1
|
Choi CH, Lee JW, Bae DS, Kang ES, Cho D, Kim YM, Kim K, Kim JW, Kim HS, Kim YT, Lee JY, Lim MC, Oh T, Song B, Jeon I, Park M, Kim WH, Kang CY, Kim BG. Efficacy and safety of BVAC-C in HPV type 16- or 18-positive cervical carcinoma who failed 1st platinum-based chemotherapy: a phase I/IIa study. Front Immunol 2024; 15:1371353. [PMID: 38605958 PMCID: PMC11007103 DOI: 10.3389/fimmu.2024.1371353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background BVAC-C, a B cell- and monocyte-based immunotherapeutic vaccine transfected with recombinant HPV E6/E7, was well tolerated in HPV-positive recurrent cervical carcinoma patients in a phase I study. This phase IIa study investigates the antitumor activity of BVAC-C in patients with HPV 16- or 18-positive cervical cancer who had experienced recurrence after a platinum-based combination chemotherapy. Patients and methods Patients were allocated to 3 arms; Arm 1, BVAC-C injection at 0, 4, 8 weeks; Arm 2, BVAC-C injection at 0, 4, 8, 12 weeks; Arm 3, BVAC-C injection at 0, 4, 8, 12 weeks with topotecan at 2, 6, 10, 14 weeks. Primary endpoints were safety and objective response rate (ORR) as assessed by an independent radiologist according to Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints included the disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS). Results Of the 30 patients available for analysis, the ORR was 19.2% (Arm 1: 20.0% (3/15), Arm 2: 33.3% (2/6), Arm3: 0%) and the DCR was 53.8% (Arm 1: 57.1%, Arm 2: 28.6%, Arm3: 14.3%). The median DOR was 7.5 months (95% CI 7.1-not reported), the median PFS was 5.8 months (95% CI 4.2-10.3), and the median OS was 17.7 months (95% CI 12.0-not reported). All evaluated patients showed not only inflammatory cytokine responses (IFN-γ or TNF-α) but also potent E6/E7-specific T cell responses upon vaccinations. Immune responses of patients after vaccination were correlated with their clinical responses. Conclusion BVAC-C represents a promising treatment option and a manageable safety profile in the second-line setting for this patient population. Further studies are needed to identify potential biomarkers of response. Clinical trial registration ClinicalTrials.gov, identifier NCT02866006.
Collapse
Affiliation(s)
- Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, Seoul, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Tae Kim
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Yun Lee
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myong Cheol Lim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | | | | | - Insu Jeon
- Cellid. Inc, Seoul, Republic of Korea
| | | | | | | | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Han X, Gao Z, Cheng Y, Wu S, Chen J, Zhang W. A Therapeutic DNA Vaccine Targeting HPV16 E7 in Combination with Anti-PD-1/PD-L1 Enhanced Tumor Regression and Cytotoxic Immune Responses. Int J Mol Sci 2023; 24:15469. [PMID: 37895145 PMCID: PMC10607554 DOI: 10.3390/ijms242015469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Persistent infection of high-risk human papillomavirus (HPV) and the expression of E6 and E7 oncoproteins are the main causes of cervical cancer. Several prophylactic HPV vaccines are used in the clinic, but these vaccines have limited efficacy in patients already infected with HPV. Since HPV E7 is vital for tumor-specific immunity, developing a vaccine against HPV E7 is an attractive strategy for cervical cancer treatment. Here, we constructed an HPV16 E7 mutant that loses the ability to bind pRb while still eliciting a robust immune response. In order to build a therapeutic DNA vaccine, the E7 mutant was packaged in an adenovirus vector (Ad-E7) for efficient expression and enhanced immunogenicity of the vaccine. Our results showed that the Ad-E7 vaccine effectively inhibited tumor growth and increased the proportion of interferon-gamma (IFN-γ)-secreting CD8+ T cells in the spleen, and tumor-infiltrating lymphocytes in a mouse cervical cancer model was achieved by injecting with HPV16-E6/E7-expressing TC-1 cells subcutaneously. Combining the Ad-E7 vaccine with the PD-1/PD-L1 antibody blockade significantly improved the control of TC-1 tumors. Combination therapy elicited stronger cytotoxic T lymphocyte (CTL) responses, and IFN-γ secretion downregulated the proportion of Tregs and MDSCs significantly. The expressions of cancer-promoting factors, such as TNF-α, were also significantly down-regulated in the case of combination therapy. In addition, combination therapy inhibited the number of capillaries in tumor tissues and increased the thickness of the tumor capsule. Thus, Ad-E7 vaccination, in combination with an immune checkpoint blockade, may benefit patients with HPV16-associated cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Weifang Zhang
- Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (X.H.); (Z.G.); (Y.C.); (S.W.); (J.C.)
