1
|
Monteiro Neto JR, de Souza GF, Dos Santos VM, de Holanda Paranhos L, Ribeiro GD, Magalhães RSS, Queiroz DD, Eleutherio ECA. SOD1, A Crucial Protein for Neural Biochemistry: Dysfunction and Risk of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2025:10.1007/s12035-025-05067-1. [PMID: 40419749 DOI: 10.1007/s12035-025-05067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Neurons are very susceptible to oxidative stress. They are the major consumers of oxygen in the brain, which is used to provide energy through oxidative phosphorylation, the major source of reactive oxygen species (ROS). In addition, compared to other tissues, neurons have lower levels of catalase and glutathione and increased susceptibility to lipid peroxidation due to the elevated levels of unsaturated fatty acids. These characteristics increasingly emphasize the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD1) to maintain neuronal redox homeostasis. In the last decade, SOD1 gained additional roles which are also important to the metabolism of neurons. SOD1 controls the production of ROS by the electron transport chain, activates the expression of genes involved in the protection against oxidative stress, and regulates the shift from oxidative to fermentative metabolism involved in astrocyte-neuron metabolic cooperation. Furthermore, impaired interaction between the phosphatase calcineurin and SOD1 seems to result in TDP-43 hyperphosphorylation, the main proteinopathy found in amyotrophic lateral sclerosis (ALS) patients. However, this enzyme is ubiquitously expressed, mutated, and damaged forms of SOD1 cause disease in motor neurons. In this review, we discuss the pivotal functions of SOD1 in neuronal biochemistry and their implications for ALS.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriel Freitas de Souza
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Vanessa Mattos Dos Santos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Luan de Holanda Paranhos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriela Delaqua Ribeiro
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Rayne Stfhany Silva Magalhães
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniela Dias Queiroz
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Elis Cristina Araujo Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
2
|
Brenner M, Parpura V. The Role of Astrocytes in CNS Disorders: Historic and Contemporary Views. Cells 2024; 13:1388. [PMID: 39195276 PMCID: PMC11352414 DOI: 10.3390/cells13161388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
This Special Issue of Cells presents a collection of 22 published, peer-reviewed articles on the theme of "Astrocytes in CNS Disorders," including 9 reviews of the evidence implicating astrocytes in the etiology of specific disorders, and 13 original research papers providing such evidence [...].
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
3
|
Immunohistochemical Study of ASC Expression and Distribution in the Hippocampus of an Aged Murine Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168697. [PMID: 34445402 PMCID: PMC8395512 DOI: 10.3390/ijms22168697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), and is notably dependent on age. One important inflammatory pathway exerted by innate immune cells of the nervous system in response to danger signals is mediated by inflammasomes (IF) and leads to the generation of potent pro-inflammatory cytokines. The protein “apoptosis-associated speck-like protein containing a caspase recruitment domain” (ASC) modulates IF activation but has also other functions which are crucial in AD. We intended to characterize immunohistochemically ASC and pattern recognition receptors (PRR) of IF in the hippocampus (HP) of the transgenic mouse model Tg2576 (APP), in which amyloid-beta (Aβ) pathology is directly dependent on age. We show in old-aged APP a significant amount of ASC in microglia and astrocytes associated withAβ plaques, in the absence of PRR described by others in glial cells. In addition, APP developed foci with clusters of extracellular ASC granules not spatiallyrelated to Aβ plaques, which density correlated with the advanced age of mice and AD development. Clusters were associated withspecific astrocytes characterized by their enlarged ring-shaped process terminals, ASC content, and frequent perivascular location. Their possible implication in ASC clearance and propagation of inflammation is discussed.
Collapse
|
4
|
Semchyshyn H. Is carbonyl/AGE/RAGE stress a hallmark of the brain aging? Pflugers Arch 2021; 473:723-734. [PMID: 33742308 DOI: 10.1007/s00424-021-02529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have linked carbonyl stress to many physiological processes. Increase in the levels of carbonyl compounds, derived from both endogenous and exogenous sources, is believed to accompany normal age-related decline as well as different pathologies. Reactive carbonyl species (RCS) are capable of damaging biomolecules via their involvement in a net of nonspecific reactions. In the advanced stages of RCS metabolism, variety of poorly degraded adducts and crosslinks, collectively named advanced glycoxidation end products (AGEs), arises. They are accumulated in an age-dependent manner in different tissues and organs and can contribute to inflammatory processes. In particular, detrimental effects of the end products are realized via activation of the specific receptor for AGEs (RAGE) and RAGE-dependent inflammatory signaling cascade. Although it is unclear, whether carbonyl stress is causal for age-associated impairments or it results from age- and disease-related cell damages, increased levels of RCS and AGEs are tightly related to inflammaging, and therefore, attenuation of the RAGE signaling is suggested as an effective approach for the treatment of inflammation and age-related disorders. The question raised in this review is whether specific metabolism in the aging brain related to carbonyl/RCS/AGE/RAGE stress.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
5
|
Dietary Protein Source Influences Brain Inflammation and Memory in a Male Senescence-Accelerated Mouse Model of Dementia. Mol Neurobiol 2020; 58:1312-1329. [PMID: 33169333 DOI: 10.1007/s12035-020-02191-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Dementia is a pathological condition characterized by a decline in memory, as well as in other cognitive and social functions. The cellular and molecular mechanisms of brain damage in dementia are not completely understood; however, neuroinflammation is involved. Evidence suggests that chronic inflammation may impair cognitive performance and that dietary protein source may differentially influence this process. Dietary protein source has previously been shown to modify systemic inflammation in mouse models. Thus, we aimed to investigate the effect of chronic dietary protein source substitution in an ageing and dementia male mouse model, the senescence-accelerated mouse-prone 8 (SAMP8) model. We observed that dietary protein source differentially modified memory as shown by inhibitory avoidance testing at 4 months of age. Also, dietary protein source differentially modified neuroinflammation and gliosis in male SAMP8 mice. Our results suggest that chronic dietary protein source substitution may influence brain ageing and memory-related mechanisms in male SAMP8 mice. Moreover, the choice of dietary protein source in mouse diets for experimental purposes may need to be carefully considered when interpreting results.
Collapse
|
6
|
Glucose signaling in the brain and periphery to memory. Neurosci Biobehav Rev 2020; 110:100-113. [DOI: 10.1016/j.neubiorev.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 01/30/2019] [Accepted: 03/24/2019] [Indexed: 02/08/2023]
|
7
|
Zhang L, Dong ZF, Zhang JY. Immunomodulatory role of mesenchymal stem cells in Alzheimer's disease. Life Sci 2020; 246:117405. [PMID: 32035129 DOI: 10.1016/j.lfs.2020.117405] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and is characterized by gradual loss in memory, language, and cognitive function. The hallmarks of AD include extracellular amyloid deposition, intracellular neuronal fiber entanglement, and neuronal loss. Despite strenuous efforts toward improvement of AD, there remains a lack of effective treatment and current pharmaceutical therapies only alleviate the symptoms for a short period of time. Interestingly, some progress has been achieved in treatment of AD based on mesenchymal stem cell (MSC) transplantation in recent years. MSC transplantation, as a rising therapy, is used as an intervention in AD, because of the enormous potential of MSCs, including differentiation potency, immunoregulatory function, and no immunological rejection. Although numerous strategies have focused on the use of MSCs to replace apoptotic or degenerating neurons, recent studies have implied that MSC-immunoregulation, which modulates the activity state of microglia or astrocytes and mediates neuroinflammation via several transcription factors (NFs) signaling pathways, may act as a major mechanism for the therapeutic efficacy of MSC and be responsible for some of the satisfactory results. In this review, we will focus on the role of MSC-immunoregulation in MSC-based therapy for AD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China.
