1
|
Liu X, Guo X, Pei YA, Pei M, Ge Z. Charting a quarter-century of commercial cartilage regeneration products. J Orthop Translat 2025; 50:354-363. [PMID: 39968336 PMCID: PMC11833628 DOI: 10.1016/j.jot.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 02/20/2025] Open
Abstract
Functional cartilage regeneration remains difficult to achieve despite decades of research. Dozens of commercial products have been proposed, with each targeting different facets of successful cartilage engineering, including mechanical properties, integration, lubrication and inflammation; however, there remains a lack of breakthroughs in meaningful clinical outcomes. Prior research categorized commercial products based on their components and elucidated challenges faced during the market approval process. This paper, for the first time, comprehensively reviews the properties of commercial products covering the last 25 years, including design trends in components, compatibility with minimally invasive surgery, indications for cartilage defects, long-term follow-up, as well as active sponsorship support of the International Cartilage Regeneration and Joint Preservation Society (ICRS). We aim to summarize the key factors for potentially successful commercial products and elucidate overarching trends in technology development in this field. Given that no revolutionary products have yielded significantly improved clinical results, emerging products compete with one another on user-friendliness and cost-efficiency. Other relevant characteristics include compatibility with minimally invasive surgery, extensiveness of required surgery (one-stage vs. two-stage), use of versatile artificial polymers and application of cells and biomaterials. Specific products continue to lead the market due to their cost-efficiency or indications for larger cartilage defects. However, they have been shown to result in no significant improvement upon clinical follow-up. Thus, there is a need for products that surpass current commercial products and show clinical effectiveness. Translation potential of this article: This review analyzes product components, compatibility with minimally invasive surgery, indication for cartilage defect areas, clinical performance as well as sponsorship for the World Conference of International Cartilage Regeneration & Joint Preservation Society, based on information about cartilage regeneration products from 1997 to 2023. It shines a light on future development of design and commercialization of cartilage products.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Yixuan Amy Pei
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Zigang Ge
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
2
|
Ninarello D, Ballardini A, Morozzi G, La Barbera L. A comprehensive systematic review of marketed bone grafts for load-bearing critical-sized bone defects. J Mech Behav Biomed Mater 2024; 160:106782. [PMID: 39488890 DOI: 10.1016/j.jmbbm.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Treatment of critical-sized bone defects typically involves implantation of a bone graft. Various types of bone grafts are nowadays marketed, categorized by their origin as allografts, xenografts, or synthetic grafts. Despite their widespread use, a comprehensive understanding of their morphology and mechanical response remains elusive. Controlling these characteristics for promoting bone growth and ensuring mechanical resistance remains challenging, especially in load-bearing districts. This study aims to systematically review existing literature to delineate the principal morpho-mechanical characteristics of marketed bone grafts designed for load-bearing applications. Furthermore, the obtained data are organized and deeply discussed to find out the relationship between different graft characteristics. Among 196 documents identified through PRISMA guidelines, encompassing scientific papers and 510(k) documents, it was observed that a majority of marketed bone grafts exhibited porosity akin to bone (>60%) and mechanical properties resembling those of low-bone volume fraction trabecular bone. The present review underscores the dearth of information regarding the morpho-mechanical characteristics of bone grafts and the incomparability of data derived from different studies, due to the absence of suitable standards and guidelines. The need for new standards and complete and transparent morpho-mechanical characterization of marketed bone grafts is finally emphasized. Such an approach would enhance the comparability of data, aiding surgeons in selecting the optimal device to meet patient's needs.
Collapse
Affiliation(s)
- Davide Ninarello
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | | | | | - Luigi La Barbera
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy.
| |
Collapse
|
3
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
4
|
Sangiorgio A, Andriolo L, Gersoff W, Kon E, Nakamura N, Nehrer S, Vannini F, Filardo G. Subchondral bone: An emerging target for the treatment of articular surface lesions of the knee. J Exp Orthop 2024; 11:e12098. [PMID: 39040436 PMCID: PMC11260998 DOI: 10.1002/jeo2.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose When dealing with the health status of the knee articular surface, the entire osteochondral unit has gained increasing attention, and in particular the subchondral bone, which plays a key role in the integrity of the osteochondral unit. The aim of this article was to discuss the current evidence on the role of the subchondral bone. Methods Experts from different geographical regions were involved in performing a review on highly discussed topics about the subchondral bone, ranging from its etiopathogenetic role in joint degeneration processes to its prognostic role in chondral and osteochondral defects, up to treatment strategies to address both the subchondral bone and the articular surface. Discussion Subchondral bone has a central role both from an aetiologic point of view and as a diagnostic tool, and its status was found to be relevant also as a prognostic factor in the follow-up of chondral treatment. Finally, the recognition of its importance in the natural history of these lesions led to consider subchondral bone as a treatment target, with the development of osteochondral scaffolds and procedures to specifically address osteochondral lesions. Conclusion Subchondral bone plays a central role in articular surface lesions from different points of view. Several aspects still need to be understood, but a growing interest in subchondral bone is to be expected in the upcoming future towards the optimization of joint preservation strategies. Level of Evidence Level V, expert opinion.
Collapse
Affiliation(s)
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Wayne Gersoff
- Orthopedic Centers of Colorado Joint Preservation Institute, Clinical InstructorUniversity of Colorado Health Sciences CenterAuroraColoradoUSA
| | - Elizaveta Kon
- IRCCS Humanitas Research HospitalRozzanoItaly
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Department of Traumatology, Orthopaedics and Disaster SurgerySechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Norimasa Nakamura
- Institute for Medical Science in SportsOsaka Health Science UniversityOsakaJapan
- Center for Advanced Medical Engineering and InformaticsOsaka UniversitySuitaJapan
| | - Stefan Nehrer
- Faculty Health & MedicineUniversity for Continuing EducationKremsAustria
- Department of Orthopaedics and TraumatologyUniversity Hospital Krems, Karl Landsteiner University of Health SciencesKremsAustria
| | - Francesca Vannini
- Clinica Ortopedica e Traumatologica1 IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
- Applied and Translational Research (ATR) CenterIRCCS Istituto Ortopedico RizzoliBolognaItaly
| |
Collapse
|
5
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
6
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
7
|
Wang L, Guo X, Chen J, Zhen Z, Cao B, Wan W, Dou Y, Pan H, Xu F, Zhang Z, Wang J, Li D, Guo Q, Jiang Q, Du Y, Yu J, Heng BC, Han Q, Ge Z. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact Mater 2021; 9:332-342. [PMID: 34820574 PMCID: PMC8586440 DOI: 10.1016/j.bioactmat.2021.07.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023] Open
Abstract
With the interdisciplinary convergence of biology, medicine and materials science, both research and clinical translation of biomaterials are progressing at a rapid pace. However, there is still a huge gap between applied basic research on biomaterials and their translational products - medical devices, where two significantly different perspectives and mindsets often work independently and non-synergistically, which in turn significantly increases financial costs and research effort. Although this gap is well-known and often criticized in the biopharmaceutical industry, it is gradually widening. In this article, we critically examine the developmental pipeline of biodegradable biomaterials and biomaterial-based medical device products. Then based on clinical needs, market analysis, and relevant regulations, some ideas are proposed to integrate the two different mindsets to guide applied basic research and translation of biomaterial-based products, from the material and technical perspectives. Cartilage repair substitutes are discussed here as an example. Hopefully, this will lay a strong foundation for biomaterial research and clinical translation, while reducing the amount of extra research effort and funding required due to the dissonance between innovative basic research and commercialization pipeline. To elucidate the chain of medical devices development and basic research process. To propose rationales of biomaterial research with mindset of clinical translation. To elaborate with established medical devices for cartilage repairs as examples.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, PR China
| | - Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiaqing Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, PR China
| | - Zhen Zhen
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Bin Cao
- Jiangsu DissueTech Medical Technology Co.Ltd
- DeJian Group, Suzhou, PR China
| | - Wenqian Wan
- Jiangsu DissueTech Medical Technology Co.Ltd
- DeJian Group, Suzhou, PR China
| | - Yuandong Dou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Zepu Zhang
- Beijing Institute of Science and Technology Evaluation, Beijing, PR China
| | - Jianmei Wang
- Beijing Institute of Science and Technology Evaluation, Beijing, PR China
| | - Daisong Li
- Beijing Institute of Science and Technology Evaluation, Beijing, PR China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, PR China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | - Jiakuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, PR China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, PR China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing, PR China
| | - Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, PR China.,Department of Biomedical Engineering, Institute of Future Technology, Peking University, Beijing, PR China
| |
Collapse
|
8
|
Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering (Basel) 2021; 8:123. [PMID: 34562945 PMCID: PMC8466376 DOI: 10.3390/bioengineering8090123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biofabrication has emerged as an attractive strategy to personalise medical care and provide new treatments for common organ damage or diseases. While it has made impactful headway in e.g., skin grafting, drug testing and cancer research purposes, its application to treat musculoskeletal tissue disorders in a clinical setting remains scarce. Albeit with several in vitro breakthroughs over the past decade, standard musculoskeletal treatments are still limited to palliative care or surgical interventions with limited long-term effects and biological functionality. To better understand this lack of translation, it is important to study connections between basic science challenges and developments with translational hurdles and evolving frameworks for this fully disruptive technology that is biofabrication. This review paper thus looks closely at the processing stage of biofabrication, specifically at the bioinks suitable for musculoskeletal tissue fabrication and their trends of usage. This includes underlying composite bioink strategies to address the shortfalls of sole biomaterials. We also review recent advances made to overcome long-standing challenges in the field of biofabrication, namely bioprinting of low-viscosity bioinks, controlled delivery of growth factors, and the fabrication of spatially graded biological and structural scaffolds to help biofabricate more clinically relevant constructs. We further explore the clinical application of biofabricated musculoskeletal structures, regulatory pathways, and challenges for clinical translation, while identifying the opportunities that currently lie closest to clinical translation. In this article, we consider the next era of biofabrication and the overarching challenges that need to be addressed to reach clinical relevance.