| |
Collapse
|
3
|
Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:40. [PMID: 36477638 PMCID: PMC9729511 DOI: 10.1186/s43556-022-00098-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most effective medical interventions to combat newly emerging and re-emerging diseases. Prophylactic vaccines against rabies, measles, etc., have excellent effectiveness in preventing viral infection and associated diseases. However, the host immune response is unable to inhibit virus replication or eradicate established diseases in most infected people. Therapeutic vaccines, expressing specific endogenous or exogenous antigens, mainly induce or boost cell-mediated immunity via provoking cytotoxic T cells or elicit humoral immunity via activating B cells to produce specific antibodies. The ultimate aim of a therapeutic vaccine is to reshape the host immunity for eradicating a disease and establishing lasting memory. Therefore, therapeutic vaccines have been developed for the treatment of some infectious diseases and chronic noncommunicable diseases. Various technological strategies have been implemented for the development of therapeutic vaccines, including molecular-based vaccines (peptide/protein, DNA and mRNA vaccines), vector-based vaccines (bacterial vector vaccines, viral vector vaccines and yeast-based vaccines) and cell-based vaccines (dendritic cell vaccines and genetically modified cell vaccines) as well as combinatorial approaches. This review mainly summarizes therapeutic vaccine-induced immunity and describes the development and status of multiple types of therapeutic vaccines against infectious diseases, such as those caused by HPV, HBV, HIV, HCV, and SARS-CoV-2, and chronic noncommunicable diseases, including cancer, hypertension, Alzheimer's disease, amyotrophic lateral sclerosis, diabetes, and dyslipidemia, that have been evaluated in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, Zigong, Sichuan 643000 The People’s Republic of China ,grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Die Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Yuhua Li
- grid.410749.f0000 0004 0577 6238Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Tiantan Xili, Dongcheng District, Beijing, 100050 The People’s Republic of China
| | - Li Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| |
Collapse
|
4
|
Chadha J, Chahoud J, Spiess PE. An update on treatment of penile cancer. Ther Adv Med Oncol 2022; 14:17588359221127254. [PMID: 36172172 PMCID: PMC9511530 DOI: 10.1177/17588359221127254] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Penile cancer is a rare malignancy, particularly in industrialized nations. In the United States, rates are approximately less than 1 per 100,000 men per year with just over 2000 new cases per year. However, there is significantly increased prevalence in developing nations, with limited treatment expertise and reduced access to care, further driving an unmet clinical need. The most noteworthy risk factor for penile cancer is the association with human papillomavirus infection, which may be present in up to 50% of all penile carcinomas. In addition to local primary tumor approaches, multimodality treatment strategies are vital to patients with clinical regional nodal disease, locally advanced disease. Presence and degree of lymph node involvement remains the most important prognostic factor and patients may benefit from multiple treatment strategies. Interim analysis data from the first randomized clinical trial is expected to yield results in mid/late 2024–early 2025. These treatment approaches include neoadjuvant chemotherapy, adjuvant therapy, including chemotherapy and radiation. Systemic therapy for distant recurrent or metastatic disease is primarily a platinum-based chemotherapy, however with poor overall response. As poor outcomes remain high, particularly in indigent populations, there remains an unmet need for these patients, particularly for high level randomized trials and novel therapeutics. In this review, we will highlight treatment updates for penile cancer. In addition to standard of care, we will review novel lines of therapies including immunotherapies and targeted therapies as well as sequencing approaches.
Collapse
Affiliation(s)
- Juskaran Chadha
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Ge Y, Zhang Y, Zhao KN, Zhu H. Emerging Therapeutic Strategies of Different Immunotherapy Approaches Combined with PD-1/PD-L1 Blockade in Cervical Cancer. Drug Des Devel Ther 2022; 16:3055-3070. [PMID: 36110399 PMCID: PMC9470119 DOI: 10.2147/dddt.s374672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yanjun Ge
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuchen Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Kong-Nan Zhao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Haiyan Zhu, Shanghai First Maternity and Infant Hospital, No. 2699 Gaokexi Road, Shanghai, 200092, People’s Republic of China, Tel +86 13758465255, Email
| |
Collapse
|
6
|
|
7
|
Joshi VB, Chadha J, Chahoud J. Penile cancer: Updates in systemic therapy. Asian J Urol 2022; 9:374-388. [DOI: 10.1016/j.ajur.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
|
8
|
Cancer Vaccines: Antigen Selection Strategy. Vaccines (Basel) 2021; 9:vaccines9020085. [PMID: 33503926 PMCID: PMC7911511 DOI: 10.3390/vaccines9020085] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Unlike traditional cancer therapies, cancer vaccines (CVs) harness a high specificity of the host’s immunity to kill tumor cells. CVs can train and bolster the patient’s immune system to recognize and eliminate malignant cells by enhancing immune cells’ identification of antigens expressed on cancer cells. Various features of antigens like immunogenicity and avidity influence the efficacy of CVs. Therefore, the choice and application of antigens play a critical role in establishing and developing CVs. Tumor-associated antigens (TAAs), a group of proteins expressed at elevated levels in tumor cells but lower levels in healthy normal cells, have been well-studied and developed in CVs. However, immunological tolerance, HLA restriction, and adverse events are major obstacles that threaten TAA-based CVs’ efficacy due to the “self-protein” characteristic of TAAs. As “abnormal proteins” that are completely absent from normal cells, tumor-specific antigens (TSAs) can trigger a robust immune response against tumor cells with high specificity and without going through central tolerance, contributing to cancer vaccine development feasibility. In this review, we focus on the unique features of TAAs and TSAs and their application in vaccines, summarizing their performance in preclinical and clinical trials.
Collapse
|
9
|
Han XJ, Ma XL, Yang L, Wei YQ, Peng Y, Wei XW. Progress in Neoantigen Targeted Cancer Immunotherapies. Front Cell Dev Biol 2020; 8:728. [PMID: 32850843 PMCID: PMC7406675 DOI: 10.3389/fcell.2020.00728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023] Open
Abstract
Immunotherapies that harness the immune system to kill cancer cells have showed significant therapeutic efficacy in many human malignancies. A growing number of studies have highlighted the relevance of neoantigens in recognizing cancer cells by intrinsic T cells. Cancer neoantigens are a direct consequence of somatic mutations presenting on the surface of individual cancer cells. Neoantigens are fully cancer-specific and exempt from central tolerance. In addition, neoantigens are important targets for checkpoint blockade therapy. Recently, technological innovations have made neoantigen discovery possible in a variety of malignancies, thus providing an impetus to develop novel immunotherapies that selectively enhance T cell reactivity for the destruction of cancer cells while leaving normal tissues unharmed. In this review, we aim to introduce the methods of the identification of neoantigens, the mutational patterns of human cancers, related clinical trials, neoantigen burden and sensitivity to immune checkpoint blockade. Moreover, we focus on relevant challenges of targeting neoantigens for cancer treatment.