| | - Zhi-Fang Dong
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China.
| | - Jie-Yuan Zhang
- Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
8
|
Soluble epoxide hydrolase modulates immune responses in activated astrocytes involving regulation of STAT3 activity. J Neuroinflammation 2019; 16:123. [PMID: 31176371 PMCID: PMC6555999 DOI: 10.1186/s12974-019-1508-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Astrocyte activation is a common pathological feature in many brain diseases with neuroinflammation, and revealing the underlying mechanisms might shed light on the regulatory processes of the diseases. Recently, soluble epoxide hydrolase (sEH) has been proposed to affect neuroinflammation in brain injuries. However, the roles of astrocytic sEH in brains with neurodegeneration remain unclear. METHODS The expression of astrocytic sEH in the brains of APPswe/PSEN1dE9 (APP/PS1) mice developing Alzheimer's disease (AD)-like pathology was evaluated by confocal imaging. LPS-activated primary astrocytes with mRNA silencing or overexpression of sEH were used to investigate its regulatory roles in astrocyte activation and the induction of pro-inflammatory markers. Primary astrocytes isolated from a sEH knockout (sEH-/-) background were also applied. RESULTS The immunoreactivity of sEH was increased in activated astrocytes in parallel with the progression of AD in APP/PS1 mice. Our data from primary astrocyte cultures further demonstrate that the overexpression of sEH ameliorated, while the silencing of sEH mRNA enhanced, the lipopolysaccharides (LPS)-induced expression of pro-inflammatory markers, such as inducible nitric oxide, cyclooxygenase 2 (COX-2), and pro-inflammatory cytokines. These findings suggest that sEH negatively regulates astrocyte immune responses. Enhanced immune responses found in LPS-activated sEH-/- astrocytes also support the notion that the expression of sEH could suppress the immune responses during astrocyte activation. Similarly, sEH-/- mice that received intraperitoneal injection of LPS showed exacerbated astrocyte activation in the brain, as observed by the elevated expression of glial fibrillary acidic protein (GFAP) and pro-inflammatory markers. Moreover, our data show that the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was upregulated in activated astrocytes from sEH mouse brains, and the pharmacological blockade of STAT3 activity alleviated the pro-inflammatory effects of sEH deletion in LPS-activated primary astrocytes. CONCLUSIONS Our results provide evidence, for the first time, showing that sEH negatively regulates astrocytic immune responses and GFAP expression, while the underlying mechanism at least partly involves the downregulation of STAT3 phosphorylation. The discovery of a novel function for sEH in the negative control of astrocytic immune responses involving STAT3 activation confers further insights into the regulatory machinery of astrocyte activation during the development of neurodegeneration.
Collapse
|
9
|
Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019; 33:457-480. [PMID: 30900203 DOI: 10.1007/s40263-019-00619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the brains of Alzheimer's disease (AD) patients have revealed key neuropathological features, such as the deposition of aggregates of insoluble amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs). These pathological protein deposits, including Aβ peptides (which form senile plaques) and hyperphosphorylated tau (which aggregates into NFTs), have been assumed to be 'the cause of AD'. Aβ has been extensively targeted to develop an effective disease-modifying therapy, but with limited clinical success. Emerging therapies are also now targeting further pathological processes in AD, including neuroinflammation. This review focuses on the inflammatory and oxidative stress-related changes that occur in AD, and discusses some emerging anti-inflammatory natural products and phytomedicines. Many of the promising compounds are cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the proinflammatory AP1 and nuclear factor-κB signalling pathways and inhibit the expression of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, or nitric oxide produced by inducible nitric oxide synthase. However, many of these phytomedicines have not been tested in rigorous clinical trials in AD patients. It is not yet clear if the active compounds reach an effective concentration in the brain (due to limited bioavailability) or if they can slow down AD progression in long-term trials. The authors suggest that it is crucial for both the pharmacological and complementary medicine industries to conduct and fund those studies to significantly advance the field.
Collapse
Affiliation(s)
- Matthew J Sharman
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1322, Launceston, TAS, 7250, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Shanmugam Kirubakaran
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Cristina Parenti
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ahilya Singh
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Georgina Watt
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Tim Karl
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia.,School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,Pharmacology Unit, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
10
|
Oleanolic acid protects against cognitive decline and neuroinflammation-mediated neurotoxicity by blocking secretory phospholipase A2 IIA-activated calcium signals. Mol Immunol 2018; 99:95-103. [DOI: 10.1016/j.molimm.2018.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023]
|
11
|
Sharma R, Sharma A, Kambhampati SP, Reddy RR, Zhang Z, Cleland JL, Kannan S, Kannan RM. Scalable synthesis and validation of PAMAM dendrimer- N-acetyl cysteine conjugate for potential translation. Bioeng Transl Med 2018; 3:87-101. [PMID: 30065965 PMCID: PMC6063872 DOI: 10.1002/btm2.10094] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/13/2023] Open
Abstract
Dendrimer-N-acetyl cysteine (D-NAC) conjugate has shown significant promise in multiple preclinical models of brain injury and is undergoing clinical translation. D-NAC is a generation-4 hydroxyl-polyamidoamine dendrimer conjugate where N-acetyl cysteine (NAC) is covalently bound through disulfide linkages on the surface of the dendrimer. It has shown remarkable potential to selectively target and deliver NAC to activated microglia and astrocytes at the site of brain injury in several animal models, producing remarkable improvements in neurological outcomes at a fraction of the free drug dose. Here we present a highly efficient, scalable, greener, well-defined route to the synthesis of D-NAC, and validate the structure, stability and activity to define the benchmarks for this compound. This newly developed synthetic route has significantly reduced the synthesis time from three weeks to one week, uses industry-friendly solvents/reagents, and involves simple purification procedures, potentially enabling efficient scale up.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMD21287
| | - Anjali Sharma
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMD21287
| | - Siva P. Kambhampati
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMD21287
| | - Rajsekar Rami Reddy
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMD21287
| | - Zhi Zhang
- Dept. of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD21287
| | | | - Sujatha Kannan
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMD21287
- Dept. of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD21287
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc.BaltimoreMD21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research ExcellenceBaltimoreMD21287
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMD21287
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc.BaltimoreMD21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research ExcellenceBaltimoreMD21287
- Dept.of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218
| |
Collapse
|
12
|
Garaschuk O, Semchyshyn HM, Lushchak VI. Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Res Rev 2018; 43:26-45. [PMID: 29452266 DOI: 10.1016/j.arr.2018.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Brains' high energy expenditure with preferable utilization of glucose and ketone bodies, defines the specific features of its energy homeostasis. The extensive oxidative metabolism is accompanied by a concomitant generation of high amounts of reactive oxygen, nitrogen, and carbonyl species, which will be here collectively referred to as RONCS. Such metabolism in combination with high content of polyunsaturated fatty acids creates specific problems in maintaining brains' redox homeostasis. While the levels of products of interaction between RONCS and cellular components increase slowly during the first two trimesters of individuals' life, their increase is substantially accelerated towards the end of life. Here we review the main mechanisms controlling the redox homeostasis of the mammalian brain, their age-dependencies as well as their adaptive potential, which might turn out to be much higher than initially assumed. According to recent data, the organism seems to respond to the enhancement of aging-related toxicity by forming a new homeostatic set point. Therefore, further research will focus on understanding the properties of the new set point(s), the general nature of this phenomenon and will explore the limits of brains' adaptivity.
