstract
Leprosy, or Hansen's disease, caused by Mycobacterium leprae and Mycobacterium lepromatosis, is a chronic granulomatous infectious disease. Leprosy reactions, characterised by neurocutaneous inflammation, complicate the disease's indolent course, leading to significant morbidity. However, limited knowledge of reaction pathophysiology stems from a lack of experimental models and the abrupt onset of reactional episodes, posing challenges in delineating initial pathogenic steps. In type 1 reactions, ongoing studies explore the roles of interferon-gamma which results in increased interleukin (IL)-15 and autophagy. Leprosy reactions also exhibit an increase in T helper 17 (Th17) and a decrease in T-regulatory cell (Treg) populations, resulting in diminished tumour growth factor-beta and heightened IL-6 and IL-21 production. Exploring the pathogenesis of erythema nodosum leprosum (ENL) reveals insights into neutrophils, Toll-like receptor 9, B-cells, myeloid-derived suppressor cells, IL-10 pathway and neurotrophins. Noteworthy therapeutic targets include increased expression of cyclooxygenase 2 and vascular endothelial growth factor. Early reaction diagnosis is crucial to limit neural damage, with high-resolution ultrasonography showing promise in detecting minimal nerve involvement. Therapies for ENL management, such as thalidomide, methotrexate, apremilast, minocycline and tumour necrosis factor-alpha inhibitors, hold potential. This review addresses recent advances in leprosy reaction pathogenesis and diagnostics, offering therapeutic insights and preventive strategies to mitigate their onset.
Collapse
Affiliation(s)
- Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sejal Jain
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Zhou Q, Shi P, Shi WD, Gao J, Wu YC, Wan J, Yan LL, Zheng Y. Identification of potential biomarkers of leprosy: A study based on GEO datasets. PLoS One 2024; 19:e0302753. [PMID: 38739634 PMCID: PMC11090354 DOI: 10.1371/journal.pone.0302753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Leprosy has a high rate of cripplehood and lacks available early effective diagnosis methods for prevention and treatment, thus novel effective molecule markers are urgently required. In this study, we conducted bioinformatics analysis with leprosy and normal samples acquired from the GEO database(GSE84893, GSE74481, GSE17763, GSE16844 and GSE443). Through WGCNA analysis, 85 hub genes were screened(GS > 0.7 and MM > 0.8). Through DEG analysis, 82 up-regulated and 3 down-regulated genes were screened(|Log2FC| > 3 and FDR < 0.05). Then 49 intersection genes were considered as crucial and subjected to GO annotation, KEGG pathway and PPI analysis to determine the biological significance in the pathogenesis of leprosy. Finally, we identified a gene-pathway network, suggesting ITK, CD48, IL2RG, CCR5, FGR, JAK3, STAT1, LCK, PTPRC, CXCR4 can be used as biomarkers and these genes are active in 6 immune system pathways, including Chemokine signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, T cell receptor signaling pathway, Natural killer cell mediated cytotoxicity and Leukocyte transendothelial migration. We identified 10 crucial gene markers and related important pathways that acted as essential components in the etiology of leprosy. Our study provides potential targets for diagnostic biomarkers and therapy of leprosy.
Collapse
Affiliation(s)
- Qun Zhou
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| | - Ping Shi
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| | - Wei dong Shi
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| | - Jun Gao
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| | - Yi chen Wu
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| | - Jing Wan
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| | - Li li Yan
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| | - Yi Zheng
- Wuhan Dermatology Prevention Hospital, Wuhan, Hubei, P. R. China
| |
Collapse
|
3
|
Spitz CN, Pitta IJR, Andrade LR, Sales AM, Sarno EN, Villela NR, Pinheiro RO, Jardim MR. Case report: Injected corticosteroids for treating leprosy isolated neuritis. Front Med (Lausanne) 2023; 10:1202108. [PMID: 37396908 PMCID: PMC10313350 DOI: 10.3389/fmed.2023.1202108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
One of the main manifestations of leprosy is peripheral nerve impairment. Early diagnosis and treatment are important to reduce the impact of neurological impairment, which can cause deformities and physical disabilities. Leprosy neuropathy can be acute or chronic, and neural involvement can occur before, during, or after multidrug therapy, and especially during reactional episodes when neuritis occurs. Neuritis causes loss of function in the nerves and can be irreversible if left untreated. The recommended treatment is corticosteroids, usually through an oral regimen at an immunosuppressive dose. However, patients with clinical conditions that restrict corticosteroid use or that have focal neural involvement may benefit from the use of ultrasound-guided perineural injectable corticosteroids. In this study, we report two cases that demonstrate how the treatment and follow-up of patients with neuritis secondary to leprosy, using new techniques, can be provided in a more individualized way. Nerve conduction studies in association with neuromuscular ultrasound were used to monitor the response to treatment with injected steroids, focusing on neural inflammation. This study provides new perspectives and options for this profile of patients.