Collapse
|
10
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z, Agi E. Development of multiepitope therapeutic vaccines against the most prevalent high-risk human papillomaviruses. Immunotherapy 2020; 12:459-479. [DOI: 10.2217/imt-2019-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Our goal was the development of DNA- or peptide-based multiepitope vaccines targeting HPV E7, E6 and E5 oncoproteins in tumor mouse model. Materials & methods: After designing the multiepitope E7, E6 and E5 constructs from four types of high risk HPVs (16, 18, 31 & 45) using bioinformatics tools, mice vaccination was performed by different homologous and heterologous modalities in a prophylactic setting. Then, anti-tumor effects of the best prophylactic strategies were studied in a therapeutic setting. Results: In both prophylactic and therapeutic experiments, groups receiving homologous E7+E6+E5 polypeptide, and heterologous E7+E6+E5 DNA prime/polypeptide boost were successful in complete rejection of tumors. Conclusion: The designed multiepitope constructs can be considered as promising candidates to develop effective therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
11
|
Wang R, Pan W, Jin L, Huang W, Li Y, Wu D, Gao C, Ma D, Liao S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett 2020; 471:88-102. [DOI: 10.1016/j.canlet.2019.11.039] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/20/2022]
|
12
|
Choi CH, Choi HJ, Lee JW, Kang ES, Cho D, Park BK, Kim YM, Kim DY, Seo H, Park M, Kim W, Choi KY, Oh T, Kang CY, Kim BG. Phase I Study of a B Cell-Based and Monocyte-Based Immunotherapeutic Vaccine, BVAC-C in Human Papillomavirus Type 16- or 18-Positive Recurrent Cervical Cancer. J Clin Med 2020; 9:jcm9010147. [PMID: 31948126 PMCID: PMC7019768 DOI: 10.3390/jcm9010147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
BVAC-C is a B cell-based and monocyte-based immuno-therapeutic vaccine transfected with a recombinant human papillomavirus (HPV) 16/18 E6/E7 gene and loaded with alpha-galactosyl ceramide, which is a natural killer T cell ligand. This phase I study sought to determine the tolerability and immunogenicity of BVAC-C in platinum-resistant recurrent cervical cancer patients. Patients with HPV 16-positive or 18-positive recurrent or persistent cervical cancer who had received at least one prior platinum-based combination chemotherapy were enrolled. BVAC-C was injected intravenously three times every four weeks, and dose escalation was planned in a three-patient cohort design at doses of 1 × 107, 4 × 107, or 1 × 108 cells/dose. Eleven patients were enrolled, and six (55%) patients had received two or more lines of platinum-based chemotherapy prior to enrollment. Treatment-related adverse events (TRAEs) were observed in 21 cycles. Most TRAEs were mild fever (n = 6.55%) or myalgia (n = 4.36%). No dose-limiting toxicities occurred. The overall response rate was 11% among nine patients evaluable, and the duration of response was 10 months. Five patients (56%) achieved a stable disease for 4.2–11 months as their best overall response. The median progression-free survival in all patients was 6.8 months (95% CI, 3.2 to infinite months), and the overall survival rate at 6 and 12 months was 89% (95% CI, 71 to 100%) and 65% (95% CI, 39 to 100%), respectively. BVAC-C induced the activation of natural killer T cells, natural killer cells, and HPV 16/18 E6/E7-specific T cells upon vaccination in all patients evaluated. BVAC-C was well tolerated and demonstrated a durable anti-tumor activity with an immune response in HPV 16-positive or 18-positive recurrent cervical carcinoma patients. A Phase 2 efficacy trial is currently underway.
Collapse
Affiliation(s)
- Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.H.C.); (J.-W.L.)
| | - Hyun Jin Choi
- Department of Obstetrics and Gynecology, Chung-Ang University hospital, College of medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.H.C.); (J.-W.L.)
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.-S.K.); (D.C.)
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.-S.K.); (D.C.)
| | - Byung Kwan Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 06351, Korea; (Y.-M.K.); (D.-Y.K.)
| | - Dae-Yeon Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 06351, Korea; (Y.-M.K.); (D.-Y.K.)
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 06351, Korea; (H.S.); (C.-Y.K.)
| | - Myunghwan Park
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Wuhyun Kim
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Ki-Young Choi
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Taegwon Oh
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Chang-Yuil Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 06351, Korea; (H.S.); (C.-Y.K.)
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.H.C.); (J.-W.L.)
- Correspondence: ; Tel.: +82-2-3410-3519; Fax: +82-2-3410-0630
| |
Collapse
|
13
|
Frazer IH, Chandra J. Immunotherapy for HPV associated cancer. PAPILLOMAVIRUS RESEARCH 2019; 8:100176. [PMID: 31310819 PMCID: PMC6639647 DOI: 10.1016/j.pvr.2019.100176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia.
| | - Janin Chandra
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
14
|
Yao Y, Xu H, Li M, Qi Z, Liao B. Recent Advances on Prediction of Human Papillomaviruses Risk Types. Curr Drug Metab 2019; 20:236-243. [PMID: 30657038 DOI: 10.2174/1389200220666190118110012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some studies have shown that Human Papillomavirus (HPV) is strongly associated with cervical cancer. As we all know, cervical cancer still remains the fourth most common cancer, affecting women worldwide. Thus, it is both challenging and essential to detect risk types of human papillomaviruses. METHODS In order to discriminate whether HPV type is highly risky or not, many epidemiological and experimental methods have been proposed recently. For HPV risk type prediction, there also have been a few computational studies which are all based on Machine Learning (ML) techniques, but adopt different feature extraction methods. Therefore, we conclude and discuss several classical approaches which have got a better result for the risk type prediction of HPV. RESULTS This review summarizes the common methods to detect human papillomavirus. The main methods are sequence- derived features, text-based classification, gap-kernel method, ensemble SVM, Word statistical model, position- specific statistical model and mismatch kernel method (SVM). Among these methods, position-specific statistical model get a relatively high accuracy rate (accuracy=97.18%). Word statistical model is also a novel approach, which extracted the information of HPV from the protein "sequence space" with word statistical model to predict high-risk types of HPVs (accuracy=95.59%). These methods could potentially be used to improve prediction of highrisk types of HPVs. CONCLUSION From the prediction accuracy, we get that the classification results are more accurate by establishing mathematical models. Thus, adopting mathematical methods to predict risk type of HPV will be the main goal of research in the future.