Collapse
Affiliation(s)
- O Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany.
| | - H M Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| | - V I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
13
|
Investigation Into the Effects of Tenilsetam on Markers of Neuroinflammation in GFAP-IL6 Mice. Pharm Res 2018; 35:22. [DOI: 10.1007/s11095-017-2326-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
14
|
Neuroprotective Effects and Mechanism of β-Asarone against A β1-42-Induced Injury in Astrocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8516518. [PMID: 29599803 PMCID: PMC5828282 DOI: 10.1155/2017/8516518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Emerging evidence suggests that activated astrocytes play important roles in AD, and β-asarone, a major component of Acorus tatarinowii Schott, was shown to be a potential therapeutic candidate for AD. While our previous study found that β-asarone could improve the cognitive function of rats hippocampally injected with Aβ, the effects of β-asarone on astrocytes remain unclear, and this study aimed to investigate these effects. A rat model of Aβ1-42 (10 μg) was established, and the rats were intragastrically treated with β-asarone at doses of 10, 20, and 30 mg/kg or donepezil at a dose of 0.75 mg/kg. The sham and model groups were intragastrically injected with an equal volume of saline. Animals were sacrificed on the 28th day after administration of the drugs. In addition, a cellular model of Aβ1-42 (1.1 μM, 6 h) was established, and cells were treated with β-asarone at doses of 0, 2.06, 6.17, 18.5, 55.6, and 166.7 μg/mL. β-Asarone improved cognitive impairment, alleviated Aβ deposition and hippocampal damage, and inhibited GFAP, AQP4, IL-1β, and TNF-α expression. These results suggested that β-asarone could alleviate the symptoms of AD by protecting astrocytes, possibly by inhibiting TNF-α and IL-1β secretion and then downregulating AQP4 expression.
Collapse
|
15
|
Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K, Kovatsi E, Pleschka C, Garcia-Esparcia P, Schmitz M, Ozbay D, Correia S, Correia Â, Milosevic I, Andréoletti O, Fernández-Borges N, Vorberg IM, Glatzel M, Sklaviadis T, Torres JM, Krasemann S, Sánchez-Valle R, Ferrer I, Zerr I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12:83. [PMID: 29126445 PMCID: PMC5681777 DOI: 10.1186/s13024-017-0226-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. METHODS In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. RESULTS YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. CONCLUSIONS Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.
Collapse
Affiliation(s)
- Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Katrin Thüne
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniela Diaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Present address: Unit of Lymphoid Malignancies, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Eleni Kovatsi
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Paula Garcia-Esparcia
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Duru Ozbay
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Ângela Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | | | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | | | - Ina M. Vorberg
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
16
|
Wang N, Yao F, Li K, Zhang L, Yin G, Du M, Wu B. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med 2017; 39:783-790. [PMID: 28204814 PMCID: PMC5360439 DOI: 10.3892/ijmm.2017.2890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/12/2017] [Indexed: 11/20/2022] Open
Abstract
Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a plant flavonol found in fruits and vegetables that has been reported to inhibit migration and proliferation in several types of cancer. Reactive astrogliosis involves astrocyte migration and proliferation, and contributes to the formation of glial scars in central nervous system (CNS) disorders. However, the effect of fisetin on the migration and proliferation of astrocytes remains unclear. In this study, we found that fisetin inhibited astrocyte migration in a scratch-wound assay and diminished the phosphorylation of focal adhesion kinase (FAK; Tyr576/577 and paxillin (Tyr118). It also suppressed cell proliferation, as indicated by the decreased number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells, induced cell cycle arrest in the G1 phase, reduced the percentage of cells in the G2 and S phase (as measured by flow cytometry), and decreased cyclin D1 expression, but had no effect on apoptosis. Fisetin also decreased the phosphorylation levels of Akt and extracellular signal-regulated kinase (Erk)1/2, but had no effect on the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results indicate that fisetin inhibits aggressive cell phenotypes by suppressing cell migration and proliferation via the Akt/Erk signaling pathway. Fisetin may thus have potential for use as a therapeutic strategy targeting reactive astrocytes, which may lead to the inhibition of glial scar formation in vitro.
Collapse
Affiliation(s)
- Nan Wang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fang Yao
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ke Li
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lanlan Zhang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guo Yin
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mingjun Du
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bingyi Wu
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
17
|
Michels M, Sonai B, Dal-Pizzol F. Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 2017; 303:90-98. [PMID: 28087076 DOI: 10.1016/j.jneuroim.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Beatriz Sonai
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
19
|
Astrocytic transporters in Alzheimer's disease. Biochem J 2017; 474:333-355. [DOI: 10.1042/bcj20160505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.
Collapse
|
20
|
Medicinal Plants of the Australian Aboriginal Dharawal People Exhibiting Anti-Inflammatory Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2935403. [PMID: 28115968 PMCID: PMC5223016 DOI: 10.1155/2016/2935403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation contributes to multiple ageing-related musculoskeletal and neurodegenerative diseases, cardiovascular diseases, asthma, rheumatoid arthritis, and inflammatory bowel disease. More recently, chronic neuroinflammation has been attributed to Parkinson's and Alzheimer's disease and autism-spectrum and obsessive-compulsive disorders. To date, pharmacotherapy of inflammatory conditions is based mainly on nonsteroidal anti-inflammatory drugs which in contrast to cytokine-suppressive anti-inflammatory drugs do not influence the production of cytokines such as tumour necrosis factor-α or nitric oxide. However, their prolonged use can cause gastrointestinal toxicity and promote adverse events such as high blood pressure, congestive heart failure, and thrombosis. Hence, there is a critical need to develop novel and safer nonsteroidal anti-inflammatory drugs possessing alternate mechanism of action. In this study, plants used by the Dharawal Aboriginal people in Australia for the treatment of inflammatory conditions, for example, asthma, arthritis, rheumatism, fever, oedema, eye inflammation, and inflammation of bladder and related inflammatory diseases, were evaluated for their anti-inflammatory activity in vitro. Ethanolic extracts from 17 Eucalyptus spp. (Myrtaceae) were assessed for their capacity to inhibit nitric oxide and tumor necrosis factor-α production in RAW 264.7 macrophages. Eucalyptus benthamii showed the most potent nitric oxide inhibitory effect (IC50 5.57 ± 1.4 µg/mL), whilst E. bosistoana, E. botryoides, E. saligna, E. smithii, E. umbra, and E. viminalis exhibited nitric oxide inhibition values between 7.58 and 19.77 µg/mL.