Collapse
Affiliation(s)
- Clarissa Neves Spitz
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Izabela Jardim Rodrigues Pitta
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi, Brazil
| | - Ligia Rocha Andrade
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Anna Maria Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcia Rodrigues Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Post-Graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Gomes de Castro KK, Lopes da Silva PH, Nahar dos Santos L, Leal JMP, de Pinho Pereira MM, Alvim IMP, Esquenazi D. Downmodulation of Regulatory T Cells Producing TGF-β Participates in Pathogenesis of Leprosy Reactions. Front Med (Lausanne) 2022; 9:865330. [PMID: 35924037 PMCID: PMC9341400 DOI: 10.3389/fmed.2022.865330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022] Open
Abstract
Leprosy reactions are an acute and systemic manifestation, which occurs suddenly, can be severe and lead leprosy patients to disability. Reactional episodes are observed among half of the multibacillary patients, mainly in borderline lepromatous and lepromatous forms. They may begin at any time during multidrug therapy, and even before the treatment. Physical disabilities, which are the source of extreme suffering and pain for patients, occur in progression of the cellular immune response associated with a reaction and are still poorly understood. Thus, this work aimed to phenotypically and functionally characterize CD4+ and CD8+ Treg cells ex vivo and in response to Mycobacterium leprae (ML). We studied 52 individuals, including 18 newly diagnosed and untreated multibacillary leprosy patients, 19 reactional multibacillary patients (Type I or Type II episodes) and 15 healthy volunteers, included as controls, all residents of the city of Rio de Janeiro. The functional activity and frequencies of these cells were evaluated through multiparametric flow cytometry. In addition, the production of cytokines in supernatant from peripheral blood mononuclear cell cultures was also investigated against ML by enzyme-linked immunosorbent assay. Our results showed a decrease in CD4+TGF-β+ Treg and CD8+ TGF-β+ Treg in leprosy multibacillary patients during both types of reactional episodes. Alterations in the cytokine profile was also observed in Type II reactions, along with upregulation of IL-17 and IL-6 in supernatant. Thus, our study suggests that downregulation of Treg cells is related with both classes of reactional episodes, improving our understanding of immune hyporesponsiveness in multibacillary patients and hyperesponsiveness in both reactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danuza Esquenazi
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Pathology and Laboratories, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Danuza Esquenazi
| |
Collapse
|
5
|
Froes LAR, Sotto MN, Trindade MAB. Leprosy: clinical and immunopathological characteristics. An Bras Dermatol 2022; 97:338-347. [PMID: 35379512 PMCID: PMC9133310 DOI: 10.1016/j.abd.2021.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Leprosy, a disease caused by Mycobacterium leprae, has polymorphic neurocutaneous manifestations strongly correlated with the host immune response. Peripheral neural damage can lead to sensory and motor losses, as well as deformities of the hands and feet. Both innate and acquired immune responses are involved, but the disease has been classically described along a Th1/Th2 spectrum, where the Th1 pole corresponds to the more limited presentations and the Th2 to the multibacillary ones. The aim of this review is to discuss this dichotomy in light of the current knowledge of the cytokines, T helper subpopulations, and regulatory T cells involved in each presentation of leprosy. The text will also address leprosy reactions related to increased inflammatory activity in both limited and multibacillary presentations, leading to exacerbation of chronic signs and symptoms and/or the development of new ones. Despite the efforts of many research groups around the world, there is no standardized serological test/biological marker for diagnosis so far, even in endemic areas, which could contribute to the eradication of leprosy.
Collapse
|
6
|
de Oliveira JADP, de Athaide MM, Rahman AU, de Mattos Barbosa MG, Jardim MM, Moraes MO, Pinheiro RO. Kynurenines in the Pathogenesis of Peripheral Neuropathy During Leprosy and COVID-19. Front Cell Infect Microbiol 2022; 12:815738. [PMID: 35281455 PMCID: PMC8907883 DOI: 10.3389/fcimb.2022.815738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.
