1
|
Ardizzone A, Mannino D, Capra AP, Repici A, Filippone A, Esposito E, Campolo M. New Insights into the Mechanism of Ulva pertusa on Colitis in Mice: Modulation of the Pain and Immune System. Mar Drugs 2023; 21:md21050298. [PMID: 37233492 DOI: 10.3390/md21050298] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) involving Crohn's disease (CD) and ulcerative colitis (UC) are gastrointestinal (GI) disorders in which abdominal pain, discomfort, and diarrhea are the major symptoms. The immune system plays an important role in the pathogenesis of IBD and, as indicated by several clinical studies, both innate and adaptative immune response has the faculty to induce gut inflammation in UC patients. An inappropriate mucosal immune response to normal intestinal constituents is a main feature of UC, thus leading to an imbalance in local pro- and anti-inflammatory species. Ulva pertusa, a marine green alga, is known for its important biological properties, which could represent a source of beneficial effects in various human pathologies. We have already demonstrated the anti-inflammatory, antioxidant, and antiapoptotic effects of an Ulva pertusa extract in a murine model of colitis. In this study, we aimed to examine thoroughly Ulva pertusa immunomodulatory and pain-relieving properties. Colitis was induced by using the DNBS model (4 mg in 100 μL of 50% ethanol), whereas Ulva pertusa was administered daily at the dosage of 50 and 100 mg/kg by oral gavage. Ulva pertusa treatments have been shown to relieve abdominal pain while modulating innate and adaptative immune-inflammatory responses. This powerful immunomodulatory activity was specifically linked with TLR4 and NLRP3 inflammasome modulation. In conclusion, our data suggest Ulva pertusa as a valid approach to counteract immune dysregulation and abdominal discomfort in IBD.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| |
Collapse
|
2
|
Holman J, Hurd M, Moses PL, Mawe GM, Zhang T, Ishaq SL, Li Y. Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in inflammatory bowel diseases. J Nutr Biochem 2023; 113:109238. [PMID: 36442719 PMCID: PMC9974906 DOI: 10.1016/j.jnutbio.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.
Collapse
Affiliation(s)
- Johanna Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA; Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| |
Collapse
|
3
|
Zhang M, Xia F, Xia S, Zhou W, Zhang Y, Han X, Zhao K, Feng L, Dong R, Tian D, Yu Y, Liao J. NSAID-Associated Small Intestinal Injury: An Overview From Animal Model Development to Pathogenesis, Treatment, and Prevention. Front Pharmacol 2022; 13:818877. [PMID: 35222032 PMCID: PMC8864225 DOI: 10.3389/fphar.2022.818877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
With the wide application of non-steroidal anti-inflammatory drugs (NSAIDs), their gastrointestinal side effects are an urgent health burden. There are currently sound preventive measures for upper gastrointestinal injury, however, there is a lack of effective defense against lower gastrointestinal damage. According to a large number of previous animal experiments, a variety of NSAIDs have been demonstrated to induce small intestinal mucosal injury in vivo. This article reviews the descriptive data on the administration dose, administration method, mucosal injury site, and morphological characteristics of inflammatory sites of various NSAIDs. The cells, cytokines, receptors and ligands, pathways, enzyme inhibition, bacteria, enterohepatic circulation, oxidative stress, and other potential pathogenic factors involved in NSAID-associated enteropathy are also reviewed. We point out the limitations of drug modeling at this stage and are also pleased to discover the application prospects of chemically modified NSAIDs, dietary therapy, and many natural products against intestinal mucosal injury.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Department of Hepatic Surgery Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangdong Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Feng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruonan Dong