Collapse
|
21
|
Biasibetti R, Almeida Dos Santos JP, Rodrigues L, Wartchow KM, Suardi LZ, Nardin P, Selistre NG, Vázquez D, Gonçalves CA. Hippocampal changes in STZ-model of Alzheimer's disease are dependent on sex. Behav Brain Res 2016; 316:205-214. [PMID: 27585561 DOI: 10.1016/j.bbr.2016.08.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 12/21/2022]
Abstract
The majority of Alzheimer's disease (AD) cases are sporadic and aging is the major risk factor for developing the disease, affecting more women than men. In spite of different gender prevalence, most experimental studies in animal models have been performed in male. This study investigates the streptozotocin (STZ)-induced AD model at three different times (2, 4 and 8 weeks afterwards) and in male and female rats, evaluating cognitive deficit, cholinergic neurotransmission, glucose uptake, glutathione content and specific glial markers (GFAP and S100B protein) in the hippocampus of the rat. Our data reinforce the relevance of alterations in STZ model of dementia, reported in the genesis and/or progression of AD such as cholinergic deficit and glucose uptake decrease. All alterations in these parameters (except GFAP) were dependent on sex. It is unclear, at this moment, which alterations are due to sex steroid modulation. In spite of limitations of this experimental model, these data may contribute to understand AD susceptibility and progression dependent on sex.
Collapse
Affiliation(s)
- Regina Biasibetti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - João Paulo Almeida Dos Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Letícia Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Krista Minéia Wartchow
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Lucas Zingano Suardi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Nicholas Guerini Selistre
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Dandara Vázquez
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Yi M, Yu P, Lu Q, Geller HM, Yu Z, Chen H. KCa3.1 constitutes a pharmacological target for astrogliosis associated with Alzheimer's disease. Mol Cell Neurosci 2016; 76:21-32. [PMID: 27567685 DOI: 10.1016/j.mcn.2016.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/28/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by a progression from decline of episodic memory to a global impairment of cognitive function. Astrogliosis is a hallmark feature of AD, and reactive gliosis has been considered as an important target for intervention in various neurological disorders. We previously found in astrocyte cultures that the expression of the intermediate conductance calcium-activated potassium channel KCa3.1 was increased in reactive astrocytes induced by TGF-β, while pharmacological blockade or genetic deletion of KCa3.1 attenuated astrogliosis. In this study, we sought to suppress reactive gliosis in the context of AD by inhibiting KCa3.1 and evaluate its effects on the cognitive impairment using murine animal models such as the senescence-accelerated mouse prone 8 (SAMP8) model that exhibits some AD-like symptoms. We found KCa3.1 expression was increased in reactive astrocytes as well as neurons in the brains of both SAMP8 mice and Alzheimer's disease patients. Blockade of KCa3.1 with the selective inhibitor TRAM-34 in SAMP8 mice resulted in a decrease in astrogliosis as well as microglia activation, and moreover an attenuation of memory deficits. Using KCa3.1 knockout mice, we further confirmed that deletion of KCa3.1 reduced the activation of astrocytes and microglia, and rescued the memory loss induced by intrahippocampal Aβ1-42 peptide injection. We also found in astrocyte cultures that blockade of KCa3.1 or deletion of KCa3.1 suppressed Aβ oligomer-induced astrogliosis. Our data suggest that KCa3.1 inhibition might represent a promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Mengni Yi
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Qin Lu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Herbert M Geller
- Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhihua Yu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
23
|
Wang L, Du Y, Wang K, Xu G, Luo S, He G. Chronic cerebral hypoperfusion induces memory deficits and facilitates Aβ generation in C57BL/6J mice. Exp Neurol 2016; 283:353-64. [PMID: 27421879 DOI: 10.1016/j.expneurol.2016.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia frequently responsible for cognitive decline in the elderly. The etiology and molecular mechanism of AD pathogenesis remain inconclusive. Aging and vascular factors are important independent causes and contributors to sporadic AD. Clinical imaging studies showed that cerebral blood flow decreases before cognitive impairment in patients with AD. To investigate the effect of chronic cerebral hypoperfusion (CCH) on cognitive impairment and morphological features, we developed a new manner of CCH mouse model by narrowing bilateral common carotid arteries. Mice started to manifest spatial memory deficits 1month after the surgery and exhibited behavioral changes in a time-dependent manner. Mice also presented memory deficits accompanied with morphological changes at the neuronal and synaptic levels. CCH damaged the normal neuronal morphology and significantly reduced the expression level of PSD95. CCH activated astrocytes, increased the co-expression of GFAP and AQP4, and destroyed the blood-brain barrier (BBB). Furthermore, CCH facilitated intracellular and extracellular Aβ deposition by up-regulating γ-secretase and β-secretase levels. Our results showed good reproducibility of post-CCH pathological processes, which are characterized by neuronal apoptosis, axonal abnormalities, glial activation, BBB damage, amyloid deposition, and cognitive dysfunction; these processes may be used to decipher the complex interplay and pathological process between CCH and AD. This study provides laboratory evidence for the prevention and treatment of cognitive malfunction and AD.
Collapse
Affiliation(s)
- Lingxi Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yehong Du
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shifang Luo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Anatomy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
24
|
Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials 2016; 101:96-107. [PMID: 27267631 DOI: 10.1016/j.biomaterials.2016.05.044] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
Abstract
Neuroinflammation, mediated by activated microglia and astrocytes, plays a key role in the pathogenesis of many neurological disorders. Systemically-administered dendrimers target neuroinflammation and deliver drugs with significant efficacy, without the need for ligands. Elucidating the nanoscale aspects of targeting neuroinflammation will enable superior nanodevices for eventual translation. Using a rabbit model of cerebral palsy, we studied the in vivo contributions of dendrimer physicochemical properties and disease pathophysiology on dendrimer brain uptake, diffusion, and cell specific localization. Neutral dendrimers move efficiently within the brain parenchyma and rapidly localize in glial cells in regions of injury. Dendrimer uptake is also dependent on the extent of blood-brain-barrier breakdown, glial activation, and disease severity (mild, moderate, or severe), which can lend the dendrimer to be used as an imaging biomarker for disease phenotype. This new understanding of the in vivo mechanism of dendrimer-mediated delivery in a clinically-relevant rabbit model provides greater opportunity for clinical translation of targeted brain injury therapies.
Collapse
|
25
|
Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323:170-82. [DOI: 10.1016/j.neuroscience.2015.01.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
|
26
|
Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M, Chiotis K, Thordardottir S, Graff C, Wall A, Långström B, Nordberg A. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease. Brain 2016; 139:922-36. [PMID: 26813969 PMCID: PMC4766380 DOI: 10.1093/brain/awv404] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/20/2015] [Indexed: 11/14/2022] Open
Abstract
See Schott and Fox (doi:
10.1093/brain/awv405
) for a scientific commentary on this article.