Collapse
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Gabriella Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| |
Collapse
|
9
|
Shivji FS, Mumith A, Yasen S, Melton JT, Wilson AJ. Treatment of focal chondral lesions in the knee using a synthetic scaffold plug: Long-term clinical and radiological results. J Orthop 2020; 20:12-16. [PMID: 32021049 DOI: 10.1016/j.jor.2020.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/12/2020] [Indexed: 11/18/2022] Open
Abstract
The management of symptomatic articular cartilage lesions, especially in the young, fit individual remains an area of considerable controversy. Articular cartilage repair or reconstruction techniques may offer these patients alternatives to arthroplasty. The TruFit™ plug is a synthetic biphasic polymer scaffold that is designed for implantation at the site of a focal chondral defect. The aim of this study is to report the long-term clinical and radiological outcomes of patients treated with the TruFit™ plug for chondral defects within the knee. 11 patients underwent TruFit™ plug implantation. Long-term outcome scores were available for 6 patients at a mean follow up of 121 months (SD 12.0 months, 1 patient unavailable and 4 excluded after arthroplasty surgery). There was no statistically significant improvements in any score although all scores did improve. At a mean radiographic follow up of 70 months (17-113) of 9 patients, the mean MOCART score was 22.2 (SD 15.6). All patients had incomplete or no evidence of plug incorporation and persistent chondral loss. Based on these results, we do not recommend the use of the TruFit™ plug.
Collapse
Affiliation(s)
- Faiz S Shivji
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Aadil Mumith
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Sam Yasen
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Joel Tk Melton
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| | - Adrian J Wilson
- Basingstoke & North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA, UK
| |
Collapse
|
10
|
Gan D, Wang Z, Xie C, Wang X, Xing W, Ge X, Yuan H, Wang K, Tan H, Lu X. Mussel-Inspired Tough Hydrogel with In Situ Nanohydroxyapatite Mineralization for Osteochondral Defect Repair. Adv Healthc Mater 2019; 8:e1901103. [PMID: 31609095 DOI: 10.1002/adhm.201901103] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Indexed: 01/15/2023]
Abstract
Repairing osteochondral defects is a considerable challenge because it involves the breakdown of articular cartilage and underlying bone. Traditional hydrogels with a homogenized single-layer structure cannot fully restore the function of osteochondral cartilage tissue. In this study, a mussel-inspired hydrogel with a bilayer structure is developed to repair osteochondral defects. The hydrogel is synthesized by simultaneously polymerizing two layers using a one-pot method. The resulting upper and lower gelatin methacryloyl-polydopamine hydrogel layers are used as cartilage and subchondral bone repair layers, respectively. Polydopamine-induced hydroxyapatite in situ mineralization takes place in the lower layer to mimic the structure of subchondral bone. The bilayer hydrogel exhibits good mechanical properties for the synergistic effect of covalent and noncovalent bonds, as well as nanoreinforcement of mineralized hydroxyapatite. To improve the tissue-inducibility of hydrogels, transforming growth factor β3 is immobilized in the upper layer to induce cartilage regeneration, while bone morphogenetic protein 2 is immobilized in the lower layer to induce bone regeneration. Bone and cartilage repair performance of the hydrogel is examined by implantation into a full-thickness cartilage defect of a rabbit knee joint. The bilayer-structure hydrogel promotes regeneration of osteochondral tissue, thus providing a new option for repair of osteochondral defects.
Collapse
Affiliation(s)
- Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhixiong Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiao Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Wensi Xing
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Huipin Yuan
- College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hui Tan
- Health Science Center, Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, No. 3002, Sungang West Road, Futian District, Shenzhen, 518035, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
11
|
D'Ambrosi R, Giacco F, Ragone V, Ursino N. Arthroscopic treatment of osteochondral knee defects with resorbable biphasic synthetic scaffold: clinical and radiological results and long-term survival analysis. INTERNATIONAL ORTHOPAEDICS 2019; 43:2183-2189. [PMID: 30539223 DOI: 10.1007/s00264-018-4270-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE The aim of our study is to evaluate the long-term results in patients treated with a fully arthroscopic TruFit system for osteochondral lesions of the femoral condyle, analyzing the clinical and radiological outcomes, survival rate, complications, and correlations. METHODS The study included all patients treated with the TruFit system with a full-thickness focal lesion of the knee cartilage (grade IV according to the ICRS classification), entirely arthroscopically with a minimum follow-up of five years. All patients were evaluated clinically prior to surgery (T0) and at two consecutive follow-ups (T1 36.4 ± 17.03 months and T2 101.63 ± 19.02 months), using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and the Hospital for Special Surgery Score (HSS). At the final follow-up, the magnetic resonance imaging (MRI) was evaluated by two orthopaedists using the magnetic resonance observation of cartilage repair tissue (MOCART) score. RESULTS The sample was formed of 21 patients, of which 14 were males (67%) and 7 females (33%), with a mean age of 51.29 ± 10.70. Of the 21 patients, two underwent prosthetic knee replacement at 24 and 65 months, respectively. At T0, the HSS and the KOOS score were, respectively, 60.71 ± 11.62 and 57.71 ± 6.11. For both clinical values, a significant improvement was noted between T0 and T1 (p < 0.05) and between T0 and T2 (p < 0.05). At the final follow-up, the MOCART value was found to be 45.78 ± 5.27. CONCLUSIONS The study results highlighted the safety and potential of the arthroscopic TruFit system procedure, which offered a good clinical outcome with stable results at long-term follow-up although we found no correlations between the MRI and clinical results.
Collapse
Affiliation(s)
- Riccardo D'Ambrosi
- Unità Operativa C.A.S.C.O, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.
| | - Francesco Giacco
- Unità Operativa C.A.S.C.O, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | | | - Nicola Ursino
- Unità Operativa C.A.S.C.O, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| |
Collapse
|
12
|
Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1824. [PMID: 31195642 PMCID: PMC6600968 DOI: 10.3390/ma12111824] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
During the past two decades, tissue engineering and the regenerative medicine field have invested in the regeneration and reconstruction of pathologically altered tissues, such as cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to guide the development of functional engineered tissues, and provide mechanical support during in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials, and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials, owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials, current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing, and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and multi-cellular interactions of native tissues for further use for in vitro model processing are also outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds and hydrogels, challenges, and future prospects of research in the regenerative medicine field are also presented.
Collapse
Affiliation(s)
- Sandra Pina
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Viviana P Ribeiro
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - F Raquel Maia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
13
|
D'Ambrosi R, Valli F, De Luca P, Ursino N, Usuelli FG. MaioRegen Osteochondral Substitute for the Treatment of Knee Defects: A Systematic Review of the Literature. J Clin Med 2019; 8:783. [PMID: 31159439 PMCID: PMC6617307 DOI: 10.3390/jcm8060783] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aims to investigate the clinical and radiological efficacy of three-dimensional acellular scaffolds (MaioRegen) in restoring osteochondral knee defects. METHODS MEDLINE, Scopus, CINAHL, Embase, and Cochrane Databases were searched for articles in which patients were treated with MaioRegen for osteochondral knee defects. RESULTS A total of 471 patients were included in the study (mean age 34.07 ± 5.28 years). The treatment involved 500 lesions divided as follows: 202 (40.4%) medial femoral condyles, 107 (21.4%) lateral femoral condyles, 28 (5.6%) tibial plateaus, 46 (9.2%) trochleas, 74 (14.8%) patellas, and 43 (8.6%) unspecified femoral condyles. Mean lesion size was 3.6 ± 0.85 cm2. Only four studies reported a follow-up longer than 24 months. Significant clinical improvement has been reported in almost all studies with further improvement up to 5 years after surgery. A total of 59 complications were reported of which 52 (11.1%) experienced minor complications and 7 (1.48%) major complications. A total of 16 (3.39%) failures were reported. CONCLUSION This systematic review describes the current available evidence for the treatment of osteochondral knee defects with MaioRegen Osteochondral substitute reporting promising satisfactory and reliable results at mid-term follow-up. A low rate of complications and failure was reported, confirming the safety of this scaffold. Considering the low level of evidence of the study included in the review, this data does not support the superiority of the Maioregen in terms of clinical improvement at follow-up compared to conservative treatment or other cartilage techniques.