Collapse
Affiliation(s)
- Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Huimin Xu
- Academic Affairs Division,Shanghai Maritime University, Shanghai 201306, China
| | - Manzhi Li
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Zhaohui Qi
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
15
|
Garcia C, Ring KL. The Role of PD-1 Checkpoint Inhibition in Gynecologic Malignancies. Curr Treat Options Oncol 2018; 19:70. [DOI: 10.1007/s11864-018-0593-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Goyvaerts C, Breckpot K. The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Front Immunol 2018; 9:2052. [PMID: 30254636 PMCID: PMC6141723 DOI: 10.3389/fimmu.2018.02052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are recognized as highly potent antigen-presenting cells that are able to stimulate cytotoxic T lymphocyte (CTL) responses with antitumor activity. Consequently, DCs have been explored as cellular vaccines in cancer immunotherapy. To that end, DCs are modified with tumor antigens to enable presentation of antigen-derived peptides to CTLs. In this review we discuss the use of viral vectors for in situ modification of DCs, focusing on their clinical applications as anticancer vaccines. Among the viral vectors discussed are those derived from viruses belonging to the families of the Poxviridae, Adenoviridae, Retroviridae, Togaviridae, Paramyxoviridae, and Rhabdoviridae. We will further shed light on how the combination of viral vector-based vaccination with T-cell supporting strategies will bring this strategy to the next level.
Collapse
|
17
|
Chu X, Li Y, Huang W, Feng X, Sun P, Yao Y, Yang X, Sun W, Bai H, Liu C, Ma Y. Combined immunization against TGF-β1 enhances HPV16 E7-specific vaccine-elicited antitumour immunity in mice with grafted TC-1 tumours. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1199-1209. [PMID: 29929402 DOI: 10.1080/21691401.2018.1482306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Therapeutic vaccine appears to be a potential approach for the treatment of human papillomavirus (HPV)-associated tumours, but its efficacy can be dampened by immunosuppressive factors such as transforming growth factor (TGF)-β1. We sought to investigate whether active immunity against TGF-β1 enhances the anti-tumour immunity elicited by an HPV16 E7-specific vaccine that we developed previously. In this study, virus-like particles of hepatitis B virus core antigen were used as vaccine carriers to deliver either TGF-β1 B cell epitopes or E7 cytotoxic T-lymphocyte epitope. The combination of preventive immunization against TGF-β1 and therapeutic immunization with the E7 vaccine significantly reduced the growth of grafted TC-1 tumours in C57 mice, showing better efficacy than immunization with only one of the vaccines. The improved efficacy of combined immunization is evidenced by elevated IFN-γ and decreased IL-4 and TGF-β1 levels in cultured splenocytes, increased E7-specific IFN-γ-expressing splenocytes, and increased numbers of CD4+IFN-γ+ and CD8+IFN-γ+ cells and decreased numbers of Treg (CD4+Foxp3+) cells in the spleen and tumours. The results strongly indicate that targeting TGF-β1 through active immunization might be a potent approach to enhancing antigen-specific therapeutic vaccine-induced anti-tumour immune efficacy and providing a combined strategy for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaojie Chu
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Yang Li
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Weiwei Huang
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Xuejun Feng
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Pengyan Sun
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Yufeng Yao
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Xu Yang
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Wenjia Sun
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Hongmei Bai
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Cunbao Liu
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| | - Yanbing Ma
- a Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College , Kunming , China.,b Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease , Kunming , China.,c Yunnan Engineering Research Center of Vaccine Research and Development on Severe Infectious Disease , Kunming , China
| |
Collapse
|
18
|
Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:46-58. [PMID: 29277575 PMCID: PMC5887015 DOI: 10.1016/j.pvr.2017.12.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cancer is the second leading cause of death worldwide, and it is estimated that Human papillomavirus (HPV) related cancers account for 5% of all human cancers. Current HPV vaccines are extremely effective at preventing infection and neoplastic disease; however, they are prophylactic and do not clear established infections. Therapeutic vaccines which trigger cell-mediated immune responses for the treatment of established infections and malignancies are therefore required. The E6 and E7 early genes are ideal targets for vaccine therapy due to their role in disruption of the cell cycle and their constitutive expression in premalignant and malignant tissues. Several strategies have been investigated for the development of therapeutic vaccines, including live-vector, nucleic acid, peptide, protein-based and cell-based vaccines as well as combinatorial approaches, with several vaccine candidates progressing to clinical trials. With the current understanding of the HPV life cycle, molecular mechanisms of infection, carcinogenesis, tumour biology, the tumour microenvironment and immune response mechanisms, an approved HPV therapeutic vaccine seems to be a goal not far from being achieved. In this article, the status of therapeutic HPV vaccines in clinical trials are reviewed, and the potential for plant-based vaccine production platforms described.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Romana J R Yanez
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Renate Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
19
|
Keerti, Yadav NK, Joshi S, Ratnapriya S, Sahasrabuddhe AA, Dube A. Immunotherapeutic potential of Leishmania ( Leishmania ) donovani Th1 stimulatory proteins against experimental visceral leishmaniasis. Vaccine 2018; 36:2293-2299. [DOI: 10.1016/j.vaccine.2018.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 02/01/2023]
|
20
|
Kuo P, Tuong ZK, Teoh SM, Frazer IH, Mattarollo SR, Leggatt GR. HPV16E7-Induced Hyperplasia Promotes CXCL9/10 Expression and Induces CXCR3 + T-Cell Migration to Skin. J Invest Dermatol 2017; 138:1348-1359. [PMID: 29277541 DOI: 10.1016/j.jid.2017.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
Chemokines regulate tissue immunity by recruiting specific subsets of immune cells. Mice expressing the E7 protein of human papilloma virus 16 as a transgene from a keratin 14 promoter (K14.E7) show increased epidermal and dermal lymphocytic infiltrates, epidermal hyperplasia, and suppressed local immunity. Here, we show that CXCL9 and CXCL10 are overexpressed in non-hematopoietic cells in skin of K14.E7 mice when compared with non-transgenic animals, and recruit CXCR3+ lymphocytes to the hyperplastic skin. Overexpression of CXCL9 and CXCL10 is not observed in E7 transgenic mice with mutated Rb gene whose protein product cannot interact with E7 (K14.E7xRbΔL/ΔL) and in consequence lack hyperplastic epithelium. CXCR3+ T cells are preferentially recruited by CXCL9 and CXCL10 in supernatants of K14.E7 but not K14.E7xRbΔL/ΔL skin cultures in vitro. CXCR3 signalling promotes infiltration of a subset of effector T lymphocytes that enables donor lymphocyte deficient, E7-expressing skin graft rejection. Taken together, this suggests that recruitment of CXCR3+ T cells can be an important factor in the rejection of precancerous skin epithelium providing they can overcome local immunosuppressive mechanisms driven by skin-resident lymphocytes.