Alzheimer’s disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer’s disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer
11
C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition (
11
C-Pittsburgh compound B), and glucose metabolism (
18
F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer’s disease mutation carriers (
n =
11; 49.6 ± 10.3 years old) and non-carriers (
n =
16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (
n =
17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer’s disease (
n =
8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer’s disease participants belonged to families with known mutations in either presenilin 1 (
PSEN1
) or amyloid precursor protein (
APPswe
or
APParc
) genes. Sporadic mild cognitive impairment patients were further divided into
11
C-Pittsburgh compound B-positive (
n =
13; 62.0 ± 6.4; seven male) and
11
C-Pittsburgh compound B-negative (
n =
4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear mixed-effects models, fibrillar amyloid-β plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer’s disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-β plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-β plaque deposition. Patients with sporadic mild cognitive impairment who were
11
C-Pittsburgh compound B-positive at baseline showed increasing amyloid-β plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer’s disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer’s disease carriers, contrasting with the increasing amyloid-β plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Laure Saint-Aubert
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Stephen F Carter
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Ove Almkvist
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden 2 Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Karim Farid
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Michael Schöll
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Konstantinos Chiotis
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Steinunn Thordardottir
- 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden 4 Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Caroline Graff
- 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden 4 Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden
| | - Anders Wall
- 5 Department of Surgical Sciences, Section of Nuclear Medicine & PET, Uppsala University, 751 85 Uppsala, Sweden
| | - Bengt Långström
- 6 Department of Chemistry, Uppsala University, 701 05 Uppsala, Sweden
| | - Agneta Nordberg
- 1 Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, 141 57 Huddinge, Stockholm, Sweden 3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| |
Collapse
|
27
|
Verkhratsky A, Parpura V. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis 2016; 85:254-261. [PMID: 25843667 PMCID: PMC4592688 DOI: 10.1016/j.nbd.2015.03.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
Astroglial cells represent a main element in the maintenance of homeostasis and providing defense to the brain. Consequently, their dysfunction underlies many, if not all, neurological, neurodevelopmental and neuropsychiatric disorders. General astrogliopathy is evident in diametrically opposing morpho-functional changes in astrocytes, i.e. their hypertrophy along with reactivity or atrophy with asthenia. Neurological disorders with astroglial participation can be genetic, of which Alexander disease is a primary sporadic astrogliopathy, environmentally caused, such as heavy metal encephalopathies, or neurodevelopmental in origin. Astroglia contribute to neurodegenerative processes seen in amyotrophic lateral sclerosis, Alzheimer's and Huntington's diseases. Furthermore, astroglia also play a role in major neuropsychiatric disorders, ranging from schizophrenia to depression, as well as in addictive disorders.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL 35294-0021, USA; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
28
|
Lee C, Low CYB, Francis PT, Attems J, Wong PTH, Lai MK, Tan MG. An isoform-specific role of FynT tyrosine kinase in Alzheimer's disease. J Neurochem 2015; 136:637-50. [DOI: 10.1111/jnc.13429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Chingli Lee
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Clara Y. B. Low
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Paul T. Francis
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Johannes Attems
- Institute of Neuroscience; Newcastle University; Campus for Aging and Vitality; Newcastle upon Tyne UK
| | - Peter T.-H. Wong
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
| | - Mitchell K.P. Lai
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Michelle G.K. Tan
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| |
Collapse
|
29
|
Michels M, Steckert AV, Quevedo J, Barichello T, Dal-Pizzol F. Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive Care Med Exp 2015; 3:30. [PMID: 26515197 PMCID: PMC4626467 DOI: 10.1186/s40635-015-0066-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
Several mechanisms are associated with brain dysfunction during sepsis; one of the most important are activation of microglia and astrocytes. Activation of glial cells induces changes in permeability of the blood-brain barrier, secretion of inflammatory cytokines, and these alterations could induce neuronal dysfunction. Furthermore, blood-borne leukocytes can also reach the brain and participate in inflammatory response. Mechanisms involved in sepsis-associated brain dysfunction were revised here, focusing in neuroinflammation and involvement of blood-borne leukocytes and glial cells in this process.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil.
| | - Amanda V Steckert
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas at Houston, Houston, TX, USA.
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas at Houston, Houston, TX, USA.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
30
|
Bonnet AE, Marchalant Y. Potential Therapeutical Contributions of the Endocannabinoid System towards Aging and Alzheimer's Disease. Aging Dis 2015; 6:400-5. [PMID: 26425394 DOI: 10.14336/ad.2015.0617] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023] Open
Abstract
Aging can lead to decline in cognition, notably due to neurodegenerative processes overwhelming the brain over time. As people live longer, numerous concerns are rightfully raised toward long-term slowly incapacitating diseases with no cure, such as Alzheimer's disease. Since the early 2000's, the role of neuroinflammation has been scrutinized for its potential role in the development of diverse neurodegenerative diseases notably because of its slow onset and chronic nature in aging. Despite the lack of success yet, treatment of chronic neuroinflammation could help alleviate process implicated in neurodegenerative disease. A growing number of studies including our own have aimed at the endocannabinoid system and unfolded unique effects of this system on neuroinflammation, neurogenesis and hallmarks of Alzheimer's disease and made it a reasonable target in the context of normal and pathological brain aging.
Collapse
Affiliation(s)
- Amandine E Bonnet
- 1 CNRS, NICN UMR 7259 Aix-Marseille University, 13344 Marseille, France
| | - Yannick Marchalant
- 2 Department of Psychology/Neuroscience program, Central Michigan University, MI 48859, USA
| |
Collapse
|
31
|
Boison D, Aronica E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology 2015; 97:18-34. [PMID: 25979489 PMCID: PMC4537378 DOI: 10.1016/j.neuropharm.2015.04.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; Stichting Epilepsie Instellingen (SEIN) Nederland, Heemstede, The Netherlands
| |
Collapse
|
32
|
Förster D, Reiser G. Supportive or detrimental roles of P2Y receptors in brain pathology?--The two faces of P2Y receptors in stroke and neurodegeneration detected in neural cell and in animal model studies. Purinergic Signal 2015; 11:441-54. [PMID: 26407872 DOI: 10.1007/s11302-015-9471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022] Open
Abstract
This review describing the role of P2Y receptors in neuropathological conditions focuses on obvious differences between results demonstrating either a role in neuroprotection or in neurodegeneration, depending on in vitro and in vivo models. Such critical juxtaposition puts special emphasis on discussions of beneficial and detrimental effects of P2Y receptor agonists and antagonists in these models. The mechanisms reported to underlie the protection in vitro include increased expression of oxidoreductase genes, like carbonyl reductase and thioredoxin reductase; increased expression of inhibitor of apoptosis protein-2; extracellular signal-regulated kinase- and Akt-mediated antiapoptotic signaling; increased expression of Bcl-2 proteins, neurotrophins, neuropeptides, and growth factors; decreased Bax expression; non-amyloidogenic APP shedding; and increased neurite outgrowth in neuronal cells. Animal studies investigating the influence of P2Y receptors in middle cerebral artery occlusion (MCAO) models for stroke prove beneficial effects of P2Y receptor antagonists. In MCAO mice and rats, the application of broad-range P2 receptor antagonists decreased the infarct volume and improved neurological outcome. Moreover, antagonists of the P2Y1 receptor, one of the most abundant P2Y receptor subtypes in brain tissue, decreased neuronal loss and improved spatial memory in rats after traumatic brain injury (TBI). Currently available data show a discrepancy between in vitro and in vivo models concerning the benefits of P2Y receptor activation in pathological conditions. In vitro models demonstrate protection by P2Y receptor agonists, but in vivo P2Y receptor activation deteriorates the outcome after MCAO and controlled cortical impact brain injury, a TBI model. To broaden the scope of the review, we additionally discuss publications that demonstrate detrimental effects of P2Y receptor agonists in vitro and publications showing protective effects of agonists in vivo. All these studies help to better understand the significant role of P2Y receptors especially in stroke models and to develop pharmacological strategies for the treatment of stroke.