Collapse
Affiliation(s)
- Riccardo D'Ambrosi
- CASCO Department, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
| | - Federico Valli
- CASCO Department, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
| | - Paola De Luca
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
| | - Nicola Ursino
- CASCO Department, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
| | | |
Collapse
|
14
|
Roffi A, Kon E, Perdisa F, Fini M, Di Martino A, Parrilli A, Salamanna F, Sandri M, Sartori M, Sprio S, Tampieri A, Marcacci M, Filardo G. A Composite Chitosan-Reinforced Scaffold Fails to Provide Osteochondral Regeneration. Int J Mol Sci 2019; 20:ijms20092227. [PMID: 31067635 PMCID: PMC6539239 DOI: 10.3390/ijms20092227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
Several biomaterials have recently been developed to address the challenge of osteochondral regeneration. Among these, chitosan holds promises both for cartilage and bone healing. The aim of this in vivo study was to evaluate the regeneration potential of a novel hybrid magnesium-doped hydroxyapatite (MgHA), collagen, chitosan-based scaffold, which was tested in a sheep model to ascertain its osteochondral regenerative potential, and in a rabbit model to further evaluate its ability to regenerate bone tissue. Macroscopic, microtomography, histology, histomorphometry, and immunohistochemical analysis were performed. In the sheep model, all analyses did not show significant differences compared to untreated defects (p > 0.05), with no evidence of cartilage and subchondral bone regeneration. In the rabbit model, this bone scaffold provided less ability to enhance tissue healing compared with a commercial bone scaffold. Moreover, persistence of scaffold material and absence of integration with connective tissue around the scaffolds were observed. These results raised some concerns about the osteochondral use of this chitosan composite scaffold, especially for the bone layer. Further studies are needed to explore the best formulation of chitosan-reinforced composites for osteochondral treatment.
Collapse
Affiliation(s)
- Alice Roffi
- Applied and Translational Research (ATR) Center, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elizaveta Kon
- Knee Joint Reconstruction Center-3rd Orthopedic Division, Humanitas Clinical Institute, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20090 Milan, Italy.
| | - Francesco Perdisa
- Hip and Knee Replacement Department, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Alessandro Di Martino
- II Orthopedic and Traumatologic Clinic; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Maria Sartori
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Maurilio Marcacci
- Knee Joint Reconstruction Center-3rd Orthopedic Division, Humanitas Clinical Institute, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20090 Milan, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
15
|
Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering. Biodes Manuf 2018; 1:101-114. [PMID: 30533248 PMCID: PMC6267278 DOI: 10.1007/s42242-018-0015-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA), identified as one of the priorities for the Bone and Joint Decade, is one of the most prevalent joint diseases, which causes pain and disability of joints in the adult population. Secondary OA usually stems from repetitive overloading to the osteochondral (OC) unit, which could result in cartilage damage and changes in the subchondral bone, leading to mechanical instability of the joint and loss of joint function. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bone in the early stages of OA and have shown potential in restoring the joint’s function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available OC scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, none of these scaffolds has shown satisfactory clinical results. This article reviews the OC tissue structure and the design, manufacturing and performance of current OC scaffolds in treatment of OA. The findings demonstrate the importance of biological and biomechanical fixations of OC scaffolds to the host tissue in achieving an improved cartilage fill and a hyaline-like tissue formation. Achieving a strong and stable subchondral bone support that helps the regeneration of overlying cartilage seems to be still a grand challenge for the early treatment of OA.
Collapse
|
16
|
Cengiz IF, Pereira H, de Girolamo L, Cucchiarini M, Espregueira-Mendes J, Reis RL, Oliveira JM. Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. J Exp Orthop 2018; 5:14. [PMID: 29790042 PMCID: PMC5964057 DOI: 10.1186/s40634-018-0133-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Orthopaedic disorders are very frequent, globally found and often partially unresolved despite the substantial advances in science and medicine. Their surgical intervention is multifarious and the most favourable treatment is chosen by the orthopaedic surgeon on a case-by-case basis depending on a number of factors related with the patient and the lesion. Numerous regenerative tissue engineering strategies have been developed and studied extensively in laboratory through in vitro experiments and preclinical in vivo trials with various established animal models, while a small proportion of them reached the operating room. However, based on the available literature, the current strategies have not yet achieved to fully solve the clinical problems. Thus, the gold standards, if existing, remain unchanged in the clinics, notwithstanding the known limitations and drawbacks. Herein, the involvement of regenerative tissue engineering in the clinical orthopaedics is reviewed. The current challenges are indicated and discussed in order to describe the current disequilibrium between the needs and solutions made available in the operating room. Regenerative tissue engineering is a very dynamic field that has a high growth rate and a great openness and ability to incorporate new technologies with passion to edge towards the Holy Grail that is functional tissue regeneration. Thus, the future of clinical solutions making use of regenerative tissue engineering principles for the management of orthopaedic disorders is firmly supported by the clinical need.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Hélder Pereira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Ripoll y De Prado Sports Clinic: Murcia-Madrid FIFA Medical Centre of Excellence, Madrid, Spain.,Orthopedic Department Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal
| | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr Bldg 37, D-66421, Homburg/Saar, Germany
| | - João Espregueira-Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Orthopedic Department, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
17
|
Tamaddon M, Liu C. Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:255-298. [PMID: 29736578 DOI: 10.1007/978-3-319-76735-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA.
Collapse
Affiliation(s)
- Maryam Tamaddon
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Chaozong Liu
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, UK.
| |
Collapse
|
18
|
Bicho D, Pina S, Reis RL, Oliveira JM. Commercial Products for Osteochondral Tissue Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:415-428. [PMID: 29691833 DOI: 10.1007/978-3-319-76711-6_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.
Collapse
Affiliation(s)
- Diana Bicho
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sandra Pina
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Barco, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
19
|
Spencer V, Illescas E, Maltes L, Kim H, Sathe V, Nukavarapu S. Osteochondral Tissue Engineering: Translational Research and Turning Research into Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:373-390. [PMID: 29691831 DOI: 10.1007/978-3-319-76711-6_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteochondral (OC) defect repair is a significant clinical challenge. Osteoarthritis results in articular cartilage/subchondral bone tissue degeneration and tissue loss, which in the long run results in cartilage/ostecochondral defect formation. OC defects are commonly approached with autografts and allografts, and both these options have found limitations. Alternatively, tissue engineered strategies with biodegradable scaffolds with and without cells and growth factors have been developed. In order to approach regeneration of complex tissues such as osteochondral, advanced tissue engineered grafts including biphasic, triphasic, and gradient configurations are considered. The graft design is motivated to promote cartilage and bone layer formation with an interdigitating transitional zone (i.e., bone-cartilage interface). Some of the engineered OC grafts with autologous cells have shown promise for OC defect repair and a few of them have advanced into clinical trials. This chapter presents synthetic osteochondral designs and the progress that has been made in terms of the clinical translation.
Collapse
Affiliation(s)
- Victoria Spencer
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Erica Illescas
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Lorenzo Maltes
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Hyun Kim
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Vinayak Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Storrs, CT, USA
| | - Syam Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
20
|
Di Cave E, Versari P, Sciarretta F, Luzon D, Marcellini L. Biphasic bioresorbable scaffold (TruFit Plug ®) for the treatment of osteochondral lesions of talus: 6- to 8-year follow-up. Foot (Edinb) 2017; 33:48-52. [PMID: 29126043 DOI: 10.1016/j.foot.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/07/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND The ideal treatment of osteochondral lesions of the talus (OLT) is debatable. The TruFit plug has been investigated as a potential treatment method for osteochondral defects. This is a biphasic scaffold designed to stimulate cartilage and subchondral bone formation. The purpose of this retrospective study was to investigate the long-term functional and MRI outcomes of the TruFit Plug for the treatment of OLT. METHODS Twelve consecutive patients treated from March 2007 to April 2009 for OLT were evaluated. Clinical examination included the American Orthopaedic Foot and Ankle Society (AOFAS) ankle score and the visual analog scale (VAS) for pain. MRI scans were optained pre-treatment and at last follow-up. The Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score was used to assess cartilage incorporation. RESULTS Mean follow-up was 7.5 years (range, 6.5-8.7 years). The average age was of 38.6 years (range, 22-57 years). The sex ratio between males and females was 3:1 (9 males, 3 females). The mean AOFAS score improved from a preoperative score of 47.2±10.7 to 84.4±8 (p<0.05). According to the postoperative AOFAS scores 1 case obtained excellent results, 9 were classified as good, and 2 were fair. VAS score improved from a preoperative value of 6.9±1.4 points to 1.2±1.1 points at last follow-up (p<0.05). The MOCART score for cartilage repair tissue on postoperative MRI averaged 61.1 points (range, 25-85 points). CONCLUSIONS The long-term results suggest that the technique of Trufit Plug for OLT is safe and demonstrates good post-operative scores including improvement of pain and function, with discordant MRI results. However, randomized controlled clinical trials comparing TruFit Plug with an established treatment method are needed to improve synthetic biphasic implants as therapy for osteochondral lesions. LEVEL OF EVIDENCE Retrospective case series, Level IV.