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Lee JH, Kim HS, Lee D, Yun T, Koo Y, Chae Y, Kang JH, Kang BT, Yang MP, Kim H. Clinical signs, duodenal histopathological grades, and serum high-mobility group box 1 concentrations in dogs with inflammatory bowel disease. J Vet Intern Med 2021; 35:2205-2214. [PMID: 34480505 PMCID: PMC8478061 DOI: 10.1111/jvim.16258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) commonly occurs in dogs, but there is lack of information about potential biomarkers of clinical and histopathologic severity. Objective To examine the role of serum C‐reactive protein (CRP) and high‐mobility group box 1 (HMGB1) concentrations in dogs with IBD. Animals Seventeen dogs with IBD and 25 healthy dogs. Methods In this prospective study, duodenal histopathologic severity was graded, and the clinical severity of IBD was assessed by the canine IBD assessment index (CIBDAI) score in dogs with IBD. Serum CRP and HMGB1 concentrations were compared between IBD and healthy dogs and analyzed according to histopathologic grade in dogs with IBD. The correlations between serum CRP and HMGB1 concentrations and the CIBDAI score were evaluated. Results Dogs with IBD had higher serum CRP (median [range] = 20.39 [1.53‐67.69] μg/mL vs 2.31 [0.17‐11.49] μg/mL; P < .001) and HMGB1 concentrations (0.44 [0.07‐1.58] ng/mL vs 0.05 [0.01‐0.25] ng/mL; P < .001) than healthy dogs. The serum HMGB1 concentration was higher in IBD dogs with a moderate to severe histopathologic grade (0.51 [0.30‐1.58] ng/mL, P = .03) than in those with a mild histopathologic grade (0.17 [0.07‐0.75] ng/mL). Serum CRP concentrations and CIBDAI score were positively correlated in dogs with IBD (rs = .49, P = .05). Conclusions and Clinical Importance Serum HMGB1 could be a potential biomarker for diagnosing IBD and might be indicative of histopathologic severity in dogs, whereas serum CRP might be an indicator of clinical severity.
Collapse
Affiliation(s)
- Jong-Hwan Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong-Suk Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Houn Kang
- Western Animal Medical Center, Seoul, Republic of Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Xue G, Hua L, Zhou N, Li J. Characteristics of immune cell infiltration and associated diagnostic biomarkers in ulcerative colitis: results from bioinformatics analysis. Bioengineered 2021; 12:252-265. [PMID: 33323040 PMCID: PMC8291880 DOI: 10.1080/21655979.2020.1863016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a type of refractory and recurrent inflammatory disorder that occurs in colon and rectum. Immune cell infiltration plays a critical role in UC progression; therefore, this study aims to explore potential biomarkers for UC and to analyze characteristics of immune cell infiltration based on the bioinformatic analysis. In this study, 248 differentially expressed genes (DEGs) were screened, and the top 20 immune-related hub genes and pathways were assessed. Moreover, four candidate diagnostic biomarkers (DPP10, S100P, AMPD1, and ASS1) were identified and validated. Immune cell infiltration analysis identified 13 differentially infiltrated immune cells (IICs) in UC samples compared to normal samples, and the result showed that two IICs only expressed in UC samples. In addition, the present research found that DPP10 was negatively correlated with neutrophils, S100P exhibited a positive correlation with resting CD4 memory T cells, AMPD1 was positively correlated with M2 macrophages, and ASS1 was inversely associated with neutrophils and positively related to CD8 T cells. Taken together, these findings indicated that DPP10, S100P, AMPD1, and ASS1 may act as diagnostic biomarkers for UC, and that differential IICs may help to illustrate the progression of UC.
Collapse
Affiliation(s)
- Guohui Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Lin Hua
- Department of Laboratory, Jiujiang NO.1 People's Hospital , Jiujiang, Jiangxi, China
| | - Nanjin Zhou
- Basic Medical College, Nanchang University , Nanchang, Jiangxi, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Tian X, Zhao H, Zhang Z, Guo Z, Li W. Intestinal mucosal injury induced by obstructive jaundice is associated with activation of TLR4/TRAF6/NF-κB pathways. PLoS One 2019; 14:e0223651. [PMID: 31671112 PMCID: PMC6822728 DOI: 10.1371/journal.pone.0223651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To investigate the role of TLR4/TRAF6/NF-κB pathways in intestinal mucosal injury induced by obstructive jaundice (OJ). METHODS A total of 100 male C57BL/6J mice were randomly assigned to two groups: (I) sham operation (SH); (II) OJ. The mice were sacrificed before operation and on the 1st, 3rd, 5th and 7th day after operation. The blood and terminal ileum were simultaneously collected under the aseptic condition for further detection. RESULTS In the SH group, TLR4 protein and mRNA rarely expressed in the intestinal mucosa of the mice and there were no significant