Collapse
Affiliation(s)
- Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
21
|
Yanez RJR, Lamprecht R, Granadillo M, Weber B, Torrens I, Rybicki EP, Hitzeroth II. Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS One 2017; 12:e0183177. [PMID: 28800364 PMCID: PMC5553638 DOI: 10.1371/journal.pone.0183177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
High-risk human papillomaviruses (hr-HPVs) cause cervical cancer, the fourth most common cancer in women worldwide. A HPV-16 candidate therapeutic vaccine, LALF32-51-E7, was developed by fusing a modified E7 protein to a bacterial cell-penetrating peptide (LALF): this elicited both tumour protection and regression in pre-clinical immunization studies. In the current study, we investigated the potential for producing LALF32-51-E7 in a plant expression system by evaluating the effect of subcellular localization and usage of different expression vectors and gene silencing suppressors. The highest expression levels of LALF32-51-E7 were obtained by using a self-replicating plant expression vector and chloroplast targeting, which increased its accumulation by 27-fold compared to cytoplasmic localization. The production and extraction of LALF32-51-E7 was scaled-up and purification optimized by affinity chromatography. If further developed, this platform could potentially allow for the production of a more affordable therapeutic vaccine for HPV-16. This would be extremely relevant in the context of developing countries, where cervical cancer and other HPV-related malignancies are most prevalent, and where the population have limited or no access to preventative vaccines due to their typical high costs.
Collapse
Affiliation(s)
- Romana J. R. Yanez
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Renate Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Milaid Granadillo
- Center for Genetic Engineering and Biotechnology, Cubanacan, Playa, Havana, Cuba
| | - Brandon Weber
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Isis Torrens
- Center for Genetic Engineering and Biotechnology, Cubanacan, Playa, Havana, Cuba
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
22
|
Capietto AH, Jhunjhunwala S, Delamarre L. Characterizing neoantigens for personalized cancer immunotherapy. Curr Opin Immunol 2017; 46:58-65. [PMID: 28478383 DOI: 10.1016/j.coi.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
Abstract
Somatic mutations can generate neoantigens that are presented on MHC molecules and drive effective T cells responses against cancer. Mutation load in cancer patients predicts response to immune checkpoint blockade therapy. Additionally, vaccination targeting neoantigens controls established tumor growth in preclinical models. These recent findings led to a renewed interest in the field of cancer vaccines and the development of antigen-targeted cancer immunotherapies. However, targeting neoantigens is challenging, as most mutations are unique to each cancer patient. In addition, only a small fraction of the mutations are immunogenic and therefore their accurate prediction is critical. In this review, we discuss the properties of neoantigens that influence their immunogenicity, along with questions that remain to be addressed in order to improve prediction algorithms.
Collapse
|
23
|
Esquerré M, Bouillette-Marussig M, Goubier A, Momot M, Gonindard C, Keller H, Navarro A, Bissery MC. GTL001, a bivalent therapeutic vaccine against human papillomavirus 16 and 18, induces antigen-specific CD8+ T cell responses leading to tumor regression. PLoS One 2017; 12:e0174038. [PMID: 28301611 PMCID: PMC5354464 DOI: 10.1371/journal.pone.0174038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 03/02/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Prophylactic vaccines are available for women and girls not yet infected with HPV, but women already infected with HPV need a treatment to prevent progression to high-grade cervical lesions and cancer. GTL001 is a bivalent therapeutic vaccine for eradicating HPV-infected cells that contains HPV16 E7 and HPV18 E7 both fused to detoxified adenylate cyclase from Bordetella pertussis, which binds specifically to CD11b+ antigen-presenting cells. This study examined the ability of therapeutic vaccination with GTL001 adjuvanted with topical imiquimod cream to induce functional HPV16 E7- and HPV18 E7-specific CD8+ T cell responses. METHODS Binding of GTL001 to human CD11b was assessed by a cell-based competition binding assay. Cellular immunogenicity of intradermal vaccination with GTL001 was assessed in C57BL/6 mice by enzyme-linked immunospot assay and in vivo killing assays. In vivo efficacy of GTL001 vaccination was investigated in the TC-1 murine HPV16 E7-expressing tumor model. RESULTS GTL001 bound specifically to the human CD11b/CD18 receptor. GTL001 adjuvanted with topical 5% imiquimod cream induced HPV16 E7 and HPV18 E7-specific CD8+ T cell responses. This CD8+ T-cell response mediated in vivo killing of HPV E7-expressing cells. In the HPV16 E7-expressing tumor model, GTL001 adjuvanted with imiquimod but not imiquimod alone or a combination of unconjugated HPV16 E7 and HPV18 E7 caused complete tumor regression. CONCLUSIONS GTL001 adjuvanted with topical 5% imiquimod is immunogenic and induces HPV16 E7 and HPV18 E7-specific CD8+ T cell responses that can kill HPV E7-expressing cells and eliminate HPV E7-expressing tumors.