Collapse
Affiliation(s)
- Elvira Di Cave
- Operative Unit of Orthopaedics and Traumatology, Israelite Hospital, Rome, Italy.
| | - Pierluigi Versari
- Operative Unit of Orthopaedics and Traumatology, Israelite Hospital, Rome, Italy
| | | | - David Luzon
- Operative Unit of Orthopaedics and Traumatology, Israelite Hospital, Rome, Italy
| | - Lorenzo Marcellini
- Operative Unit of Orthopaedics and Traumatology, Israelite Hospital, Rome, Italy
| |
Collapse
|
21
|
Bugelli G, Ascione F, Dell'Osso G, Zampa V, Giannotti S. Biphasic bioresorbable scaffold (TruFit ®) in knee osteochondral defects: 3-T MRI evaluation of osteointegration in patients with a 5-year minimum follow-up. Musculoskelet Surg 2017; 102:191-199. [PMID: 29164531 DOI: 10.1007/s12306-017-0522-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of this study is to follow morphological imaging characteristics and osteointegration of TruFit® bone graft substitute (BGS) plugs in cases of chondral and osteochondral defects of the articular surface of the knee joint, using high-quality cartilage-sensitive 3-T magnetic resonance imaging (MRI), linked to clinical outcomes. METHODS The MRI was used to assess osteointegration and biological evolution of the TruFit® BGS plugs in cases with minimum 5-year follow-up: The TruFit® plug was used in 46 patients for a total of 47 cases with mean age of 57.89 (range 32-80). In this study, we reviewed only the cases with minimum follow-up of 5 years: 5 patients with mean age 64.4 years (minimum 38, maximum 80). The mean follow-up was 71 months (range 63-77). Patients were evaluated clinically, with Lysholm Knee Scoring Scale and MOCART Scale. RESULTS 3-T MRI, which is preferable to 1.5 T for the better signal-to-noise ratio, contrast and the ability to acquire morphological images at higher spatial resolution, shows a satisfactory integration of bone scaffolds in studied cases for more than 5 years and a satisfactory restoration of the articular cartilage, with the exception of a case of which we still have to consider the factors age, type of lesion and the relationship between the plugs implanted. CONCLUSION Clinical and radiological results significantly improve in a longer follow-up time.
Collapse
Affiliation(s)
- G Bugelli
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - F Ascione
- Orthopedics and Traumatology Department, SUN, Naples, Italy
| | - G Dell'Osso
- Orthopedics and Traumatology Department, Ospedale San Luca, Lucca, Italy
| | - V Zampa
- Department of Diagnostic and Interventional Radiology, University of Pisa, Pisa, Italy
| | - S Giannotti
- Orthopedics and Traumatology Department, University of Siena, Siena, Italy
| |
Collapse
|
22
|
Pre-clinical and Clinical Management of Osteochondral Lesions. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Challenges for Cartilage Regeneration. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/978-3-662-53574-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Bhawal UK, Uchida R, Kuboyama N, Asakura T, Hiratsuka K, Nishiyama N. Effect of the surface morphology of silk fibroin scaffolds for bone regeneration. Biomed Mater Eng 2016; 27:413-424. [PMID: 27689574 DOI: 10.3233/bme-161595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Existing scaffolds cannot adequately satisfy the simultaneous requirements for the regeneration of bone. The challenge remains of how to improve the integration of newly formed bone with the surrounding tissues. The purpose of this study was to investigate the effects of two silk fibroin scaffolds, a hexafluoro isopropanol-based silk fibroin (HFIP-F) and an aqueous-based silk fibroin (A-F), for their osteoinductive potentials in large critical size bone defects in vivo. β-tricalcium phosphate (β-TCP) was used as a positive control. After implantation into defects created in the knee joints of rabbits for 1 and 2 weeks, hematoxylin and eosin (H-E) and Azan staining revealed that the A-F scaffold as well as β-TCP had stronger osteoinductive ability than the HFIP-F scaffold. The A-F scaffold exhibited prominent areas of neo-tissue containing bone-like nodules. Furthermore, induced osteointegration was observed between native and neo-tissue within the osteo defects in the knee joints of rabbits. Immunohistochemical staining showed the highest expression of Runx2, BMP-2, BMP-7, Smad1/5/9 and Phospho-Smad in the A-F scaffold implants. Osteoinduction of the porous A-F scaffold might be influenced by the amount of BMP signaling present in the local microenvironment in the implants. This study opens a new avenue to use A-F silk fibroin scaffolds for the regeneration of bone defects.
Collapse
Affiliation(s)
- Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Ryoichiro Uchida
- Department of Dental Biomaterials, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Noboru Kuboyama
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Norihiro Nishiyama
- Department of Dental Biomaterials, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
25
|
Krych AJ, Nawabi DH, Farshad-Amacker NA, Jones KJ, Maak TG, Potter HG, Williams RJ. Bone Marrow Concentrate Improves Early Cartilage Phase Maturation of a Scaffold Plug in the Knee: A Comparative Magnetic Resonance Imaging Analysis to Platelet-Rich Plasma and Control. Am J Sports Med 2016; 44:91-8. [PMID: 26574602 DOI: 10.1177/0363546515609597] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Limited information exists on the clinical use of a synthetic osteochondral scaffold plug for cartilage restoration in the knee. PURPOSE/HYPOTHESIS The purpose of this study was to compare the early magnetic resonance imaging (MRI) appearance, including quantitative T2 values, between cartilage defects treated with a scaffold versus a scaffold with platelet-rich plasma (PRP) or bone marrow aspirate concentrate (BMAC). The hypothesis was that the addition of PRP or BMAC would result in an improved cartilage appearance. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS Forty-six patients with full-thickness cartilage defects of the femur were surgically treated with a control scaffold (n = 11), scaffold with PRP (n = 23), or scaffold with BMAC (n = 12) and were followed prospectively. Patients underwent MRI with a qualitative assessment and quantitative T2 mapping at 12 months after surgery. An image assessment was performed retrospectively by a blinded musculoskeletal radiologist. The cartilage phase was measured by cartilage fill and quantitative T2 values on MRI. A comparison between groups after cartilage repair was performed. RESULTS The control scaffold group consisted of 8 male and 3 female patients (mean age, 38 years; mean body mass index [BMI], 25 kg/m(2)), the PRP group had 15 male and 8 female patients (mean age, 39 years; mean BMI, 26 kg/m(2)), and the BMAC group consisted of 8 male and 4 female patients (mean age, 36 years; mean BMI, 26 kg/m(2)). The PRP-treated (P = .002) and BMAC-treated (P = .03) scaffolds had superior cartilage fill compared with the control group. With quantitative methods, the PRP group demonstrated a mean T2 value (49.1 ms) that was similar to that of the control scaffold group (42.7 ms; P = .07), but the BMAC group demonstrated a mean T2 value (60.5 ms) closer to that of superficial hyaline cartilage (P = .01). The stratification of T2 values between the deep and superficial zones was not observed in any of the groups. CONCLUSION In this comparative study, patients treated with scaffold implantation augmented with BMAC had improved cartilage maturation with greater fill and mean T2 values closer to that of superficial native hyaline cartilage at 12 months. Further work will determine if this translates into improved clinical outcomes.
Collapse
Affiliation(s)
- Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Danyal H Nawabi
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Nadja A Farshad-Amacker
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Kristofer J Jones
- Division of Sports Medicine and Shoulder Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Travis G Maak
- University of Utah Orthopaedic Center, Salt Lake City, Utah, USA
| | - Hollis G Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Riley J Williams
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
26
|
Dell'Osso G, Bottai V, Bugelli G, Manisco T, Cazzella N, Celli F, Guido G, Giannotti S. The biphasic bioresorbable scaffold (Trufit(®)) in the osteochondral knee lesions: long-term clinical and MRI assessment in 30 patients. Musculoskelet Surg 2015; 100:93-6. [PMID: 26530170 DOI: 10.1007/s12306-015-0383-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/09/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chondral or osteochondral defects have been reported in 60-67 % of patients in studies reporting knee arthroscopies. The surgical management of chondral and osteochondral defects (OCD's) of the articular surface of the knee joint remains a controversial topic. Osteochondral injuries can be treated with transfer cartilage procedure and with implantation of biodegradable scaffolds. For patients over 50 years old with largest osteochondral lesions, we prefer to use the biodegradable scaffold, like Trufit(®) plug (Smith & Nephew, Andover, MA). The purpose of this study is to evaluate the outcome of this series of surgical procedure with Trufit. METHODS In our institute, the Trufit was used for the treatment of one or more focal osteochondral lesions of the femoral condyles positive MRI with or without concomitant ligamentous or meniscal pathology. We reviewed 30 patients with mean age of 60.57 years (range 32-79 years) with a clinical and imaging control at 6, 12, 24 and 48 months of follow-up. RESULTS The clinical evaluation has shown the good outcome. The MRI conducted has shown the progressive partial integration of the scaffolds. CONCLUSIONS The results obtained indicate a clear improvement of the clinical symptoms and slowing joint degeneration. The clinical and imaging results confirm that the Trufit constitutes a valid surgical alternative in case of focal osteochondral.