differences at different time points (p>0.05). By contrast, in the OJ group TLR4 protein (0.12±0.06, 0.16±0.08, 0.27±0.10, 0.35±0.12 and 0.41±0.13, respectively) and mRNA (0.49±0.19, 0.62±0.23, 0.98±0.32, 1.42±0.41 and 1.72±0.49, respectively) increased gradually with the extension of time (p<0.05). Also in the OJ group, the levels of DAO and endotoxin in plasma as well as the expressions of NF-κB and caspase-3 increased gradually with the extension of time, showing positive correlation with the expression of TLR4 (p<0.05). CONCLUSIONS The expression of TLR4 was significantly up-regulated in the distal ileum of mice with OJ. Activation of the TLR4/TRAF6/NF-κB pathways was involved in the occurrence and development of intestinal mucosal injury and endotoxemia in mice with OJ.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Huimin Zhao
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | | | - Zengcai Guo
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Wen Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Tian X, Zhang Z, Li W. Expression of TLR2 and TLR5 in distal ileum of mice with obstructive jaundice and their role in intestinal mucosal injury. Arch Med Sci 2019; 18:237-250. [PMID: 35154543 PMCID: PMC8826794 DOI: 10.5114/aoms.2019.85648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/18/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The aim was to investigate the expression of TLR2 and TLR5 in the distal ileum of mice with obstructive jaundice (OJ) and their role in intestinal mucosal injury. MATERIAL AND METHODS A total of 100 male C57BL/6J mice were randomly assigned to two groups: (I) sham operation (SH); (II) bile duct ligation (BDL). The mice were respectively sacrificed before operation and on the 1st, 3rd, 5th and 7th days after operation to collect specimens. Various indicators were detected by PCR, immunohistochemistry and other methods. RESULTS TLR2 was increased gradually with the extension of OJ time in the BDL group (p < 0.05). However, the changes in the expression of TLR5 were not obvious at different time points. The amount of Bifidobacteria and Lactobacillus showed downward trends in intestinal tract of the BDL group. Furthermore, the amount of Escherichia coli was increased in intestinal tract of the BDL group. The pathological score of intestinal mucosa and the expression of NF-κB increased gradually in the BDL group with the extension of OJ time. There were positive correlations between the pathological score of intestinal mucosa and expressions of TLR2(r = 0.767, p < 0.05) and NF-κB (r = 0.817, p < 0.05) in BDL group. NF-κB expression was positively correlated with TLR2 expression(r = 0.706, p < 0.05). CONCLUSIONS Disturbance of intestinal flora caused by OJ could increase the expression of NF-κB via up-regulating the expression of TLR2 to activate the downstream signaling pathway, thus aggravated the injury of intestinal mucosa.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | | | - Wen Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Fawkner-Corbett D, Simmons A, Parikh K. Microbiome, pattern recognition receptor function in health and inflammation. Best Pract Res Clin Gastroenterol 2017; 31:683-691. [PMID: 29566912 DOI: 10.1016/j.bpg.2017.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/05/2017] [Indexed: 01/31/2023]
Abstract
The innate immune system plays an important role in shaping the microbiota into configurations that are tolerated and beneficial to the host, thereby playing a crucial role in human health. Innate immunity is based on the fundamental principle that Pattern Recognition Receptors (PRRs) recognise pathogen associated molecular patterns as non-self-entities and trigger intracellular signalling pathways that lead to the induction of numerous cytokines and chemokines that help maintain host resistance to infections. Dysregulation of this interaction has been identified as the core defect that leads to chronic intestinal inflammation allowing certain microbiota to be harmful to host health. This dysbiosis of the microbiome is found associated with numerous chronic diseases. A logical explanation would be that genetic defects in the recognition and response pathways that the host uses to identify these microbial pathogens could lead to altered microbial colonisation or mis-recognition of normal bacteria leading to diseases. The interaction between pattern recognition receptors, microbial traits and human health with respect to the gut are now rapidly resolved and will be the subject of this review.