Collapse
Affiliation(s)
| | | | - Atta Ur Rahman
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcia Maria Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
7
|
Silva BJDA, Bittencourt TL, Leal-Calvo T, Mendes MA, Prata RBDS, Barbosa MGDM, Andrade PR, Côrte-Real S, Sperandio da Silva GM, Moraes MO, Sarno EN, Pinheiro RO. Autophagy-Associated IL-15 Production Is Involved in the Pathogenesis of Leprosy Type 1 Reaction. Cells 2021; 10:2215. [PMID: 34571865 PMCID: PMC8468917 DOI: 10.3390/cells10092215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Leprosy reactional episodes are acute inflammatory events that may occur during the clinical course of the disease. Type 1 reaction (T1R) is associated with an increase in neural damage, and the understanding of the molecular pathways related to T1R onset is pivotal for the development of strategies that may effectively control the reaction. Interferon-gamma (IFN-γ) is a key cytokine associated with T1R onset and is also associated with autophagy induction. Here, we evaluated the modulation of the autophagy pathway in Mycobacterium leprae-stimulated cells in the presence or absence of IFN-γ. We observed that IFN-γ treatment promoted autophagy activation and increased the expression of genes related to the formation of phagosomes, autophagy regulation and function, or lysosomal pathways in M. leprae-stimulated cells. IFN-γ increased interleukin (IL)-15 secretion in M. leprae-stimulated THP-1 cells in a process associated with autophagy activation. We also observed higher IL15 gene expression in multibacillary (MB) patients who later developed T1R during clinical follow-up when compared to MB patients who did not develop the episode. By overlapping gene expression patterns, we observed 13 common elements shared between T1R skin lesion cells and THP-1 cells stimulated with both M. leprae and IFN-γ. Among these genes, the autophagy regulator Translocated Promoter Region, Nuclear Basket Protein (TPR) was significantly increased in T1R cells when compared with non-reactional MB cells. Overall, our results indicate that IFN-γ may induce a TPR-mediated autophagy transcriptional program in M. leprae-stimulated cells similar to that observed in skin cells during T1R by a pathway that involves IL-15 production, suggesting the involvement of this cytokine in the pathogenesis of T1R.
Collapse
Affiliation(s)
- Bruno Jorge de Andrade Silva
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Tamiris Lameira Bittencourt
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Thyago Leal-Calvo
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Rhana Berto da Silva Prata
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Garcia de Mattos Barbosa
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Priscila Ribeiro Andrade
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Suzana Côrte-Real
- Structural Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | | | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| |
Collapse
|
8
|
Abstract
Urbanization, pollution and the modification of natural landscapes are characteristics of modern society, where the change in human relations with the environment and the impact on biodiversity are environmental determinants that affect the health-disease relationship. The skin is an organ that has a strong interface with the environment and, therefore, the prevalence patterns of dermatoses may reflect these environmental changes. In this article, aspects related to deforestation, fires, urbanization, large-scale agriculture, extensive livestock farming, pollution and climatic changes are discussed regarding their influence on the epidemiology of skin diseases. It is important that dermatologists be aware of their social responsibility in order to promote sustainable practices in their community, in addition to identifying the impacts of environmental imbalances on different dermatoses, which is essential for the prevention and treatment of these diseases.
Collapse
|
9
|
Oliveira JAP, Gandini M, Sales JS, Fujimori SK, Barbosa MGM, Frutuoso VS, Moraes MO, Sarno EN, Pessolani MCV, Pinheiro RO. Mycobacterium leprae induces a tolerogenic profile in monocyte-derived dendritic cells via TLR2 induction of IDO. J Leukoc Biol 2020; 110:167-176. [PMID: 33040382 PMCID: PMC8359402 DOI: 10.1002/jlb.4a0320-188r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The enzyme IDO‐1 is involved in the first stage of tryptophan catabolism and has been described in both microbicidal and tolerogenic microenvironments. Previous data from our group have shown that IDO‐1 is differentially regulated in the distinctive clinical forms of leprosy. The present study aims to investigate the mechanisms associated with IDO‐1 expression and activity in human monocyte‐derived dendritic cells (mDCs) after stimulation with irradiated Mycobacterium leprae and its fractions. M. leprae and its fractions induced the expression and activity of IDO‐1 in human mDCs. Among the stimuli studied, irradiated M. leprae and its membrane fraction (MLMA) induced the production of proinflammatory cytokines TNF and IL‐6 whereas irradiated M. leprae and its cytosol fraction (MLSA) induced an increase in IL‐10. We investigated if TLR2 activation was necessary for IDO‐1 induction in mDCs. We observed that in cultures treated with a neutralizing anti‐TLR2 antibody, there was a decrease in IDO‐1 activity and expression induced by M. leprae and MLMA. The same effect was observed when we used a MyD88 inhibitor. Our data demonstrate that coculture of mDCs with autologous lymphocytes induced an increase in regulatory T (Treg) cell frequency in MLSA‐stimulated cultures, showing that M. leprae constituents may play opposite roles that may possibly be related to the dubious effect of IDO‐1 in the different clinical forms of disease. Our data show that M. leprae and its fractions are able to differentially modulate the activity and functionality of IDO‐1 in mDCs by a pathway that involves TLR2, suggesting that this enzyme may play an important role in leprosy immunopathogenesis.