Collapse
Affiliation(s)
- Daniel Förster
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Georg Reiser
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
33
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
34
|
Demetrius LA, Driver JA. Preventing Alzheimer's disease by means of natural selection. J R Soc Interface 2015; 12:20140919. [PMID: 25551134 DOI: 10.1098/rsif.2014.0919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The amyloid cascade model for the origin of sporadic forms of Alzheimer's disease (AD) posits that the imbalance in the production and clearance of beta-amyloid is a necessary condition for the disease. A competing theory called the entropic selection hypothesis asserts that the primary cause of sporadic AD is age-induced mitochondrial dysregulation and the following cascade of events: (i) metabolic reprogramming—the upregulation of oxidative phosphorylation in compensation for insufficient energy production in neurons, (ii) natural selection—competition between intact and reprogrammed neurons for energy substrates and (iii) propagation—the spread of the disease due to the selective advantage of neurons with upregulated metabolism. Experimental studies to evaluate the predictions of the amyloid cascade model are being continually retuned to accommodate conflicts of the predictions with empirical data. Clinical trials of treatments for AD based on anti-amyloid therapy have been unsuccessful. We contend that these anomalies and failures stem from a fundamental deficit of the amyloid hypothesis: the model derives from a nuclear-genomic perspective of sporadic AD and discounts the bioenergetic processes that characterize the progression of most age-related disorders. In this article, we review the anomalies of the amyloid model and the theoretical and empirical support for the entropic selection theory. We also discuss the new therapeutic strategies based on natural selection which the model proposes.
Collapse
|
35
|
Ichikawa T, Nakahata S, Tamura T, Manachai N, Morishita K. The loss of NDRG2 expression improves depressive behavior through increased phosphorylation of GSK3β. Cell Signal 2015. [PMID: 26208882 DOI: 10.1016/j.cellsig.2015.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is one of the important stress-inducible genes and plays a critical role in negatively regulating PI3K/AKT signaling during hypoxia and inflammation. Through recruitment of PP2A phosphatase, NDRG2 maintains the dephosphorylated status of PTEN to suppress excessive PI3K/AKT signaling, and loss of NDRG2 expression is frequently seen in various types of cancer with enhanced activation of PI3K/AKT signaling. Because NDRG2 is highly expressed in the nervous system, we investigated whether NDRG2 plays a functional role in the nervous system using Ndrg2-deficient mice. Ndrg2-deficient mice do not display any gross abnormalities in the nervous system, but they have a diminished behavioral response associated with anxiety. Ndrg2-deficient mice exhibited decreased immobility and increased head-dipping and rearing behavior in two behavioral models, indicating an improvement of emotional anxiety-like behavior. Moreover, treatment of wild-type mice with the antidepressant drug imipramine reduced the expression of Ndrg2 in the frontal cortex, which was due to the degradation of HIF-1α through reduced expression of HSP90 protein. Furthermore, we found that the down-regulation of Ndrg2 in Ndrg2-deficient mice and imipramine treatment improved mood behavior with enhanced phosphorylation of GSK3β through activation of PI3K/AKT signaling, suggesting that the expression level of NDRG2 has a causal influence on mood-related phenotypes. Collectively, these results suggest that NDRG2 may be a potential target for mood disorders such as depression and anxiety.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tomohiro Tamura
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Nawin Manachai
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
36
|
Ojo JO, Rezaie P, Gabbott PL, Stewart MG. Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 2015; 7:57. [PMID: 25972808 PMCID: PMC4413780 DOI: 10.3389/fnagi.2015.00057] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022] Open
Abstract
Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS). These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signaling. These changes may occur without any overt concurrent pathology, however, they typically correlate with deteriorations in hippocamapal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function) and underlying neuroglial response(s), and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Department of Life Sciences, The Open UniversityWalton Hall, UK
- Department of Neuropathology, Roskamp InstituteSarasota, FL, USA
| | - Payam Rezaie
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | - Paul L. Gabbott
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | | |
Collapse
|
37
|
Li CY, Li X, Liu SF, Qu WS, Wang W, Tian DS. Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen–glucose deprivation and reoxygenation. Neurochem Int 2015; 83-84:9-18. [DOI: 10.1016/j.neuint.2015.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 12/01/2022]
|
38
|
Pathological potential of astroglial purinergic receptors. ADVANCES IN NEUROBIOLOGY 2014; 11:213-56. [PMID: 25236731 DOI: 10.1007/978-3-319-08894-5_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute brain injury and neurodegenerative disorders may result in astroglial activation. Astrocytes are able to determine the progression and outcome of these neuropathologies in a beneficial or detrimental way. Nucleotides, e.g. adenosine 5'-triphosphate (ATP), released after acute or chronic neuronal injury, are important mediators of glial activation and astrogliosis.Acute injury may cause significant changes in ATP balance, resulting in (1) a decline of intracellular ATP levels and (2) an increase in extracellular ATP concentrations via efflux from the intracellular space. The released ATP may have trophic effects, but can also act as a proinflammatory mediator or cytotoxic factor, inducing necrosis/apoptosis as a universal "danger" signal. Furthermore, ATP, primarily released from astrocytes, is a means of communication between neurons, glial cells, and intracerebral blood vessels.Astrocytes express a heterogeneous battery of purinergic ionotropic and metabotropic receptors (P2XRs and P2YRs, respectively) to respond to extracellular nucleotides.In this chapter, we summarize the contemporary knowledge on the pathological potential of P2Rs in relation to changes of astrocytic functions, determined by distinct molecular signaling cascades, in a variety of diseases. We discuss specific aspects of reactive astrogliosis, with respect to the involvement of prominent receptor subtypes, such as the P2X7 and P2Y1/2Rs. Examples of purinergic signaling of microglia, oligodendrocytes, and blood vessels under pathophysiological conditions will also be presented.The understanding of the pathological potential of purinergic signaling in "controlling and fine-tuning" of astrocytic responses is important for identifying possible therapeutic principles to treat acute and chronic central nervous system diseases.
Collapse
|
39
|
Angiotensin-(1-7) improves cognitive function in rats with chronic cerebral hypoperfusion. Brain Res 2014; 1573:44-53. [DOI: 10.1016/j.brainres.2014.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/26/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
|
40
|
Wainaina MN, Chen Z, Zhong C. Environmental factors in the development and progression of late-onset Alzheimer's disease. Neurosci Bull 2014; 30:253-70. [PMID: 24664867 PMCID: PMC5562669 DOI: 10.1007/s12264-013-1425-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 01/08/2023] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is an age-related neurodegenerative disorder characterized by gradual loss of synapses and neurons, but its pathogenesis remains to be clarified. Neurons live in an environment constituted by neurons themselves and glial cells. In this review, we propose that the neuronal degeneration in the AD brain is partially caused by diverse environmental factors. We first discuss various environmental stresses and the corresponding responses at different levels. Then we propose some mechanisms underlying the specific pathological changes, in particular, hypothalamic-pituitary adrenal axis dysfunction at the systemic level; cerebrovascular dysfunction, metal toxicity, glial activation, and Aβ toxicity at the intercellular level; and kinase-phosphatase imbalance and epigenetic modification at the intracellular level. Finally, we discuss the possibility of developing new strategies for the prevention and treatment of LOAD from the perspective of environmental stress. We conclude that environmental factors play a significant role in the development of LOAD through multiple pathological mechanisms.