Collapse
|
24
|
Gupta S, Chaudhary K, Dhanda SK, Kumar R, Kumar S, Sehgal M, Nagpal G, Raghava GPS. A Platform for Designing Genome-Based Personalized Immunotherapy or Vaccine against Cancer. PLoS One 2016; 11:e0166372. [PMID: 27832200 PMCID: PMC5104390 DOI: 10.1371/journal.pone.0166372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/27/2016] [Indexed: 02/01/2023] Open
Abstract
Due to advancement in sequencing technology, genomes of thousands of cancer tissues or cell-lines have been sequenced. Identification of cancer-specific epitopes or neoepitopes from cancer genomes is one of the major challenges in the field of immunotherapy or vaccine development. This paper describes a platform Cancertope, developed for designing genome-based immunotherapy or vaccine against a cancer cell. Broadly, the integrated resources on this platform are apportioned into three precise sections. First section explains a cancer-specific database of neoepitopes generated from genome of 905 cancer cell lines. This database harbors wide range of epitopes (e.g., B-cell, CD8+ T-cell, HLA class I, HLA class II) against 60 cancer-specific vaccine antigens. Second section describes a partially personalized module developed for predicting potential neoepitopes against a user-specific cancer genome. Finally, we describe a fully personalized module developed for identification of neoepitopes from genomes of cancerous and healthy cells of a cancer-patient. In order to assist the scientific community, wide range of tools are incorporated in this platform that includes screening of epitopes against human reference proteome (http://www.imtech.res.in/raghava/cancertope/).
Collapse
Affiliation(s)
- Sudheer Gupta
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Kumardeep Chaudhary
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Sandeep Kumar Dhanda
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rahul Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Shailesh Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Manika Sehgal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gandharva Nagpal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | |
Collapse
|
25
|
Mañon R, Schimp V, Gopalan P, Pattani K, Tseng J. The Impact of HPV as an Etiological Factor in Gynecological and Oropharyngeal Cancer. Am J Lifestyle Med 2016; 10:253-261. [PMID: 30202280 PMCID: PMC6125059 DOI: 10.1177/1559827615569707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
The human papilloma virus (HPV) is one of several viral pathogens linked to human cancer. This article reviews the current worldwide cancer burden related to this pathogen. The article also examines the role of HPV in oropharyngeal and gynecological malignancies, current treatment implications, and future directions in the treatment and prevention of HPV-related disease.
Collapse
Affiliation(s)
- Rafael Mañon
- Rafael Mañon, MD, Department of Radiation Oncology, UF Health Cancer Center, Orlando Health, 1400 S Orange Ave, MP 760, Orlando, FL 32806; e-mail:
| | | | | | | | | |
Collapse
|
26
|
Van Damme P, Bouillette-Marussig M, Hens A, De Coster I, Depuydt C, Goubier A, Van Tendeloo V, Cools N, Goossens H, Hercend T, Timmerman B, Bissery MC. GTL001, A Therapeutic Vaccine for Women Infected with Human Papillomavirus 16 or 18 and Normal Cervical Cytology: Results of a Phase I Clinical Trial. Clin Cancer Res 2016; 22:3238-48. [PMID: 27252412 DOI: 10.1158/1078-0432.ccr-16-0085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Women infected with human papillomavirus (HPV) with normal cytology to mild abnormalities currently have no treatment options other than watchful waiting or surgery if high-grade cervical lesions or cancer develop. A therapeutic vaccine would offer the possibility of preventing high-grade lesions in HPV-infected women. GTL001 is a therapeutic vaccine composed of recombinant HPV16 and HPV18 E7 proteins fused to catalytically inactive Bordetella pertussis CyaA. This study examined the tolerability and immunogenicity of GTL001 in women infected with HPV16 or HPV18 with normal cytology. EXPERIMENTAL DESIGN This was a phase I trial (EudraCT No. 2010-018629-21). In an open-label part, subjects received two intradermal vaccinations 6 weeks apart of 100 or 600 μg GTL001 + topical 5% imiquimod cream at the injection site. In a double-blind part, subjects were randomized 2:1:1 to two vaccinations 6 weeks apart of 600 μg GTL001 + imiquimod, 600 μg GTL001 + placebo cream, or placebo + imiquimod. RESULTS Forty-seven women were included. No dropouts, treatment-related serious adverse events, or dose-limiting toxicities occurred. Local reactions were transient and mostly mild or moderate. HPV16/18 viral load decreased the most in the 600 μg GTL001 + imiquimod group. In post hoc analyses, the 600 μg GTL001 + imiquimod group had the highest rates of initial and sustained HPV16/18 clearance. Imiquimod increased antigen-specific T-cell response rates but not rates of solicited reactions. All subjects seroconverted to CyaA. CONCLUSIONS For women infected with HPV16 or HPV18 with normal cervical cytology, GTL001 was immunogenic and had acceptable safety profile. Clin Cancer Res; 22(13); 3238-48. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Christophe Depuydt
- Department of Molecular Diagnostics, AML, Sonic Healthcare, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mensah FA, Mehta MR, Lewis JS, Lockhart AC. The Human Papillomavirus Vaccine: Current Perspective and Future Role in Prevention and Treatment of Anal Intraepithelial Neoplasia and Anal Cancer. Oncologist 2016; 21:453-60. [PMID: 26961923 DOI: 10.1634/theoncologist.2015-0075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED The incidences of human papillomavirus (HPV)-related anal cancer and its precursor lesion, anal intraepithelial neoplasia, are rising in the U.S. and globally. Five-year survival rates with current modalities of treatment for anal cancer are generally favorable for localized and regional disease. For metastatic disease, the relative survival rate is poor. Major contributing factors for the increase in anal cancer incidence include increasing receptive anal intercourse (hetero- and homosexual), increasing HPV infections, and longer life expectancy of treated people who are seropositive for human immunodeficiency virus. Because treatment outcomes with systemic therapy in patients with advanced disease are so poor, prevention may be the best approach for reducing disease burden. The association of a major causative agent with anal cancer provides an excellent opportunity for prevention and treatment. The advent of the HPV vaccine for anal cancer prevention and treatment is a significant milestone and has the potential to greatly impact these cancers. The data regarding potential use of the HPV vaccine in anal cancer prevention and treatment are reviewed. IMPLICATIONS FOR PRACTICE The incidences of human papillomavirus (HPV)-related anal cancer and its precursor lesion, anal intraepithelial neoplasia, are on the rise in the U.S. and globally. Based on recent studies, the HPV vaccine is approved for prevention of the infection and development of HPV-related anal cancer. In addition, several small studies have shown that the vaccine may be useful as adjuvant therapy for anal cancer. There is a need for public health strategies aimed at education of both patients and practitioners to improve the use of the vaccine for prevention of HPV-related anal cancer. The development of a therapeutic vaccine is a work in progress.