Collapse
Affiliation(s)
- Jéssica A P Oliveira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jorgenilce S Sales
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sérgio K Fujimori
- Laboratory for Development and Analytical Validation, Oswaldo Cruz Foundation, Farmanguinhos, Rio de Janeiro, Brazil
| | - Mayara G M Barbosa
- Cascalho-Platt Laboratory, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Valber S Frutuoso
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Milton O Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria C V Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta O Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
da Silva TP, Bittencourt TL, de Oliveira AL, Prata RBDS, Menezes V, Ferreira H, Nery JADC, de Oliveira EB, Sperandio da Silva GM, Sarno EN, Pinheiro RO. Macrophage Polarization in Leprosy-HIV Co-infected Patients. Front Immunol 2020; 11:1493. [PMID: 32849508 PMCID: PMC7403476 DOI: 10.3389/fimmu.2020.01493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
In HIV-infected individuals, a paradoxical clinical deterioration may occur in preexisting leprosy when highly active antiretroviral therapy (HAART)-associated reversal reaction (RR) develops. Leprosy–HIV co-infected patients during HAART may present a more severe form of the disease (RR/HIV), but the immune mechanisms related to the pathogenesis of leprosy–HIV co-infection remain unknown. Although the adaptive immune responses have been extensively studied in leprosy–HIV co-infected individuals, recent studies have described that innate immune cells may drive the overall immune responses to mycobacterial antigens. Monocytes are critical to the innate immune system and play an important role in several inflammatory conditions associated with chronic infections. In leprosy, different tissue macrophage phenotypes have been associated with the different clinical forms of the disease, but it is not clear how HIV infection modulates the phenotype of innate immune cells (monocytes or macrophages) during leprosy. In the present study, we investigated the phenotype of monocytes and macrophages in leprosy–HIV co-infected individuals, with or without RR. We did not observe differences between the monocyte profiles in the studied groups; however, analysis of gene expression within the skin lesion cells revealed that the RR/HIV group presents a higher expression of macrophage scavenger receptor 1 (MRS1), CD209 molecule (CD209), vascular endothelial growth factor (VEGF), arginase 2 (ARG2), and peroxisome proliferator-activated receptor gamma (PPARG) when compared with the RR group. Our data suggest that different phenotypes of tissue macrophages found in the skin from RR and RR/HIV patients could differentially contribute to the progression of leprosy.
Collapse
Affiliation(s)
| | | | | | | | - Vinicius Menezes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gilberto Marcelo Sperandio da Silva
- Chagas Disease Clinic Research Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Mi Z, Liu H, Zhang F. Advances in the Immunology and Genetics of Leprosy. Front Immunol 2020; 11:567. [PMID: 32373110 PMCID: PMC7176874 DOI: 10.3389/fimmu.2020.00567] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Leprosy, a disease caused by the intracellular parasite Mycobacterium leprae or Mycobacterium lepromatosis, has affected humans for more than 4,000 years and is a stigmatized disease even now. Since clinical manifestations of leprosy patients present as an immune-related spectrum, leprosy is regarded as an ideal model for studying the interaction between host immune response and infection; in fact, the landscape of leprosy immune responses has been extensively investigated. Meanwhile, leprosy is to some extent a genetic disease because the genetic factors of hosts have long been considered major contributors to this disease. Many immune-related genes have been discovered to be associated with leprosy. However, immunological and genetic findings have rarely been studied and discussed together, and as a result, the effects of gene variants on leprosy immune responses and the molecular mechanisms of leprosy pathogenesis are largely unknown. In this context, we summarized advances in both the immunology and genetics of leprosy and discussed the perspective of the combination of immunological and genetic approaches in studying the molecular mechanism of leprosy pathogenesis. In our opinion, the integrating of immunological and genetic approaches in the future may be promising to elucidate the molecular mechanism of leprosy onset and how leprosy develops into different types of leprosy.