Collapse
Affiliation(s)
- David Fawkner-Corbett
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK; Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK; Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK; Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kaushal Parikh
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK; Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
9
|
Xiong H, Tian L, Zhao Z, Chen S, Zhao Q, Hong J, Xie Y, Zhou N, Fu Y. The sinomenine enteric-coated microspheres suppressed the TLR/NF-κB signaling in DSS-induced experimental colitis. Int Immunopharmacol 2017; 50:251-262. [PMID: 28711031 DOI: 10.1016/j.intimp.2017.06.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Sinomenine is a pure alkaloid with immunosuppressive effects that is extracted from the Chinese medicinal plant Sinomenium acutum. We studied the therapeutic effects of sinomenine on inflammatory bowel disease. In this study, we randomly divided mice into the following ten groups: Control group; DSS-induced colitis group; Salicylazosulfapyridine (SASP)-treated group; Chitosan-treated group; low-, medium-, and high-dose sinomenine-treated and sinomenine enteric-coated microspheres-treated groups. We recorded changes in colon length, disease activity index (DAI), and colon pathology, measured TLR4, MyD88, SIGIRR, NF-κB p65 protein levels and inflammatory serum cytokine levels. Except for the Control group, the weight of mice in each group decreased, the DAI of the DSS-induced colitis group was significantly higher than the other groups, and the DAIs of the sinomenine- and sinomenine enteric-coated microspheres-treated groups were significantly lower than that of the SASP-treated group. TLR4, MyD88, NF-κB p65 and proinflammatory cytokine expressions decreased dose dependently in the sinomenine and sinomenine enteric-coated microspheres-treated groups and were generally lower in the sinomenine enteric-coated microspheres groups. However, SIGIRR and anti-inflammatory IL-10 expressions exhibited the opposite pattern. Based on the superior therapeutic effect, sinomenine enteric-coated microspheres might regulate TLR/NF-κB signaling and would be beneficial for an effective and safe therapy of inflammatory bowel disease.
Collapse
Affiliation(s)
- Huifang Xiong
- Department of Gastroenterology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Liang Tian
- Department of Pharmacy, Shanghai Neuromedical Center, Shanghai, China
| | - Zihan Zhao
- First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Shuping Chen
- Department of Gastroenterology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qiaoyun Zhao
- Department of Gastroenterology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Junbo Hong
- Department of Gastroenterology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China.
| | - Nanjin Zhou
- Jiangxi Provincial Academy of Medical Science, Nanchang University, Nanchang, Jiangxi Province, China.
| | - Yingjun Fu
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
10
|
Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr Physiol 2017. [PMID: 28640441 DOI: 10.1002/cphy.c160043] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Omentin-1, also known as intelectin-1, is a recently identified novel adipocytokine of 313 amino acids, which is expressed in visceral (omental and epicardial) fat as well as mesothelial cells, vascular cells, airway goblet cells, small intestine, colon, ovary, and plasma. The level of omentin-1 expression in (pre)adipocytes is decreased by glucose/insulin and stimulated by fibroblast growth factor-21 and dexamethasone. Several lines of experimental evidence have shown that omentin-1 plays crucial roles in the maintenance of body metabolism and insulin sensitivity, and has anti-inflammatory, anti-atherosclerotic, and cardiovascular protective effects via AMP-activated protein kinase/Akt/nuclear factor-κB/mitogen-activated protein kinase (ERK, JNK, and p38) signaling. Clinical studies have indicated the usage of circulating omentin-1 as a biomarker of obesity, metabolic disorders including insulin resistance, diabetes, and metabolic syndrome, and atherosclerotic cardiovascular diseases. It is also possible to use circulating omentin-1 as a biomarker of bone metabolism, inflammatory diseases, cancers, sleep apnea syndrome, preeclampsia, and polycystic ovary syndrome. Decreased omentin-1 levels are generally associated with these diseases. However, omentin-1 increases to counteract the acute phase after onset of these diseases. These findings indicate that omentin-1 may be a negative risk factor for these diseases, and also act as an acute-phase reactant by its anti-inflammatory and atheroprotective effects. Therapeutic strategies to restore omentin-1 levels may be valuable for the prevention or treatment of these diseases. Weight loss, olive oil-rich diet, aerobic training, and treatment with atorvastatin and antidiabetic drugs (metformin, pioglitazone, and exenatide) are effective means of increasing circulating omentin-1 levels. This review provides insights into the potential use of omentin-1 as a biomarker and therapeutic target for these diseases. © 2017 American Physiological Society. Compr Physiol 7:765-781, 2017.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Kaho Watanabe-Kominato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Yui Takahashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Miho Kojima