Collapse
Affiliation(s)
- G Dell'Osso
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy
| | - V Bottai
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy
| | - G Bugelli
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy
| | - T Manisco
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy
| | - N Cazzella
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy
| | - F Celli
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy
| | - G Guido
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy
| | - S Giannotti
- IInd Orthopaedic and Traumatologic Clinic, University of Pisa, Pisa, Italy.
| |
Collapse
|
27
|
Gadjanski I, Vunjak-Novakovic G. Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opin Biol Ther 2015; 15:1583-99. [PMID: 26195329 PMCID: PMC4628577 DOI: 10.1517/14712598.2015.1070825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. AREAS COVERED This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. EXPERT OPINION A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Center for Bioengineering – BioIRC, Prvoslava Stojanovica 6, 34000 Kragujevac, Serbia, Tel: +381 64 083 58 62, Fax: +381 11 203 06 28,
| | - Gordana Vunjak-Novakovic
- Laboratory for Stem Cells and Tissue Engineering, Columbia University, 622 west 168th Street, VC12-234, New York NY 10032, USA, tel: +1-212-305-2304, fax: +1-212-305-4692,
| |
Collapse
|
28
|
Christensen BB, Foldager CB, Jensen J, Lind M. Autologous Dual-Tissue Transplantation for Osteochondral Repair: Early Clinical and Radiological Results. Cartilage 2015; 6:166-73. [PMID: 26175862 PMCID: PMC4481390 DOI: 10.1177/1947603515580983] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Numerous treatment methods for osteochondral repair have been implemented, including auto- and allogeneic osteochondral transplantations, combined bone and chondrocyte transplantations, and synthetic implants, but no gold standard treatment has been established. We present preliminary data on a combined autologous bone and cartilage chips: autologous dual-tissue transplantation (ADTT); an easily applicable, low-cost treatment option for osteochondral repair. The aim of this study was to investigate the early biological and clinical outcome of ADTT. MATERIALS Eight patients (age 32 ± 7.5 years) suffering from osteochondritis dissecans (OCD) in the knee were enrolled. The OCD lesion was debrided and the osteochondral defect was filled with autologous bone, to a level at the base of the adjacent cartilage. Cartilage biopsies from the intercondylar notch were chipped and embedded within fibrin glue in the defect. Evaluation was performed using magnetic resonance imaging, computed tomography, and clinical scores, preoperative and 1 year postoperative. RESULTS Cartilage tissue repair evaluated using MOCART score improved from 22.5 to 52.5 (P < 0.01). Computed tomography imaging demonstrated very good subchondral bone healing with all 8 patients having a bone filling of >80%. We found improvements 1 year postoperative in the International Knee Documentation Committee score (from 35.9 to 68.1, P < 0.01), Tegner score (from 2.6 to 4.7, P < 0.05), and Knee injury and Osteoarthritis Outcome Score pain, symptoms, sport/recreation and quality of life (P < 0.05). CONCLUSION Treatment of OCD with ADTT resulted in very good subchondral bone restoration and good cartilage repair. Significant improvements in patient reported outcome was found at 1 year postoperative. This study suggests ADTT as a promising, low-cost, treatment option for osteochondral injuries.
Collapse
Affiliation(s)
- Bjørn Borsøe Christensen
- Orthopaedic Research Laboratory, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Casper Bindzus Foldager
- Orthopaedic Research Laboratory, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Jensen
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Lind
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Verhaegen J, Clockaerts S, Van Osch G, Somville J, Verdonk P, Mertens P. TruFit Plug for Repair of Osteochondral Defects-Where Is the Evidence? Systematic Review of Literature. Cartilage 2015; 6:12-9. [PMID: 26069706 PMCID: PMC4462248 DOI: 10.1177/1947603514548890] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Treatment of osteochondral defects remains a challenge in orthopedic surgery. The TruFit plug has been investigated as a potential treatment method for osteochondral defects. This is a biphasic scaffold designed to stimulate cartilage and subchondral bone formation. The aim of this study is to investigate clinical, radiological, and histological efficacy of the TruFit plug in restoring osteochondral defects in the joint. DESIGN We performed a systematic search in five databases for clinical trials in which patients were treated with a TruFit plug for osteochondral defects. Studies had to report clinical, radiological, or histological outcome data. Quality of the included studies was assessed. RESULTS Five studies describe clinical results, all indicating improvement at follow-up of 12 months compared to preoperative status. However, two studies reporting longer follow-up show deterioration of early improvement. Radiological evaluation indicates favorable MRI findings regarding filling of the defect and incorporation with adjacent cartilage at 24 months follow-up, but conflicting evidence exists on the properties of the newly formed overlying cartilage surface. None of the included studies showed evidence for bone ingrowth. The few histological data available confirmed these results. CONCLUSION There are no data available that support superiority or equality of TruFit compared to conservative treatment or mosaicplasty/microfracture. Further investigation is needed to improve synthetic biphasic implants as therapy for osteochondral lesions. Randomized controlled clinical trials comparing TruFit plugs with an established treatment method are needed before further clinical use can be supported.
Collapse
Affiliation(s)
- J. Verhaegen
- Department of Orthopaedic Surgery and Traumatology, University of Antwerp, Antwerp, Belgium
| | - S. Clockaerts
- Department of Orthopaedic Surgery and Traumatology, University of Antwerp, Antwerp, Belgium,Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - G.J.V.M. Van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J. Somville
- Department of Orthopaedic Surgery and Traumatology, University of Antwerp, Antwerp, Belgium
| | - P. Verdonk
- Department Orthopaedic Surgery, Monica Hospital, Antwerp, Belgium,Faculty of Medicine, Ghent University, Belgium
| | - P. Mertens
- Department of Orthopaedics and Traumatology, ZNA Middelheim Hospital, Antwerp, Belgium
| |
Collapse
|
30
|
Forney MC, Gupta A, Minas T, Winalski CS. Magnetic resonance imaging of cartilage repair procedures. Magn Reson Imaging Clin N Am 2014; 22:671-701. [PMID: 25442028 DOI: 10.1016/j.mric.2014.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cartilage injuries in the knee are common and can be a persistent source of pain or dysfunction. Many new surgical strategies have been developed to treat these lesions. It is important for the radiologist to have an understanding of these procedures and their appearance on magnetic resonance (MR) imaging. This article provides the radiologist with an overview of the surgical strategies for repairing cartilage lesions in the knee followed by a discussion of their postoperative appearance on MR imaging in normal and abnormal cases. Guidelines for adequate reporting of the MR imaging findings after cartilage repair in the knee are also included.
Collapse
Affiliation(s)
- Michael C Forney
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Amit Gupta
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tom Minas
- Department of Orthopedic Surgery, Cartilage Repair Center, Brigham and Women's Hospital, 850 Boylston Street, Suite 112, Chestnut Hill, MA 02467, USA
| | - Carl S Winalski
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
31
|
Kon E, Filardo G, Perdisa F, Di Martino A, Busacca M, Balboni F, Sessa A, Marcacci M. A one-step treatment for chondral and osteochondral knee defects: clinical results of a biomimetic scaffold implantation at 2 years of follow-up. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2437-2444. [PMID: 24599553 DOI: 10.1007/s10856-014-5188-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
The increasing interest in the role of subchondral bone with regard to articular surface disease led to the development of new bioengineered strategies. Aim of this study is to evaluate the clinical and MRI outcome after the implantation of a nanostructured biomimetic three-phasic collagen-hydroxyapatite construct for the treatment of chondral and osteochondral defects of the knee in a large cohort of patients. Seventy-nine patients (63 M, 16 W), affected by grade III-IV femoral condyle or trochlea chondral lesions or osteochondritis dissecans (OCD) were consecutively treated. Mean age was 31.0 ± 11.3 years, mean lesion size was 3.2 ± 2.0 cm(2). Fifty patients underwent previous surgeries, concurrent procedures were necessary in 39 cases. The clinical outcome was evaluated using the IKDC and Tegner scores at 12 and 24 months of follow-up. At follow-up times an MRI was performed and evaluated with the MOCART score. All the scores improved significantly from the baseline. IKDC subjective score showed a further increase between 12 and 24 months of follow-up, and 82.2% of the patients improved their symptoms at the final evaluation. Patients affected by OCDs had better results than those with degenerative lesions. Some abnormal MRI findings were present, even though no correlation was found with the clinical outcome. This one-step biomimetic approach developed to favor osteochondral tissue regeneration is effective in treating knees affected by damages of the articular surface, leading to a significant clinical improvement. However, abnormal MRI findings were present, even if not correlated with the clinical outcome.
Collapse
Affiliation(s)
- Elizaveta Kon
- II Clinic - Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136, Bologna, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 2014; 1:10. [PMID: 26914755 PMCID: PMC4648845 DOI: 10.1186/s40634-014-0010-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/10/2014] [Indexed: 01/30/2023] Open
Abstract
Several techniques have been used during the years to treat chondral and osteochondral lesions. Among them, the emerging trend in the field of osteochondral regeneration is to treat the entire osteochondral unit by implanting cell-free scaffolds, which provide a three-dimensional support for the cell growth and may act themselves as stimuli for an "in situ" tissue regeneration. Various multi-layered products have been proposed that mimic both the subchondral bone and the cartilaginous layer. Among these, three have currently been reported in the literature. One has been widely investigated: it is a nanocomposite three-layered collagen-hydroxyapatite scaffold, which is showing promising results clinically and by MRI even at mid-term follow-up. The second is a PLGA-calcium-sulfate bilayer scaffold: however, the literature findings are still controversial and only short-term outcomes of limited case-series have been published. The most recent one is a solid aragonite-based scaffold, which seems to give promising clinical and MRI outcomes, even if the literature is still lacking more in-depth evaluations.Even though the Literature related to this topic is quickly increasing in number, the clinical evidence it is still limited to some case series, and high-level studies are needed to better demonstrate their real effectiveness.