Collapse
Affiliation(s)
- Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
12
|
Maymone MBC, Venkatesh S, Laughter M, Abdat R, Hugh J, Dacso MM, Rao PN, Stryjewska BM, Dunnick CA, Dellavalle RP. Leprosy: Treatment and management of complications. J Am Acad Dermatol 2020; 83:17-30. [PMID: 32244016 DOI: 10.1016/j.jaad.2019.10.138] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/25/2023]
Abstract
In the second article in this continuing medical education series, we review the treatment of leprosy, its immunologic reactions, and important concepts, including disease relapse and drug resistance. A fundamental understanding of the treatment options and management of neuropathic sequelae are essential to reduce disease burden and improve patients' quality of life.
Collapse
Affiliation(s)
- Mayra B C Maymone
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Samantha Venkatesh
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Melissa Laughter
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Rana Abdat
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| | - Jeremy Hugh
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Mara M Dacso
- National Hansen's (Leprosy) Disease Program, Baton Rouge, Louisiana; University of Texas Southwestern Medical Center, Dallas, Texas
| | - P Narasimha Rao
- Special Interest Group on Leprosy, Indian Association of Dermatologists, Venereologists and Leprologists, Delhi, India
| | | | - Cory A Dunnick
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado School of Medicine, Denver, Colorado.
| |
Collapse
|
13
|
Silva CAM, Graham B, Webb K, Ashton LV, Harton M, Luetkemeyer AF, Bokatzian S, Almubarak R, Mahapatra S, Hovind L, Kendall MA, Havlir D, Belisle JT, De Groote MA. A pilot metabolomics study of tuberculosis immune reconstitution inflammatory syndrome. Int J Infect Dis 2019; 84:30-38. [PMID: 31009738 PMCID: PMC6613934 DOI: 10.1016/j.ijid.2019.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diagnosis of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is challenging and new tools are needed for early diagnosis as well as to understand the biochemical events that underlie the pathology in TB-IRIS. METHODS Plasma samples were obtained from participants from a randomized HIV/TB treatment strategy study (AIDS Clinical Trials Group [ACTG] A5221) with (n = 26) and without TB-IRIS (n = 22) for an untargeted metabolomics pilot study by liquid-chromatography mass spectrometry. The metabolic profile of these participants was compared at the study entry and as close to the diagnosis of TB-IRIS as possible (TB-IRIS window). Molecular features with p < 0.05 and log2 fold change ≥0.58 were submitted for pathway analysis through MetaboAnalyst. We also elucidated potential metabolic signatures for TB-IRIS using a LASSO regression model. RESULTS At the study entry, we showed that the arachidonic acid and glycerophospholipid metabolism were altered in the TB-IRIS group. Sphingolipid and linoleic acid metabolism were the most affected pathways during the TB-IRIS window. LASSO modeling selected a set of 8 and 7 molecular features with the potential to predict TB-IRIS at study entry and during the TB-IRIS window, respectively. CONCLUSION This study suggests that the use of plasma metabolites may distinguish HIV-TB patients with and without TB-IRIS.
Collapse
Affiliation(s)
- Carlos A M Silva
- Mycobacterial Research Laboratories, Fort Collins, CO, USA; Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kristofor Webb
- Mycobacterial Research Laboratories, Fort Collins, CO, USA
| | | | - Marisa Harton
- Mycobacterial Research Laboratories, Fort Collins, CO, USA
| | | | | | | | | | - Laura Hovind
- Frontier Science & Technology Research Foundation, Inc., Amherst, NY, USA
| | - Michelle A Kendall
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health Boston, MA, USA
| | - Diane Havlir
- University of California San Francisco, San Francisco, CA, USA
| | - John T Belisle
- Mycobacterial Research Laboratories, Fort Collins, CO, USA
| | | |
Collapse
|
14
|
de Macedo CS, de Carvalho FM, Amaral JJ, de Mendonça Ochs S, Assis EF, Sarno EN, Bozza PT, Pessolani MCV. Leprosy and its reactional episodes: Serum levels and possible roles of omega-3 and omega-6-derived lipid mediators. Cytokine 2018; 112:87-94. [DOI: 10.1016/j.cyto.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/27/2023]
|
15
|
Brito LDAR, do Nascimento ACM, de Marque C, Miot HA. Seasonality of the hospitalizations at a dermatologic ward (2007-2017). An Bras Dermatol 2018; 93:755-758. [PMID: 30156635 PMCID: PMC6106666 DOI: 10.1590/abd1806-4841.20187309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/17/2017] [Indexed: 11/22/2022] Open
Abstract
There is little data in the literature concerning dermatologic admissions. Several diseases are seasonal in incidence and clinical worsening. We performed a survey of hospitalizations in the dermatology ward of a public hospital (April/2007 to May/2017). There were 1790 hospitalizations, whose main diagnoses were infectious dermatoses, neoplasias, psoriasis, bullous diseases and cutaneous ulcers. In winter, there were fewer hospitalizations for bacterial infections and urticaria, but more for leprosy. In summer, there were fewer hospitalizations for systemic and subcutaneous mycoses, but more for zoodermatoses and erythema multiforme. In the fall, more patients were admitted with mycoses. Spring favored urticaria and angioedema, but less cases of erythema multiforme and diabetic foot.