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| |
Collapse
|
11
|
Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem 2015; 26:651-60. [PMID: 25762527 DOI: 10.1016/j.jnutbio.2015.01.002] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/25/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022]
Abstract
Diet-induced obesity is associated to an imbalance in the normal gut microbiota composition. Resveratrol and quercetin, widely known for their health beneficial properties, have low bioavailability, and when they reach the colon, they are targets of the gut microbial ecosystem. Hence, the use of these molecules in obesity might be considered as a potential strategy to modulate intestinal bacterial composition. The purpose of this study was to determine whether trans-resveratrol and quercetin administration could counteract gut microbiota dysbiosis produced by high-fat sucrose diet (HFS) and, in turn, improve gut health. Wistar rats were randomised into four groups fed an HFS diet supplemented or not with trans-resveratrol [15 mg/kg body weight (BW)/day], quercetin (30 mg/kg BW/day) or a combination of both polyphenols at those doses. Administration of both polyphenols together prevented body weight gain and reduced serum insulin levels. Moreover, individual supplementation of trans-resveratrol and quercetin effectively reduced serum insulin levels and insulin resistance. Quercetin supplementation generated a great impact on gut microbiota composition at different taxonomic levels, attenuating Firmicutes/Bacteroidetes ratio and inhibiting the growth of bacterial species previously associated to diet-induced obesity (Erysipelotrichaceae, Bacillus, Eubacterium cylindroides). Overall, the administration of quercetin was found to be effective in lessening HFS-diet-induced gut microbiota dysbiosis. In contrast, trans-resveratrol supplementation alone or in combination with quercetin scarcely modified the profile of gut bacteria but acted at the intestinal level, altering the mRNA expression of tight-junction proteins and inflammation-associated genes.
Collapse
|
12
|
Terán-Ventura E, Aguilera M, Vergara P, Martínez V. Specific changes of gut commensal microbiota and TLRs during indomethacin-induced acute intestinal inflammation in rats. J Crohns Colitis 2014; 8:1043-54. [PMID: 24566169 DOI: 10.1016/j.crohns.2014.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Gut microbiota is a contributing factor in the development and maintenance of intestinal inflammation, although precise cause-effect relationships have not been established. We assessed spontaneous changes of gut commensal microbiota and toll-like receptors (TLRs)-mediated host-bacterial interactions in a model of indomethacin-induced acute enteritis in rats. METHODS Male Spague-Dawley rats, maintained under conventional conditions, were used. Enteritis was induced by systemic indomethacin administration. During the acute phase of inflammation, animals were euthanized and ileal and ceco-colonic changes evaluated. Inflammation was assessed through disease activity parameters (clinical signs, macroscopic/microscopic scores and tissue levels of inflammatory markers). Microbiota (ileal and ceco-colonic) was characterized using fluorescent in situ hybridization (FISH) and analysis of 16s rDNA polymorphism. Host-bacterial interactions were assessed evaluating the ratio of bacterial adherence to the intestinal wall (FISH) and expression of TLRs 2 and 4 (RT-PCR). RESULTS After indomethacin, disease activity parameters increased, suggesting an active inflammation. Total bacterial counts were similar in vehicle- or indomethacin-treated animals. However, during inflammation the relative composition of the microbiota was altered. This dysbiotic state was characterized by an increase in the counts of Bacteroides spp., Enterobacteriaceae (in ileum and cecum-colon) and Clostridium spp. (in ileum). Bacterial wall adherence significantly increased during inflammation. In animals with enteritis, TLR-2 and -4 were up-regulated both in the ileum and the ceco-colonic region. CONCLUSIONS Gut inflammation implies qualitative changes in GCM, with simultaneous alterations in host-bacterial interactions. These observations further support a potential role for gut microbiota in the pathophysiology of intestinal inflammation.