Collapse
|
33
|
Gelber PE, Batista J, Millan-Billi A, Patthauer L, Vera S, Gomez-Masdeu M, Monllau JC. Magnetic resonance evaluation of TruFit® plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue. Knee 2014; 21:827-32. [PMID: 24856089 DOI: 10.1016/j.knee.2014.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Treatment of osteochondral lesions of the knee with synthetic scaffolds seems to offer a good surgical option preventing donor site morbidity. The TruFit® plug has frequently been shown to not properly incorporate into. OBJECTIVE To evaluate the relationship between MRI findings and functional scores of patients with osteochondral lesions of the knee treated with TruFit®. METHODS Patients were evaluated with MOCART score for magnetic resonance imaging assessment of the repair tissue. KOOS, SF-36 and VAS were used for clinical evaluation. Correlation between size of the treated chondral defect and functional scores was also analyzed. RESULTS Fifty-seven patients with median follow-up of 44.8 months (range 24-73) were included. KOOS, SF-36 and VAS improved from a mean 58.5, 53.9 and 8.5 points to a mean 87.4, 86.6 and 1.2 at last follow-up (p<0.001). Larger lesions showed less improvement in KOOS (p=0.04) and SF-36 (p=0.029). Median Tegner values were restored to preinjury situation (5, range 2-10). Mean MOCART score was 43.2 ± 16.1. Although the cartilage layer had good integration, it showed high heterogeneity and no filling of the subchondral bone layer. CONCLUSIONS TruFit® failed to restore the normal MRI aspect of the subchondral bone and lamina in most cases. The appearance of the chondral layer in MRI was partially re-established. This unfavourable MRI appearance did not adversely influence the patient's outcome in the short time and they restored their previous level of activity. There was an inverse linear relationship between the size of the lesion and the functional scores. LEVEL OF EVIDENCE Therapeutic case series; level 4.
Collapse
Affiliation(s)
- Pablo Eduardo Gelber
- ICATME-Hospital Universitari Quirón-Dexeus, Universitat Autònoma de Barcelona, Sabino de Arana 5-19, 08028 Barcelona, Spain; Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 89, 08041 Barcelona, Spain.
| | - Jorge Batista
- Centro Artroscópico Jorge Batista S.A., Pueyrredón 2446 5° B, C1119ACU Ciudad Autónoma de Buenos Aires, Argentina
| | - Angélica Millan-Billi
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 89, 08041 Barcelona, Spain
| | - Luciano Patthauer
- Centro Artroscópico Jorge Batista S.A., Pueyrredón 2446 5° B, C1119ACU Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Vera
- Centro Artroscópico Jorge Batista S.A., Pueyrredón 2446 5° B, C1119ACU Ciudad Autónoma de Buenos Aires, Argentina
| | - Mireia Gomez-Masdeu
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 89, 08041 Barcelona, Spain
| | - Juan Carlos Monllau
- ICATME-Hospital Universitari Quirón-Dexeus, Universitat Autònoma de Barcelona, Sabino de Arana 5-19, 08028 Barcelona, Spain; Parc de Salut Mar, Universitat Autònoma de Barcelona, Passeig Marítim 25, 08003 Barcelona, Spain
| |
Collapse
|
34
|
Autologous osteochondral mosaicplasty or TruFit plugs for cartilage repair. Knee Surg Sports Traumatol Arthrosc 2014; 22:1235-40. [PMID: 23589126 DOI: 10.1007/s00167-013-2493-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE Autologous osteochondral mosaicplasty and TruFit Bone graft substitute plugs are methods used to repair symptomatic articular cartilage defects in the adult knee. There have been no comparative studies of the two techniques. METHODS This retrospective study assessed functional outcome of patients using the EQ-5D, Knee Injury and Osteoarthritis Outcome Score (KOOS) and Modified Cincinnati scores at follow-up of 1-5 years. RESULTS There were 66 patients in the study (35 TruFit and 31 Mosaicplasty): 44 males and 22 females with a mean age of 37.3 years (SD 12.6). The mean BMI was 26.8. Thirty-six articular cartilage lesions were due to trauma, twenty-six due to osteochondritis dissecans and three due to non-specific degenerative change or unknown. There was no difference between the two groups age (n.s.), sex (n.s.), BMI (n.s.), defect location (n.s.) or aetiology (n.s.). The median follow-up was 22 months for the TruFit cohort and 30 months for the mosaicplasty group. There was no significant difference in the requirement for re-operation (n.s). Patients undergoing autologous mosaicplasty had a higher rate of returning to sport (p = 0.006), lower EQ-5D pain scores (p = 0.048) and higher KOOS activities of daily living (p = 0.029) scores. Sub-group analysis showed no difference related to the number of cases the surgeon performed. Patients requiring re-operation had lower outcome scores regardless of their initial procedure. CONCLUSION This study demonstrated significantly better outcomes using two validated outcome scores (KOOS, EQ-5D), and an ability to return to sport in those undergoing autologous mosaicplasty compared to those receiving TruFit plugs. LEVEL OF EVIDENCE IV.
Collapse
|
35
|
Betsch M, Thelen S, Santak L, Herten M, Jungbluth P, Miersch D, Hakimi M, Wild M. The role of erythropoietin and bone marrow concentrate in the treatment of osteochondral defects in mini-pigs. PLoS One 2014; 9:e92766. [PMID: 24676029 PMCID: PMC3968023 DOI: 10.1371/journal.pone.0092766] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/26/2014] [Indexed: 12/02/2022] Open
Abstract
Background All available treatment options for osteochondral and chondral defects do not restore hyaline cartilage and are limited to decreasing associated pain, and maintaining or improving joint function. The purpose of this study was to evaluate the potential of erythropoietin (EPO) in combination with bone marrow aspiration concentrate (BMAC) in the treatment of osteochondral defects of mini-pigs. Methods 14 Goettinger mini-pigs, in which a 6×10 mm osteochondral defect in the medial femoral condyle of both knee joints was created, were randomized into four groups: biphasic scaffold alone, scaffold with EPO, scaffold with BMAC and scaffold in combination with EPO and BMAC. After 26 weeks all animals were euthanized and histological slides were evaluated using a modified ÓDriscoll Score. Results In the therapy groups, areas of chondrogenic tissue that contained collagen II were present. Adding EPO (p = 0.245) or BMAC (p = 0.099) alone to the scaffold led to a non-significant increase in the score compared to the control group. However, the combination of EPO and BMAC in the implanted scaffold showed a significant improvement (p = 0.02) in the histological score. Conclusion The results of our study show that in mini-pigs, the combination of EPO and BMAC leads to an enhanced osteochondral healing. However, additional research is necessary to further improve the repair tissue and to define the role of MSCs and EPO in cartilage repair.
Collapse
Affiliation(s)
- Marcel Betsch
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Simon Thelen
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Laila Santak
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Monika Herten
- Department of and Endovascular Surgery, University Hospital Muenster, Muenster, Germany
| | - Pascal Jungbluth
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Daniel Miersch
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Mohssen Hakimi
- Department of Trauma and Hand Surgery, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Michael Wild
- Department of Trauma and Orthopaedic Surgery, Klinikum Darmstadt, Darmstadt, Germany
| |
Collapse
|
36
|
Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M. Acellular Matrix–Based Cartilage Regeneration Techniques for Osteochondral Repair. ACTA ACUST UNITED AC 2014. [DOI: 10.1053/j.oto.2014.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Kon E, Filardo G, Di Martino A, Busacca M, Moio A, Perdisa F, Marcacci M. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 2014; 42:158-65. [PMID: 24114751 DOI: 10.1177/0363546513505434] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Several cartilage lesions involve the subchondral bone, and there is a need for biphasic scaffolds to treat the entire osteochondral unit to reproduce the different biological and functional requirements and guide the growth of the 2 tissues. PURPOSE To evaluate the results of a cell-free collagen-hydroxyapatite osteochondral scaffold at midterm, and to use magnetic resonance imaging (MRI) analysis to document the imaging evolution of the tissue regeneration process through 5 years of follow-up. STUDY DESIGN Case series; Level of evidence, 4. METHODS Twenty-seven patients (9 women, 18 men; mean age, 34.9 ± 10.2 years) treated for knee chondral or osteochondral lesions (size, 1.5-6 cm(2)) were followed for 2 and 5 years and were clinically evaluated using the International Knee Documentation Committee (IKDC) and Tegner scores. An MRI evaluation was performed at both follow-ups in 23 lesions, and the magnetic resonance observation of cartilage repair tissue (MOCART) score and specific subchondral bone parameters (bone regeneration, bone signal quality, osteophytes or upcoming bone front, sclerotic areas, and edema) were analyzed. RESULTS A statistically significant improvement in all clinical scores was observed from the initial evaluation to the 2- and 5-year follow-ups, and the results were stable over time. The mean IKDC subjective score improved from 40.0 ± 15.0 to 76.5 ± 14.5 (2-year follow-up) and 77.1 ± 18.0 (5-year follow-up) and the mean Tegner score from 1.6 ± 1.1 to 4.0 ± 1.8 (2-year follow-up) and 4.1 ± 1.9 (5-year follow-up). The MRI evaluation showed a significant improvement in both the MOCART score and subchondral bone status from 2 to 5 years. At 5 years, complete filling of the cartilage was shown in 78.3% of the lesions, complete integration of the graft was detected in 69.6% of cases, the repair tissue surface was intact in 60.9%, and the structure of the repair tissue was homogeneous in 60.9% of the cases. No correlation was found between MRI findings and clinical outcome. CONCLUSION This osteochondral scaffold was used for the treatment of chondral and osteochondral knee defects with a single-step procedure. The study results highlighted the safety and potential of this procedure, which offered a good clinical outcome with stable results at midterm follow-up. Although the MRI findings improved over time, some abnormalities persisted, but no correlation was found between the imaging and clinical results.