Collapse
Affiliation(s)
| | | | - Carla de Marque
- Medical school student, Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista, Botucatu (SP), Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiotherapy, Faculdade de Medicina de
Botucatu, Universidade Estadual Paulista, Botucatu (SP), Brazil
| |
Collapse
|
16
|
de Mattos Barbosa MG, de Andrade Silva BJ, Assis TQ, da Silva Prata RB, Ferreira H, Andrade PR, da Paixão de Oliveira JA, Sperandio da Silva GM, da Costa Nery JA, Sarno EN, Pinheiro RO. Autophagy Impairment Is Associated With Increased Inflammasome Activation and Reversal Reaction Development in Multibacillary Leprosy. Front Immunol 2018; 9:1223. [PMID: 29915584 PMCID: PMC5994478 DOI: 10.3389/fimmu.2018.01223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1β production. In addition, analysis of IL-1β production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1β at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1β and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.
Collapse
Affiliation(s)
| | | | - Tayná Quintella Assis
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Pinheiro RO, Schmitz V, Silva BJDA, Dias AA, de Souza BJ, de Mattos Barbosa MG, de Almeida Esquenazi D, Pessolani MCV, Sarno EN. Innate Immune Responses in Leprosy. Front Immunol 2018; 9:518. [PMID: 29643852 PMCID: PMC5882777 DOI: 10.3389/fimmu.2018.00518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - André Alves Dias
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Sun J, Tu P, Yi S, Fu W, Wang Y. Type I Lepra Reaction as the Presenting Sign of Histoid Leprosy. Ann Dermatol 2017; 29:646-648. [PMID: 28966530 PMCID: PMC5597667 DOI: 10.5021/ad.2017.29.5.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/22/2016] [Accepted: 09/13/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jingru Sun
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Shengguo Yi
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Wenjing Fu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| |
Collapse
|
19
|
Sales-Marques C, Cardoso CC, Alvarado-Arnez LE, Illaramendi X, Sales AM, Hacker MDA, Barbosa MGDM, Nery JADC, Pinheiro RO, Sarno EN, Pacheco AG, Moraes MO. Genetic polymorphisms of the IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy. PLoS Negl Trop Dis 2017; 11:e0005754. [PMID: 28715406 PMCID: PMC5531687 DOI: 10.1371/journal.pntd.0005754] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 07/27/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
The pathways that trigger exacerbated immune reactions in leprosy could be determined by genetic variations. Here, in a prospective approach, both genetic and non-genetic variables influencing the amount of time before the development of reactional episodes were studied using Kaplan-Meier survival curves, and the genetic effect was estimated by the Cox proportional-hazards regression model. In a sample including 447 leprosy patients, we confirmed that gender (male), and high bacillary clinical forms are risk factors for leprosy reactions. From the 15 single nucleotide polymorphisms (SNPs) at the 8 candidate genes genotyped (TNF/LTA, IFNG, IL10, TLR1, NOD2, SOD2, and IL6) we observed statistically different survival curves for rs751271 at the NOD2 and rs2069845 at the IL6 genes (log-rank p-values = 0.002 and 0.023, respectively), suggesting an influence on the amount of time before developing leprosy reactions. Cox models showed associations between the SNPs rs751271 at NOD2 and rs2069845 at IL6 with leprosy reactions (HRGT = 0.45, p = 0.002; HRAG = 1.88, p = 0.0008, respectively). Finally, IL-6 and IFN-γ levels were confirmed as high, while IL-10 titers were low in the sera of reactional patients. Rs751271-GT genotype-bearing individuals correlated (p = 0.05) with lower levels of IL-6 in sera samples, corroborating the genetic results. Although the experimental size may be considered a limitation of the study, the findings confirm the association of classical variables such as sex and clinical forms with leprosy, demonstrating the consistency of the results. From the results, we conclude that SNPs at the NOD2 and IL6 genes are associated with leprosy reactions as an outcome. NOD2 also has a clear functional pro-inflammatory link that is coherent with the exacerbated responses observed in these patients.