Collapse
Affiliation(s)
- Evangelina Terán-Ventura
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mònica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
13
|
Zhang J, Dou W, Zhang E, Sun A, Ding L, Wei X, Chou G, Mani S, Wang Z. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am J Physiol Gastrointest Liver Physiol 2014; 306:G27-36. [PMID: 24232001 PMCID: PMC3920084 DOI: 10.1152/ajpgi.00465.2012] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Paeonia lactiflora Pall is one of the most well-known herbs in China, Korea, and Japan for more than 1,200 years. Paeoniflorin, the major bioactive component of peony root, has recently been reported to have anticolitic activity. However, the underlying molecular mechanism is unclear. The present study was to explore the possible mechanism of paeoniflorin in attenuating dextran sulfate sodium (DSS)-induced colitis. Pre- and coadministration of paeoniflorin significantly reduced the severity of colitis and resulted in downregulation of several inflammatory parameters in the colon, including the activity of myeloperoxidase (MPO), the levels of TNF-α and IL-6, and the mRNA expression of proinflammatory mediators (MCP-1, Cox2, IFN-γ, TNF-α, IL-6, and IL-17). The decline in the activation of NF-κB p65, ERK, JNK, and p38 MAPK correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) but not TLR2 or TLR5 expression. In accordance with the in vivo results, paeoniflorin downregulated TLR4 expression, blocked nuclear translocation of NF-κB p65, and reduced the production of IL-6 in LPS-stimulated mouse macrophage RAW264.7 cells. Transient transfection assay performed in LPS-stimulated human colon cancer HT-29 cells indicated that paeoniflorin inhibits NF-κB transcriptional activity in a dose-dependent manner. TLR4 knockdown and overexpression experiments demonstrated a requirement for TLR4 in paeoniflorin-mediated downregulation of inflammatory cytokines. Thus, for the first time, the present study indicates that paeoniflorin abrogates DSS-induced colitis via decreasing the expression of TLR4 and suppressing the activation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Jingjing Zhang
- 1200 Cailun Rd., Rm. 5301, Shanghai Univ. of TCM, Shanghai 201203, China.
| | - Wei Dou
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,3Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, New York; and
| | - Eryun Zhang
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,2Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China;
| | - Aning Sun
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,2Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China;
| | - Lili Ding
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Xiaohui Wei
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Guixin Chou
- 4Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- 3Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, New York; and
| | - Zhengtao Wang
- 1Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ,2Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China; ,4Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Huang XY, Zhang T, Song YF. Effect of Wenshen Jiangzhuo Huayu decoction on the expression of CD14, TLR-4 and NF-κB in ulcerative colitis in mice. Shijie Huaren Xiaohua Zazhi 2012; 20:1229-1233. [DOI: 10.11569/wcjd.v20.i14.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanism by which Wenshen Jiangzhuo Huayu decoction prevents ulcerative colitis by detecting the expression of CD14, TLR-4 and NF-κB in colon mucosa of mice with ulcerative colitis.
METHODS: Sixty Balb/c mice were randomly and equally divided into five groups: normal group, blank group, and three intervention groups (low, medium, high doses). Except for the normal group, the other groups were given orally 5% DSS for four weeks. Mice in the intervention groups were intragastrically administered with different doses of Wenshen Jiangzhuo Huayu decoction for four weeks, and the blank group was intragastrically administered with normal saline for the same duration. Colon histomorphology was assayed by naked eyes and light microscopy. The expression of CD14, TLR-4 and NF-κBp65 was detected by immunohistochemistry and real-time PCR.
RESULTS: Hyperemia, edema and ulcer were noted in the colon mucosa of mice in the blank group, while the changes in the intervention groups were characterized by hyperemia and edema. There was a significant difference in DAI index between the blank group and intervention groups (7.36 ± 0.27 vs 3.58 ± 0.37, P < 0.05). The expression of CD14, TLR-4 and NF-κBp6 was up-regulated in the blank group compared to the normal group. However, the expression of CD14, TLR-4 and NF-κBp6 was significantly down-regulated in the intervention groups compared to the blank group (1.98 ± 0.33 vs 3.17 ± 0.55, 1.75 ± 0.32 vs 3.86 ± 0.75, 1.64 ± 0.27 vs 4.75 ± 0.52, all P < 0.05).
CONCLUSION: Wenshen Jiangzhuo Huayu decoction may prevent ulcerative colitis by regulating the CD14/TLR-4-NF-κB signal pathway.