Collapse
Affiliation(s)
- Elizaveta Kon
- Elizaveta Kon, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Via Di Barbiano, 1/10 - 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Saha S, Kundu B, Kirkham J, Wood D, Kundu SC, Yang XB. Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS One 2013; 8:e80004. [PMID: 24260335 PMCID: PMC3833924 DOI: 10.1371/journal.pone.0080004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 09/28/2013] [Indexed: 01/12/2023] Open
Abstract
The ability to treat osteochondral defects is a major clinical need. Existing polymer systems cannot address the simultaneous requirements of regenerating bone and cartilage tissues together. The challenge still lies on how to improve the integration of newly formed tissue with the surrounding tissues and the cartilage-bone interface. This study investigated the potential use of different silk fibroin scaffolds: mulberry (Bombyx mori) and non-mulberry (Antheraea mylitta) for osteochondral regeneration in vitro and in vivo. After 4 to 8 weeks of in vitro culture in chondro- or osteo-inductive media, non-mulberry constructs pre-seeded with human bone marrow stromal cells exhibited prominent areas of the neo tissue containing chondrocyte-like cells, whereas mulberry constructs pre-seeded with human bone marrow stromal cells formed bone-like nodules. In vivo investigation demonstrated neo-osteochondral tissue formed on cell-free multi-layer silk scaffolds absorbed with transforming growth factor beta 3 or recombinant human bone morphogenetic protein-2. Good bio-integration was observed between native and neo-tissue within the osteochondrol defect in patellar grooves of Wistar rats. The in vivo neo-matrix formed comprised of a mixture of collagen and glycosaminoglycans except in mulberry silk without growth factors, where a predominantly collagenous matrix was observed. Immunohistochemical assay showed stronger staining of type I and type II collagen in the constructs of mulberry and non-mulberry scaffolds with growth factors. The study opens up a new avenue of using inter-species silk fibroin blended or multi-layered scaffolds of a combination of mulberry and non-mulberry origin for the regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Sushmita Saha
- Biomaterials and Tissue Engineering Group, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Banani Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Jennifer Kirkham
- Biomineralisation Group, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - David Wood
- Biomaterials and Tissue Engineering Group, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Subhas C. Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
- * E-mail: (XBY); (SCK)
| | - Xuebin B. Yang
- Biomaterials and Tissue Engineering Group, School of Dentistry, University of Leeds, Leeds, United Kingdom
- * E-mail: (XBY); (SCK)
| |
Collapse
|
39
|
Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 2013; 36:868-73. [PMID: 24200433 DOI: 10.3928/01477447-20131021-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Due to their good biocompatibility and mechanical integrity, tissue engineering scaffolds have become a principal method of repair and regeneration of osteochondral defects. To improve their intrinsic properties, control their degenerative times, and enhance their cell adhesion and differentiation, numerous scaffold architectures and formation methods have been developed and tested, but the ideal scaffold design is still controversial. Moreover, scaffold fixation has a significant influence on repair and regeneration after implantation. The authors analyzed relative studies to address the latest scaffold designs, including biphasic scaffold, multilayered scaffold, and continuous nonstratified scaffold, and this article compares their advantages and disadvantages. In addition, the authors introduce a novel modified method for scaffold fixation known as magnetic fixation. Both stratified and nonstratified scaffolds can repair osteochondral defects, but continuous nonstratified scaffolds are more biomimetic compared with the native osteochondral structures, and they lead to a better regeneration of hyaline-like cartilage and structured bone tissue. Therefore, the authors suggest continuous nonstratified scaffolds are an effective option for treating osteochondral defects.
Collapse
|
40
|
Krych AJ, Wanivenhaus F, Ng KW, Doty S, Warren RF, Maher SA. Matrix generation within a macroporous non-degradable implant for osteochondral defects is not enhanced with partial enzymatic digestion of the surrounding tissue: evaluation in an in vivo rabbit model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2429-2437. [PMID: 23846837 PMCID: PMC3839287 DOI: 10.1007/s10856-013-4999-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 06/26/2013] [Indexed: 05/30/2023]
Abstract
Articular cartilage defects are a significant source of pain, have limited ability to heal, and can lead to the development of osteoarthritis. However, a surgical solution is not available. To tackle this clinical problem, non-degradable implants capable of carrying mechanical load immediately after implantation and for the duration of implantation, while integrating with the host tissue, may be viable option. But integration between articular cartilage and non-degradable implants is not well studied. Our objective was to assess the in vivo performance of a novel macroporous, nondegradable, polyvinyl alcohol construct. We hypothesized that matrix generation within the implant would be enhanced with partial digestion of the edges of articular cartilage. Our hypothesis was tested by randomizing an osteochondral defect created in the trochlea of 14 New Zealand white rabbits to treatment with: (i) collagenase or (ii) saline, prior to insertion of the implant. At 1 and 3-month post-operatively, the gross morphology and histologic appearance of the implants and the surrounding tissue were assessed. At 3 months, the mechanical properties of the implant were also quantified. Overall, the hydrogel implants performed favorably; at all time-points and in all groups the implants remained well fixed, did not cause inflammation or synovitis, and did not cause extensive damage to the opposing articular cartilage. Regardless of treatment with saline or collagenase, at 1 month post-operatively implants from both groups had a contiguous interface with adjacent cartilage and were populated with chondrocyte-like cells. At 3 months fibrous encapsulation of all implants was evident, there was no difference between area of aggrecan staining in the collagenase versus saline groups, and implant modulus was similar in both groups; leading us to reject our hypothesis. In summary, a porous PVA osteochondral implant remained well fixed in a short term in vivo osteochondral defect model; however, matrix generation within the implant was not enhanced with partial digestion of adjacent articular cartilage.
Collapse
|
41
|
Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 2013; 9:7236-47. [PMID: 23567945 DOI: 10.1016/j.actbio.2013.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
An optimal scaffold is crucial for osteochondral regeneration. Collagen and electrospun nanofibers have been demonstrated to facilitate cartilage and bone regeneration, respectively. However, the effect of combining collagen and electrospun nanofibers on osteochondral regeneration has yet to be evaluated. Here, we report that the combination of collagen and electrospun poly-l-lactic acid nanofibers synergistically promotes osteochondral regeneration. We first fabricated bi-layer microporous scaffold with collagen and electrospun poly-l-lactic acid nanofibers (COL-nanofiber). Mesenchymal stem cells were cultured on the bi-layer scaffold and their adhesion, proliferation and differentiation were examined. Moreover, osteochondral defects were created in rabbits and implanted with COL-nanofiber scaffold. Cartilage and subchondral bone regeneration were evaluated at 6 and 12weeks after surgery. Compared with COL scaffold, cells on COL-nanofiber scaffold exhibited more robust osteogenic differentiation, indicated by higher expression levels of OCN and runx2 genes as well as the accumulation of calcium nodules. Furthermore, implantation of COL-nanofiber scaffold seeded with cells induced more rapid subchondral bone emergence, and better cartilage formation, which led to better functional repair of osteochondral defects as manifested by histological staining, biomechanical test and micro-computed tomography data. Our study underscores the potential of using the bi-layer microporous COL-nanofiber scaffold for the treatment of deep osteochondral defects.
Collapse
|
42
|
Kon E, Filardo G, Di Matteo B, Perdisa F, Marcacci M. PRP-Augmented Scaffolds for Cartilage Regeneration: A Systematic Review. OPER TECHN SPORT MED 2013. [DOI: 10.1053/j.otsm.2013.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ye K, Felimban R, Moulton SE, Wallace GG, Bella CD, Traianedes K, Choong PFM, Myers DE. Bioengineering of articular cartilage: past, present and future. Regen Med 2013; 8:333-49. [DOI: 10.2217/rme.13.28] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The treatment of cartilage defects poses a clinical challenge owing to the lack of intrinsic regenerative capacity of cartilage. The use of tissue engineering techniques to bioengineer articular cartilage is promising and may hold the key to the successful regeneration of cartilage tissue. Natural and synthetic biomaterials have been used to recreate the microarchitecture of articular cartilage through multilayered biomimetic scaffolds. Acellular scaffolds preserve the microarchitecture of articular cartilage through a process of decellularization of biological tissue. Although promising, this technique often results in poor biomechanical strength of the graft. However, biomechanical strength could be improved if biomaterials could be incorporated back into the decellularized tissue to overcome this limitation.