Collapse
Affiliation(s)
- Moses N. Wainaina
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
- Pwani University, Kilifi, Kenya
| | - Zhichun Chen
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
- Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
41
|
Yun HM, Kim HS, Park KR, Shin JM, Kang AR, il Lee K, Song S, Kim YB, Han SB, Chung HM, Hong JT. Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1-42-infused mouse model of Alzheimer's disease. Cell Death Dis 2013; 4:e958. [PMID: 24336078 PMCID: PMC3877561 DOI: 10.1038/cddis.2013.490] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/27/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of central nervous system (CNS) and are currently being tested in clinical trials for neurological disorders, but preventive mechanisms of placenta-derived MSCs (PD-MSCs) for Alzheimer's disease are poorly understood. Herein, we investigated the inhibitory effect of PD-MSCs on neuronal cell death and memory impairment in Aβ1-42-infused mice. After intracerebroventrical (ICV) infusion of Aβ1-42 for 14 days, the cognitive function was assessed by the Morris water maze test and passive avoidance test. Our results showed that the transplantation of PD-MSCs into Aβ1-42-infused mice significantly improved cognitive impairment, and behavioral changes attenuated the expression of APP, BACE1, and Aβ, as well as the activity of β-secretase and γ-secretase. In addition, the activation of glia cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited by the transplantation of PD-MSCs. Furthermore, we also found that PD-MSCs downregulated the release of inflammatory cytokines as well as prevented neuronal cell death and promoted neuronal cell differentiation from neuronal progenitor cells in Aβ1-42-infused mice. These data indicate that PD-MSC mediates neuroprotection by regulating neuronal death, neurogenesis, glia cell activation in hippocampus, and altering cytokine expression, suggesting a close link between the therapeutic effects of MSCs and the damaged CNS in Alzheimer's disease.
Collapse
Affiliation(s)
- H-M Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - H S Kim
- CHA Bio & Diostech Co., Ltd, 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-970, Republic of Korea
- Department of Applied Bioscience, CHA University, Gyeonggi-do 463-836, Republic of Korea
| | - K-R Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - J M Shin
- CHA Bio & Diostech Co., Ltd, 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-970, Republic of Korea
- Department of Applied Bioscience, CHA University, Gyeonggi-do 463-836, Republic of Korea
| | - A R Kang
- CHA Bio & Diostech Co., Ltd, 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-970, Republic of Korea
- Department of Applied Bioscience, CHA University, Gyeonggi-do 463-836, Republic of Korea
| | - K il Lee
- CHA Bio & Diostech Co., Ltd, 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-970, Republic of Korea
- Department of Applied Bioscience, CHA University, Gyeonggi-do 463-836, Republic of Korea
| | - S Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Y-B Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - S B Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - H-M Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - J T Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
42
|
Yun HM, Jin P, Han JY, Lee MS, Han SB, Oh KW, Hong SH, Jung EY, Hong JT. Acceleration of the development of Alzheimer's disease in amyloid beta-infused peroxiredoxin 6 overexpression transgenic mice. Mol Neurobiol 2013; 48:941-51. [PMID: 23771816 DOI: 10.1007/s12035-013-8479-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
The amyloid beta (Aβ) peptide in the brains of patients with Alzheimer's disease (AD) is cytotoxic to neurons and has a central role in the pathogenesis of the disease. Peroxiredoxin 6 (Prdx6) is an antioxidant protein and could act as a cytoprotective protein. However, the role of Prdx6 in neurodegenerative disease has not been studied. Thus, the roles and action mechanisms in the development of AD were examined. Aβ1-42-induced memory impairment in Prdx6 transgenic mice was worse than C57BL/6 mice, and the expression of amyloid precursor protein cleavage, C99, β-site APP-cleaving enzyme 1, inducible nitric oxide synthase, and cyclooxygenase-2 was greatly increased. In addition, the astrocytes and microglia cells of Aβ-infused Prdx6 transgenic mice were more activated, and Aβ also significantly increased lipid peroxidation and protein carbonyl levels, but decreased glutathione levels. Furthermore, we found that translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus was increased in Aβ-infused Prdx6 transgenic mice. These results suggest that the overexpression of Prdx6 could accelerate the development of AD through increased amyloidogenesis through independent PLA2 activation and Nrf2 transcription.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 2013; 7:38. [PMID: 23596393 PMCID: PMC3622037 DOI: 10.3389/fncel.2013.00038] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular dysfunction.
Collapse
Affiliation(s)
- Jillian L Stobart
- Division of Neurodegenerative Disorders, Department of Pharmacology and Therapeutics, St. Boniface Hospital Research, University of Manitoba Winnipeg, MB, Canada ; Department of Nuclear Medicine, Institute of Pharmacology and Toxicology, University of Zürich Zürich, Switzerland
| | | |
Collapse
|
44
|
Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease. J Neurosci 2013; 32:16129-40. [PMID: 23152597 DOI: 10.1523/jneurosci.2323-12.2012] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer's disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically "activated" phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific Gfa2 promoter to target hippocampal astrocytes in APP/PS1 mice. AAV-Gfa2 vectors drove the expression of VIVIT, a peptide that interferes with the immune/inflammatory calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway, shown by our laboratory and others to orchestrate biochemical cascades leading to astrocyte activation. After several months of treatment with Gfa2-VIVIT, APP/PS1 mice exhibited improved cognitive and synaptic function, reduced glial activation, and lower amyloid levels. The results confirm a deleterious role for activated astrocytes in AD and lay the groundwork for exploration of other novel astrocyte-based therapies.
Collapse
|
45
|
Steele ML, Truong J, Govindaraghavan S, Ooi L, Sucher NJ, Münch G. Cytoprotective properties of traditional Chinese medicinal herbal extracts in hydrogen peroxide challenged human U373 astroglia cells. Neurochem Int 2012; 62:522-9. [PMID: 22982670 DOI: 10.1016/j.neuint.2012.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/17/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Age is the leading risk factor for many of the most prevalent and devastating diseases including neurodegenerative diseases. A number of herbal medicines have been used for centuries to ameliorate the deleterious effects of ageing-related diseases and increase longevity. Oxidative stress is believed to play a role in normal ageing as well as in neurodegenerative processes. Since many of the constituents of herbal extracts are known antioxidants, it is believed that restoring oxidative balance may be one of the underlying mechanisms by which medicinal herbs can protect against ageing and cognitive decline. Based on the premise that astrocytes are key modulators in the progression of oxidative stress associated neurodegenerative diseases, 13 herbal extracts purported to possess anti-ageing properties were tested for their ability to protect U373 human astrocytes from hydrogen peroxide induced cell death. To determine the contribution of antioxidant activity to the cytoprotective ability of extracts, total phenol content and radical scavenging capacities of extracts were examined. Polygonum multiflorum, amongst others, was identified as possessing potent antioxidant and cytoprotective properties. Not surprisingly, total phenol content of extracts was strongly correlated with antioxidant capacity. Interestingly, when total phenol content and radical scavenging capacities of extracts were compared to the cytoprotective properties of extracts, only moderately strong correlations were observed. This finding suggests the involvement of multiple protective mechanisms in the beneficial effects of these medicinal herbs.