Collapse
|
15
|
Candia E, Díaz-Jiménez D, Langjahr P, Núñez LE, de la Fuente M, Farfán N, López-Kostner F, Abedrapo M, Alvarez-Lobos M, Pinedo G, Beltrán CJ, González C, González MJ, Quera R, Hermoso MA. Increased production of soluble TLR2 by lamina propria mononuclear cells from ulcerative colitis patients. Immunobiology 2011; 217:634-42. [PMID: 22101184 DOI: 10.1016/j.imbio.2011.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 09/13/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 2 (TLR2) is a type I pattern recognition receptor that has been shown to participate in intestinal homeostasis. Its increased expression in the lamina propria has been associated with the pathogenesis in inflammatory bowel disease (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). Recently, soluble TLR2 (sTLR2) variants have been shown to counteract inflammatory responses driven by the cognate receptor. Despite the evident roles of TLR2 in intestinal immunity, no study has elucidated the production and cellular source of sTLR2 in IBD. Furthermore, an increase in the population of activated macrophages expressing TLR2 that infiltrates the intestine in IBD has been reported. We aimed first to assess the production of the sTLR2 by UC and CD organ culture biopsies and lamina propria mononuclear cells (LPMCs) as well as the levels of sTLR2 in serum, and then characterize the cell population from lamina propria producing the soluble protein. Mucosa explants, LPMCs and serum were obtained from UC, CD patients and control subjects. The level of sTLR2 was higher in conditioned media from organ culture biopsies and LPMCs from UC patients in comparison to CD and controls. Moreover, an inverse correlation between the content of intestinal and serum sTLR2 levels was observed in UC patients. Additionally, when characterizing the cellular source of the increased sTLR2 by LPMCs from UC patients, an increase in TLR2(+)/CD33(+) cell population was found. Also, these cells expressed CX3CR1, which was related to the increased levels of intestinal FKN in UC patients, suggesting that a higher proportion of TLR2(+) mononuclear cells infiltrate the lamina propria. The increased production of sTLR2 suggests that a differential regulating factor of the innate immune system is present in the intestinal mucosa of UC patients.
Collapse
Affiliation(s)
- Enzo Candia
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, CL 8380453, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stronati L, Negroni A, Pierdomenico M, D'Ottavio C, Tirindelli D, Di Nardo G, Oliva S, Viola F, Cucchiara S. Altered expression of innate immunity genes in different intestinal sites of children with ulcerative colitis. Dig Liver Dis 2010; 42:848-853. [PMID: 20452301 DOI: 10.1016/j.dld.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Innate immunity has been very rarely investigated in ulcerative colitis and never in paediatrics. The present study was aimed at describing expression of innate immunity genes (NOD2, RIP2, α-defensins HD5 and HD6) in inflamed colon and in ileum of children with ulcerative colitis. Expression of TNFα and IL-1β was also analyzed. METHODS 15 children with ulcerative colitis (9 pancolitis, 6 left-sided colitis) and 10 control children were enrolled. mRNA and protein expressions were detected by real time PCR and western blot assays. RESULTS NOD2, RIP2, IL-1β, TNFα expression levels were significantly increased in colonic mucosa of patients compared to controls (p<0.01). These genes were also upregulated (p<0.01) in the ileum of both pancolitis and left-sided colitis children. HD5 and HD6 were significantly upregulated (p<0.01) in the inflamed colon of patients as well as in the ileum of those with pancolitis. CONCLUSIONS An increased mucosal expression of innate immunity genes was found in the inflamed colon of children with ulcerative colitis, outlining the role of the innate immune response in disease pathogenesis. Involvement of the ileum in ulcerative colitis suggests that an immune activation can also be established in intestinal sites classically uninvolved by the inflammation, carrying implications for the treatment and course of the disease.
Collapse
Affiliation(s)
- Laura Stronati
- Section of Toxicology and Biomedical Sciences, Enea, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cerquetella M, Spaterna A, Laus F, Tesei B, Rossi G, Antonelli E, Villanacci V, Bassotti G. Inflammatory bowel disease in the dog: differences and similarities with humans. World J Gastroenterol 2010; 16:1050-1056. [PMID: 20205273 PMCID: PMC2835779 DOI: 10.3748/wjg.v16.i9.1050] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 01/11/2010] [Accepted: 01/18/2010] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) represent important chronic conditions affecting the gastrointestinal tract in man. However, similar disorders are found in several animal species and the IBD affecting dogs are particularly important. These are encompassed by an umbrella of probably several different entities with common symptoms, some of which seem to share striking similarities with human conditions. This review will focus on the actual knowledge of IBD in dogs, and attempt to identify differences and similarities with human IBD conditions.
Collapse
|