Collapse
Affiliation(s)
- Felix A Mensah
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mudresh R Mehta
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - James S Lewis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - A Craig Lockhart
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Moyle PM, Dai W, Liu TY, Hussein WM, Maruthayanar P, Wells JW, McMillan NA, Skwarczynski M, Toth I. Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorg Med Chem Lett 2015; 25:5570-5. [DOI: 10.1016/j.bmcl.2015.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
|
29
|
Lee SE, Hong SH, Verma V, Lee YS, Duong TMN, Jeong K, Uthaman S, Sung YC, Lee JT, Park IK, Min JJ, Rhee JH. Flagellin is a strong vaginal adjuvant of a therapeutic vaccine for genital cancer. Oncoimmunology 2015; 5:e1081328. [PMID: 27057462 PMCID: PMC4801456 DOI: 10.1080/2162402x.2015.1081328] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/21/2023] Open
Abstract
Cervical cancer is a high-incidence female cancer most commonly caused by human papilloma virus (HPV) infection of the genital mucosa. Immunotherapy targeting HPV-derived tumor antigens (TAs) has been widely studied in animal models and in patients. Because the female genital tract is a portal for the entry of HPV and a highly compartmentalized system, the development of topical vaginal immunotherapy in an orthotopic cancer model would provide an ideal therapeutic. Thus, we examined whether flagellin, a potent mucosal immunomodulator, could be used as an adjuvant for a topical therapeutic vaccine for female genital cancer. Intravaginal (IVAG) co-administration of the E6/E7 peptides with flagellin resulted in tumor suppression and long-term survival of tumor-bearing mice. In contrast to IVAG vaccination, intranasal (IN) or subcutaneous (SC) immunization did not induce significant tumor suppression in the same model. The vaginal adjuvant effect of the flagellin was completely abolished in Toll-like receptor-5 (TLR5) knock-out mice. IVAG immunization with the E6/E7 peptides plus flagellin induced the accumulation of CD4+ and CD8+ cells and the expression of T cell activation-related genes in the draining genital lymph nodes (gLNs). The co-administered flagellin elicited antigen-specific IFNγ production in the gLNs and spleen. The intravaginally administered flagellin was found in association with CD11c+ cells in the gLNs. Moreover, after immunization with a flagellin and the E6/E7 peptides, the TLR5 expression in gLN cells was significantly upregulated. These results suggest that flagellin serves as a potent vaginal adjuvant for a therapeutic peptide cancer vaccine through the activation of TLR5 signaling.
Collapse
Affiliation(s)
- Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Vivek Verma
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youn Suhk Lee
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Tra-My Nu Duong
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju, Republic of Korea; Department of Molecular Medicine, Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Kwangjoon Jeong
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Sciences, Chonnam National University Medical School , Gwangju, Republic of Korea
| | - Young Chul Sung
- Department of Life Sciences, POSTECH , Gyeongbuk, Republic of Korea
| | - Jae-Tae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine , Daegu, Republic of Korea
| | - In-Kyu Park
- Department of Molecular Medicine, Graduate School, Chonnam National University , Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School , Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Gwangju, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
30
|
Ubiquitin-like Molecule ISG15 Acts as an Immune Adjuvant to Enhance Antigen-specific CD8 T-cell Tumor Immunity. Mol Ther 2015; 23:1653-62. [PMID: 26122932 DOI: 10.1038/mt.2015.120] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022] Open
Abstract
ISG15 is an ubiquitin-like protein induced by type I interferon associated with antiviral activity. ISG15 is also secreted and known to function as an immunomodulatory molecule. However, ISG15's role in influencing the adaptive CD8 T-cell responses has not been studied. Here, we demonstrate the efficacy of ISG15 as a vaccine adjuvant, inducing human papilloma virus (HPV) E7-specific IFNγ responses as well as the percentage of polyfunctional, cytolytic, and effector CD8 T-cell responses. Vaccination with ISG15 conferred remarkable control and/or regression of established HPV-associated tumor-bearing mice. T-cell depletion coupled with adoptive transfer experiments revealed that ISG15 protective efficacy was CD8 T-cell mediated. Importantly, we demonstrate that ISG15 vaccine-induced responses could be generated independent of ISGylation, suggesting that responses were mostly influenced by free ISG15. Our results provide more insight into the immunomodulatory properties of ISG15 and its potential to serve as an effective immune adjuvant in a therapeutic tumor or infectious disease setting.
Collapse
|
31
|
Tapping the Potential of DNA Delivery with Electroporation for Cancer Immunotherapy. Curr Top Microbiol Immunol 2015; 405:55-78. [PMID: 25682101 DOI: 10.1007/82_2015_431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a worldwide leading cause of death, and current conventional therapies are limited. The search for alternative preventive or therapeutic solutions is critical if we are going to improve outcomes for patients. The potential for DNA vaccines in the treatment and prevention of cancer has gained great momentum since initial findings almost 2 decades ago that revealed that genetically engineered DNA can elicit an immune response. The combination of adjuvants and an effective delivery method such as electroporation is overcoming past setbacks for naked plasmid DNA (pDNA) as a potential preventive or therapeutic approach to cancer in large animals and humans. In this chapter, we aim to focus on the novel advances in recent years for DNA cancer vaccines, current preclinical data, and the importance of adjuvants and electroporation with emphasis on prostate, melanoma, and cervical cancer.