Collapse
Affiliation(s)
| | | | | | - Ximena Illaramendi
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Anna Maria Sales
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
20
|
Silva BJDA, Barbosa MGDM, Andrade PR, Ferreira H, Nery JADC, Côrte-Real S, da Silva GMS, Rosa PS, Fabri M, Sarno EN, Pinheiro RO. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization. PLoS Pathog 2017; 13:e1006103. [PMID: 28056107 PMCID: PMC5215777 DOI: 10.1371/journal.ppat.1006103] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/29/2016] [Indexed: 01/04/2023] Open
Abstract
Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages. Leprosy is an interesting model to study immune responses in humans due to the dichotomy observed among the poles of the disease. While in the self-limited tuberculoid form (T-lep) there are high systemic levels of the cytokine IFN-γ, in the clinically progressive lepromatous form (L-lep) low IFN-γ levels are found. IFN-γ activates an antimicrobial mechanism called autophagy, which has been implicated in control of Mycobacterium tuberculosis infection. However, the role played by autophagy in the immunopathogenesis of leprosy remains unknown. Here we show that autophagy was differentially regulated in T-lep and L-lep patients. In T-lep skin lesion cells autophagy contributes for bacilli control, whereas in L-lep cells the BCL2-mediated block of autophagy promotes the mycobacterial persistence. We also observed that IFN-γ may counteract the inhibition of autophagy triggered by M. leprae infection in L-lep macrophages. In addition, the levels of autophagy were restored in L-lep patients who developed the reversal reaction, an inflammatory state associated with augmented IFN-γ, which is the most important cause of nerve damage and deformities in leprosy. These findings suggest that the modulation of autophagy has the potential to be useful in the treatment of the disease, and provides new insights to prevent leprosy reactional episodes.
Collapse
Affiliation(s)
| | | | - Priscila Ribeiro Andrade
- Leprosy Laboratory; Oswaldo Cruz Institute; Oswaldo Cruz Foundation, FIOCRUZ; Rio de Janeiro, Brazil
| | - Helen Ferreira
- Leprosy Laboratory; Oswaldo Cruz Institute; Oswaldo Cruz Foundation, FIOCRUZ; Rio de Janeiro, Brazil
| | | | - Suzana Côrte-Real
- Structural Biology Laboratory; Oswaldo Cruz Institute; Oswaldo Cruz Foundation, FIOCRUZ; Rio de Janeiro, Brazil
| | | | | | - Mario Fabri
- Department of Dermatology; University of Cologne; Cologne, Germany
- Center for Molecular Medicine; University of Cologne; Cologne, Germany
| | - Euzenir Nunes Sarno
- Leprosy Laboratory; Oswaldo Cruz Institute; Oswaldo Cruz Foundation, FIOCRUZ; Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory; Oswaldo Cruz Institute; Oswaldo Cruz Foundation, FIOCRUZ; Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
21
|
dos Santos LN, da Silva PHL, Alvim IMP, Nery JADC, Lara FA, Sarno EN, Esquenazi D. Role of TEFFECTOR/MEMORY Cells, TBX21 Gene Expression and T-Cell Homing Receptor on Type 1 Reaction in Borderline Lepromatous Leprosy Patients. PLoS One 2016; 11:e0164543. [PMID: 27764137 PMCID: PMC5072666 DOI: 10.1371/journal.pone.0164543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/27/2016] [Indexed: 01/30/2023] Open
Abstract
In spite of hyporesponsivity to Mycobacterium leprae, borderline lepromatous (BL) patients show clinical and immunological instability, and undergo frequent acute inflammatory episodes such as type 1 reaction (T1R), which may cause nerve damages. This work focused on the participation of T cell subsets from blood and skin at T1R onset. We observed a significantly increased ex vivo frequency of both effector and memory CD4+ and CD8+ T cells in T1R group. Besides, ex vivo frequency of T cell homing receptor, the Cutaneous Leukocyte-associated Antigen (CLA) was significantly increased in T cells from T1R patients. M. leprae induced a higher frequency of CD4+ TEM and CD8+ TEF cells, as well as of CD8+/TEMRA (terminally differentiated effector T cells) subset, which expressed high CD69+. The presence of IFN-γ‒producing-CD4+ TEF and naïve and effector CD8+ T lymphocytes was significant in T1R. TBX21 expression was significantly higher in T1R, while BL showed increased GATA3 and FOXP3 expression. In T1R, TBX21 expression was strongly correlated with CD8+/IFN-γ‒ T cells frequency. The number of double positive CD8+/CLA+ and CD45RA+/CLA+ cells was significantly higher in skin lesions from T1R, in comparison with non-reactional BL group. The observed increase of ex vivo T cells at T1R onset suggests intravascular activation at the beginning of reactional episodes. The antigen-specific response in T1R group confirmed the higher number of CD8+/CLA+ and CD45RA+/CLA+ cells in T1R lesions suggests possible migration of these cells activated by M. leprae components inside the vascular compartment to skin and participation in T1R physiopathology.