Collapse
Affiliation(s)
- Ken Ye
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Raed Felimban
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| | - Simon E Moulton
- Intelligent Polymer Research Institute, University of Wollongong, ARC Centre of Excellence for Electromaterials Science (ACES), Squires Way, North Wollongong, New South Wales 2552, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, University of Wollongong, ARC Centre of Excellence for Electromaterials Science (ACES), Squires Way, North Wollongong, New South Wales 2552, Australia
| | - Claudia Di Bella
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| | - Kathy Traianedes
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Peter FM Choong
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| | - Damian E Myers
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
44
|
Ye K, Di Bella C, Myers DE, Choong PFM. The osteochondral dilemma: review of current management and future trends. ANZ J Surg 2013; 84:211-7. [PMID: 23458285 DOI: 10.1111/ans.12108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 12/25/2022]
Abstract
The management of articular cartilage defects remains challenging and controversial. Hyaline cartilage has limited capacity for self-repair and post-injury cartilage is predominantly replaced by fibrocartilage through healing from the subchondral bone. Fibrocartilage lacks the key properties that characterize hyaline cartilage such as capacity for compression, hydrodynamic permeability and smoothness of the articular surface. Many reports relate compromised function associated with repaired cartilage and loss of function of the articular surface. Novel methods have been proposed with the key aim to regenerate hyaline cartilage for repair of osteochondral defects. Over the past decade, with many exciting developments in tissue engineering and regenerative cell-based technologies, we are now able to consider new combinatorial approaches to overcome the problems associated with osteochondral injuries and damage. In this review, the currently accepted surgical approaches are reviewed and considered; debridement, marrow stimulation, whole tissue transplantation and cellular repair. More recent products, which employ tissue engineering approaches to enhance the traditional methods of repair, are discussed. Future trends must not only focus on recreating the composition of articular cartilage, but more importantly recapitulate the nano-structure of articular cartilage to improve the functional strength and integration of repair tissue.
Collapse
Affiliation(s)
- Ken Ye
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia; Department of Orthopaedics, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | | | | | | |
Collapse
|
45
|
López-Ruiz E, Perán M, Cobo-Molinos J, Jiménez G, Picón M, Bustamante M, Arrebola F, Hernández-Lamas MC, Delgado-Martínez AD, Montañez E, Marchal JA. Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells. Osteoarthritis Cartilage 2013; 21:246-258. [PMID: 23085560 DOI: 10.1016/j.joca.2012.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/21/2012] [Accepted: 10/11/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Infrapatellar fat pad of patients with osteoarthritis (OA) contains multipotent and highly clonogenic adipose-derived stem cells that can be isolated by low invasive methods. Moreover, nuclear and cytoplasmic cellular extracts have been showed to be effective in induction of cell differentiation and reprogramming. The aim of this study was to induce chondrogenic differentiation of autologous mesenchymal stem cells (MSCs) obtained from infrapatellar fat pad (IFPSCs) of patients with OA using cellular extracts-based transdifferentiation method. DESIGN IFPSCs and chondrocytes were isolated and characterized by flow cytometry. IFPSCs were permeabilized with Streptolysin O and then exposed to a cell extract obtained from chondrocytes. Then, IFPSCs were cultured for 2 weeks and chondrogenesis was evaluated by morphologic and ultrastructural observations, immunologic detection, gene expression analysis and growth on 3-D poly (dl-lactic-co-glycolic acid) (PLGA) scaffolds. RESULTS After isolation, both chondrocytes and IFPSCs displayed similar expression of MSCs surface makers. Collagen II was highly expressed in chondrocytes and showed a basal expression in IFPSCs. Cells exposed to chondrocyte extracts acquired a characteristic morphological and ultrastructural chondrocyte phenotype that was confirmed by the increased proteoglycan formation and enhanced collagen II immunostaining. Moreover, chondrocyte extracts induced an increase in mRNA expression of chondrogenic genes such as Sox9, L-Sox5, Sox6 and Col2a1. Interestingly, chondrocytes, IFPSCs and transdifferentiated IFPSCs were able to grow, expand and produce extracellular matrix (ECM) on 3D PLGA scaffolds. CONCLUSIONS We demonstrate for the first time that extracts obtained from chondrocytes of osteoarthritic knees promote chondrogenic differentiation of autologous IFPSCs. Moreover, combination of transdifferentiated IFPSCs with biodegradable PLGA 3D scaffolds can serve as an efficient system for the maintenance and maturation of cartilage tissue. These findings suggest its usefulness to repair articular surface in OA.
Collapse
Affiliation(s)
- E López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén E-23071, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Henkel J, Hutmacher DW. Design and fabrication of scaffold-based tissue engineering. ACTA ACUST UNITED AC 2013. [DOI: 10.1515/bnm-2013-0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.11.007] [Citation(s) in RCA: 538] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Joshi N, Reverte-Vinaixa M, Díaz-Ferreiro EW, Domínguez-Oronoz R. Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med 2012; 40:1289-95. [PMID: 22491793 DOI: 10.1177/0363546512441585] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Surgical management of patellar cartilage defects remains controversial. The ideal technique to regenerate hyaline cartilage is not yet defined. However, a synthetic resorbable osteochondral scaffold plug (TruFit CB) seems to offer a treatment option with good results at short-term follow-up, at least in the condylar setting. HYPOTHESIS A synthetic implant provides a simple and efficacious means of treating the cartilage defects of the patellofemoral joint in young patients. STUDY DESIGN Case series; Level of evidence, 4. METHODS A study was designed to evaluate prospectively short- and medium-term results in patients with osteochondral patellar defects treated with synthetic reabsorbable scaffolds. Patient outcome scores (Short Form 36 [SF-36] and Knee injury and Osteoarthritis Outcome Score [KOOS]), demographics, prior surgeries, and data from a physical examination were collected at baseline (before implantation) and at 6, 12, and 24 months after surgery. Defect characteristics were collected during implantation. Diagnosis and monitoring were performed by magnetic resonance imaging. RESULTS Ten patients with a mean age of 33.3 years (range, 16-49 years) were evaluated prospectively at 24 months' follow-up. The number of plugs used for each patient ranged from 1 to 4. At 1-year follow-up, the results were satisfactory in 8 of 10 patients, and poor in 2, according to clinical assessment (KOOS, visual analog scale, and SF-36). At 18 months of follow-up, all patients except one complained of pain and knee swelling. Reoperation rate for implant failure at final follow-up was 70%. Magnetic resonance imaging at final follow-up showed a cylindrical cavity of fibrous tissue instead of subchondral bone restoration. CONCLUSION A synthetic implant can improve symptoms and joint function, especially for small lesions, only for a short period of time. However, 2 years of monitoring has shown its failure in restoring the subchondral bone despite the formation of predominant hyaline cartilage from synthetic resorbable scaffolds. Under current conditions and according to our experience, we do not recommend TruFit synthetic implants for osteochondral patellar defects in active patients.
Collapse
Affiliation(s)
- Nayana Joshi
- Servei de Cirurgia Ortopèdica i Traumatologia, Unitat de Genoll, Hospital Universitari Vall d'Hebrón, Passeig de la Vall d'Hebrón 119-129, 08035 Barcelona, Spain.
| | | | | | | |
Collapse
|
49
|
LaPorta TF, Richter A, Sgaglione NA, Grande DA. Clinical relevance of scaffolds for cartilage engineering. Orthop Clin North Am 2012; 43:245-54, vi. [PMID: 22480473 DOI: 10.1016/j.ocl.2012.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The repair of articular cartilage defects in patients' knees presents a particular challenge to the orthopedic surgeon because cartilage lacks the ability to repair or regenerate itself. Various cartilage repair techniques have not produced a superior or uniform outcome, which has led to a new generation of cartilage repair based on tissue-engineering strategies and the use of biological scaffolds. Clinical advances have been made regarding the regeneration of articular cartilage, and continue to be made toward the achievement of a suitable treatment method for resurfacing osteochondral defects, through cartilage tissue engineering and the use of pluripotent cells seeded on bio-scaffolds.
Collapse
Affiliation(s)
- Thomas F LaPorta
- Department of Orthopaedics, Long Island Jewish Medical Center, Street 270-05 76th Avenue, New Hyde Park, NY 11040, USA.
| | | | | | | |
Collapse
|
50
|
Emans PJ, Jansen EJP, van Iersel D, Welting TJM, Woodfield TBF, Bulstra SK, Riesle J, van Rhijn LW, Kuijer R. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med 2012; 7:751-6. [PMID: 22438217 DOI: 10.1002/term.1477] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/17/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022]
Abstract
Cartilage has a poor regenerative capacity. Tissue-engineering approaches using porous scaffolds seeded with chondrocytes may improve cartilage repair. The aim of this study was to examine the effect of pore size and pore interconnectivity on cartilage repair in osteochondral defects treated with different scaffolds seeded with allogenic chondrocytes. Scaffolds consisting of 55 wt% poly(ethylene oxide terephthalate) and 45 wt% poly(butylene terephthalate) (PEOT/PBT) with different pore sizes and interconnectivities were made, using a compression moulding (CM) and a three-dimensional fibre (3DF) deposition technique. In these scaffolds, allogenic chondrocytes were seeded, cultured for 3 weeks and implanted in osteochondral defects of skeletally mature rabbits. At 3 weeks no difference in cartilage repair between an empty osteochondral defect, CM or 3DF scaffolds was found. Three months post-implantation, cartilage repair was significantly improved after implantation of a 3DF scaffold compared to a CM scaffold. Although not significant, Mankin scores for osteoarthritis (OA) indicated less OA in the 3DF scaffold group compared to empty defects and CM-treated defects. It is concluded that scaffold pore size and pore interconnectivity influences osteochondral repair and a decreased pore interconnectivity seems to impair osteochondral repair.
Collapse
Affiliation(s)
- P J Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|