Collapse
Affiliation(s)
- Megan L Steele
- Dept. of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Kamphuis W, Mamber C, Moeton M, Kooijman L, Sluijs JA, Jansen AHP, Verveer M, de Groot LR, Smith VD, Rangarajan S, Rodríguez JJ, Orre M, Hol EM. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 2012. [PMID: 22912745 DOI: 10.1371/journal.pone.0042823]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is the main astrocytic intermediate filament (IF). GFAP splice isoforms show differential expression patterns in the human brain. GFAPδ is preferentially expressed by neurogenic astrocytes in the subventricular zone (SVZ), whereas GFAP(+1) is found in a subset of astrocytes throughout the brain. In addition, the expression of these isoforms in human brain material of epilepsy, Alzheimer and glioma patients has been reported. Here, for the first time, we present a comprehensive study of GFAP isoform expression in both wild-type and Alzheimer Disease (AD) mouse models. In cortex, cerebellum, and striatum of wild-type mice, transcripts for Gfap-α, Gfap-β, Gfap-γ, Gfap-δ, Gfap-κ, and a newly identified isoform Gfap-ζ, were detected. Their relative expression levels were similar in all regions studied. GFAPα showed a widespread expression whilst GFAPδ distribution was prominent in the SVZ, rostral migratory stream (RMS), neurogenic astrocytes of the subgranular zone (SGZ), and subpial astrocytes. In contrast to the human SVZ, we could not establish an unambiguous GFAPδ localization in proliferating cells of the mouse SVZ. In APPswePS1dE9 and 3xTgAD mice, plaque-associated reactive astrocytes had increased transcript levels of all detectable GFAP isoforms and low levels of a new GFAP isoform, Gfap-ΔEx7. Reactive astrocytes in AD mice showed enhanced GFAPα and GFAPδ immunolabeling, less frequently increased vimentin and nestin, but no GFAPκ or GFAP(+1) staining. In conclusion, GFAPδ protein is present in SVZ, RMS, and neurogenic astrocytes of the SGZ, but also outside neurogenic niches. Furthermore, differential GFAP isoform expression is not linked with aging or reactive gliosis. This evidence points to the conclusion that differential regulation of GFAP isoforms is not involved in the reorganization of the IF network in reactive gliosis or in neurogenesis in the mouse brain.
Collapse
Affiliation(s)
- Willem Kamphuis
- Netherlands Institute for Neuroscience - an Institute of the Royal Netherlands Academy of Arts and Sciences, Department of Astrocyte Biology & Neurodegeneration, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kamphuis W, Mamber C, Moeton M, Kooijman L, Sluijs JA, Jansen AHP, Verveer M, de Groot LR, Smith VD, Rangarajan S, Rodríguez JJ, Orre M, Hol EM. GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 2012; 7:e42823. [PMID: 22912745 PMCID: PMC3418292 DOI: 10.1371/journal.pone.0042823] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is the main astrocytic intermediate filament (IF). GFAP splice isoforms show differential expression patterns in the human brain. GFAPδ is preferentially expressed by neurogenic astrocytes in the subventricular zone (SVZ), whereas GFAP(+1) is found in a subset of astrocytes throughout the brain. In addition, the expression of these isoforms in human brain material of epilepsy, Alzheimer and glioma patients has been reported. Here, for the first time, we present a comprehensive study of GFAP isoform expression in both wild-type and Alzheimer Disease (AD) mouse models. In cortex, cerebellum, and striatum of wild-type mice, transcripts for Gfap-α, Gfap-β, Gfap-γ, Gfap-δ, Gfap-κ, and a newly identified isoform Gfap-ζ, were detected. Their relative expression levels were similar in all regions studied. GFAPα showed a widespread expression whilst GFAPδ distribution was prominent in the SVZ, rostral migratory stream (RMS), neurogenic astrocytes of the subgranular zone (SGZ), and subpial astrocytes. In contrast to the human SVZ, we could not establish an unambiguous GFAPδ localization in proliferating cells of the mouse SVZ. In APPswePS1dE9 and 3xTgAD mice, plaque-associated reactive astrocytes had increased transcript levels of all detectable GFAP isoforms and low levels of a new GFAP isoform, Gfap-ΔEx7. Reactive astrocytes in AD mice showed enhanced GFAPα and GFAPδ immunolabeling, less frequently increased vimentin and nestin, but no GFAPκ or GFAP(+1) staining. In conclusion, GFAPδ protein is present in SVZ, RMS, and neurogenic astrocytes of the SGZ, but also outside neurogenic niches. Furthermore, differential GFAP isoform expression is not linked with aging or reactive gliosis. This evidence points to the conclusion that differential regulation of GFAP isoforms is not involved in the reorganization of the IF network in reactive gliosis or in neurogenesis in the mouse brain.
Collapse
Affiliation(s)
- Willem Kamphuis
- Netherlands Institute for Neuroscience - an Institute of the Royal Netherlands Academy of Arts and Sciences, Department of Astrocyte Biology & Neurodegeneration, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|
49
|
von Bernhardi R, Eugenín J. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 2012; 16:974-1031. [PMID: 22122400 DOI: 10.1089/ars.2011.4082] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegeneration that appears to result from multiple pathogenic mechanisms (including protein misfolding/aggregation, involved in both amyloid β-dependent senile plaques and tau-dependent neurofibrillary tangles), metabolic and mitochondrial dysfunction, excitoxicity, calcium handling impairment, glial cell dysfunction, neuroinflammation, and oxidative stress. Oxidative stress, which could be secondary to several of the other pathophysiological mechanisms, appears to be a major determinant of the pathogenesis and progression of AD. The identification of oxidized proteins common for mild cognitive impairment and AD suggests that key oxidation pathways are triggered early and are involved in the initial progression of the neurodegenerative process. Abundant data support that oxidative stress, also considered as a main factor for aging, the major risk factor for AD, can be a common key element capable of articulating the divergent nature of the proposed pathogenic factors. Pathogenic mechanisms influence each other at different levels. Evidence suggests that it will be difficult to define a single-target therapy resulting in the arrest of progression or the improvement of AD deterioration. Since oxidative stress is present from early stages of disease, it appears as one of the main targets to be included in a clinical trial. Exploring the articulation of AD pathogenic mechanisms by oxidative stress will provide clues for better understanding the pathogenesis and progression of this dementing disorder and for the development of effective therapies to treat this disease.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
50
|
Aquaporin-4 deficiency exacerbates brain oxidative damage and memory deficits induced by long-term ovarian hormone deprivation and D-galactose injection. Int J Neuropsychopharmacol 2012; 15:55-68. [PMID: 21281561 DOI: 10.1017/s1461145711000022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Astrocyte dysfunction is implicated in pathogenesis of certain neurological disorders including Alzheimer's disease (AD). A growing body of evidence indicates that water channel aquaporin-4 (AQP4) is a potential molecular target for the regulation astrocyte function. Recently, we reported that AQP4 expression was increased in the hippocampus of an AD mouse model established by long-term ovarian hormone deprivation combined with D-galactose (D-gal) exposure. However, pathophysiological roles and mechanisms of AQP4 up-regulation remain unclear. To address this issue, age-matched female wild-type and AQP4 null mice underwent ovariectomy, followed by D-gal administration for 8 wk. AQP4 null mice showed more severe brain oxidative stress, spatial learning and memory deficits, and basal forebrain cholinergic impairment than the wild-type controls. Notably, AQP4 null hippocampus contained more prominent amyloid-β production and loss of synapse-related proteins. These results suggested that ovariectomy and D-gal injection induced oxidative damage results in compensatory increases of AQP4 expression, and deficiency of AQP4 exacerbates brain oxidative stress and memory deficits. Therefore, regulation of astrocyte function by AQP4 may attenuate oxidative damage, offering a promising therapeutic strategy for AD.
Collapse
|