Collapse
Affiliation(s)
| | | | - Iris Maria Peixoto Alvim
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Flávio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Danuza Esquenazi
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Pathology and Laboratories, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
22
|
Inkeles MS, Teles RM, Pouldar D, Andrade PR, Madigan CA, Lopez D, Ambrose M, Noursadeghi M, Sarno EN, Rea TH, Ochoa MT, Iruela-Arispe ML, Swindell WR, Ottenhoff TH, Geluk A, Bloom BR, Pellegrini M, Modlin RL. Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. JCI Insight 2016; 1:e88843. [PMID: 27699251 DOI: 10.1172/jci.insight.88843] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease.
Collapse
Affiliation(s)
- Megan S Inkeles
- Department of Molecular, Cell, and Developmental Biology and
| | - Rosane Mb Teles
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - Delila Pouldar
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - Priscila R Andrade
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - Cressida A Madigan
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA
| | - David Lopez
- Department of Molecular, Cell, and Developmental Biology and
| | - Mike Ambrose
- Department of Molecular, Cell, and Developmental Biology and
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thomas H Rea
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Maria T Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | | | - William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Tom Hm Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Barry R Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine at UCLA, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| |
Collapse
|
23
|
Andrade PR, Jardim MR, da Silva ACC, Manhaes PS, Antunes SLG, Vital R, Prata RBDS, Petito RB, Pinheiro RO, Sarno EN. Inflammatory Cytokines Are Involved in Focal Demyelination in Leprosy Neuritis. J Neuropathol Exp Neurol 2016; 75:272-83. [DOI: 10.1093/jnen/nlv027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Ba NN, Thai VH, Abel L, Alcaïs A, Schurr E. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. PLoS Negl Trop Dis 2016; 10:e0004412. [PMID: 26844546 PMCID: PMC4742274 DOI: 10.1371/journal.pntd.0004412] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Background Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R). The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility. Methodology An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs). Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL) analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels. Principal Findings A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863) that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen. Significance The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn’s disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases. A major challenge of current leprosy control is the management of host pathological immune responses coined Type-1 Reactions (T1R). T1R are characterized by acute inflammatory episodes whereby cellular immune responses are directed against host peripheral nerve cells. T1R affects up half of all leprosy patients and are a major cause of leprosy-associated disabilities. Since there is evidence that host genetic factors predispose leprosy patients to T1R, we have conducted a candidate gene study to test if LRRK2 gene variants are T1R risk factors. The choice of LRRK2 was motivated by the fact that LRRK2 was associated with leprosy per se in some but not in other studies. We reasoned that this may reflect different proportions of leprosy patients with T1R in the different samples and that LRRK2 may in truth be a T1R susceptibility gene. Here, we show that variants overlapping the LRRK2 gene, reported as suggestive leprosy per se susceptibility factors in a previous genome-wide association study, are preferentially associated with T1R. The main SNP carrying most of the association signal is the amino-acid change M2397T (rs3761863) which is known to impact LRRK2 turnover. Interestingly, eQTL SNPs counterbalanced the effect of the M2397T variant but this compensatory mechanism was abrogated by Mycobacterium leprae antigen stimulation.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | - Jérémy Manry
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, United States of America
- Centre d’Investigation Clinique, Unité de Recherche Clinique, Necker and Cochin Hospitals, Paris, France
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
- * E-mail:
| | | |
Collapse
|