Collapse
|
32
|
Abstract
The development of efficacious prophylactic human papillomavirus vaccines provided an opportunity for the primary prevention of related infections and diseases. Certain oncogenic human papillomaviruses that preferentially infect the genital epithelium cause cervical cancer and a substantial proportion of anal, penile, vaginal, vulvar and oropharyngeal cancers. Following extensive clinical trials demonstrating their efficacy and safety, two vaccines have been in global use for over 6 years. This review summarises the accumulated evidence regarding their high level of efficacy, safety in population usage, reductions in genital warts, infections and cervical disease following their adoption, and facilitators and barriers to achieving high vaccination coverage. The review also discusses practical issues and frequently asked questions regarding duration of effect, vaccination of women treated for cervical disease and alternate vaccination schedules, as well as the need to review cervical screening strategies in the post- vaccination environment.
Collapse
Affiliation(s)
- Julia M L Brotherton
- National HPV Vaccination Program Register, VCS Inc, East Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Tornesello ML, Perri F, Buonaguro L, Ionna F, Buonaguro FM, Caponigro F. HPV-related oropharyngeal cancers: from pathogenesis to new therapeutic approaches. Cancer Lett 2014; 351:198-205. [PMID: 24971935 DOI: 10.1016/j.canlet.2014.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/08/2014] [Accepted: 06/04/2014] [Indexed: 01/07/2023]
Abstract
Head and neck cancers are a heterogeneous group of malignancies accounting for approximately 600,000 new cases every year worldwide. Human papillomavirus (HPV)-related oropharyngeal cancers represent a new nosological entity for pathogenesis, molecular mechanisms, prognostic trend and therapeutic response. Several clinical trials have shown that HPV-positive/p16-positive cancer patients have a favorable prognosis demanding for de-escalation of current therapies. Comprehensive genomic analyses allowed to identify specific genetic alterations in targetable genes envisaging novel approaches to treat different subset of HPV-related and HPV-unrelated oropharyngeal cancers. Furthermore virus associated head and neck cancers may benefit from new developed immunotherapies targeting HPV E6 and E7 oncoproteins. We reviewed recent studies on the role of HPV infection in these cancers and present our current understanding of carcinogenic mechanisms providing possible novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Division, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Francesco Perri
- Head and Neck Medical Oncology Division, Department of Melanoma, Soft Tissue/Bone Sarcoma and Head & Neck Cancer, Istituto Nazionale Tumori "Fondazione G. Pascale"- IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Division, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Franco Ionna
- Head and Neck Surgical Oncology Division, Department of Melanoma, Soft Tissue/Bone Sarcoma and Head/Neck Cancer, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Division, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy.
| | - Francesco Caponigro
- Head and Neck Medical Oncology Division, Department of Melanoma, Soft Tissue/Bone Sarcoma and Head & Neck Cancer, Istituto Nazionale Tumori "Fondazione G. Pascale"- IRCCS, Naples, Italy
| |
Collapse
|
34
|
Kim S, Chung HW, Lee KR, Lim JB. Identification of novel epitopes from human papillomavirus type 18 E7 that can sensitize PBMCs of multiple HLA class I against human cervical cancer. J Transl Med 2014; 12:229. [PMID: 25141788 PMCID: PMC4145224 DOI: 10.1186/s12967-014-0229-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background To identify the novel epitopes from the human papillomavirus type 18 E7 which can sensitize PBMCs of four different major HLA class I A allele. Methods Twenty-four synthetic overlapping 15-amino acid peptides were screened by measuring the frequency of CD8+ cytotoxic T lymphocytes (CTLs)-producing interferon-γ (IFN-γ) by using flow cytometry and ELISpot assays and selected peptides were validated for cytolytic activity by using the 51Cr release assay. Truncated peptides in the selected epitopes were tested to determine the important residues using ELISpot and 51Cr release assay. Results Among 24 peptides, E781-95DDLRAFQQLFLNTLS (#21) and E789-103LFLNTLSFVCPWCAS (#23) induced significantly higher Th 1 response including IFN-γ production and in vitro cytotoxicity of PBMCs of four different HLA-A alleles against cervical cancer cells than that of other peptides and the negative control (no peptide sensitization). In E781–95 (#21), amino acid position 81, 82 (N-terminus) and 92, 94, 95 (C-terminus) for HLA-A*02:02 and 24:02, and 81, 82 (N-terminus) and 92, 95 (C-terminus) for HLA-A*11:01 and 33:03 were important to elicit Th1 response of PBMCS. In E789–103 (#23), residue 100 and103 (C-terminus) were important to elicit the CD8+ CTL response in HLA-A*02:01, 11:01 and 33:03 and 100, 101, and 103 (C-terminus) were important to elicit the CD8+ CTL response in HLA-A*24:02. Conclusions E781–95 (#21) and E789–103 (#23) were identified as novel epitopes from HPV18 E7 which could sensitized PBMCs of four different HLA class I (HLA-A*02:01, 24:02, 11:01 and 33:03). These epitopes could be useful for immune monitoring and immunotherapy for HPV 18+ cervical cancer.
Collapse
Affiliation(s)
| | | | | | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea.
| |
Collapse
|
35
|
Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A, Moradi A, Atyabi F, Kelishadi M. Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 2014; 21:69. [PMID: 25077570 PMCID: PMC4237815 DOI: 10.1186/s12929-014-0069-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/22/2014] [Indexed: 01/08/2023] Open
Abstract
Background Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results The transfection of CS-pEGFP NPs was efficient in CHO cells and the expression of green fluorescent proteins was well observed. In addition, NCS-DNA E7 vaccine induced the strongest E7-specific CD8+ T cell and interferon γ responses in C57BL/6 mice. Mice vaccinated with NCS-DNA E7 vaccine were able to generate potent protective and therapeutic antitumor effects against challenge with E7-expressing tumor cell line, TC-1. Conclusions The strong therapeutic effect induced by the Chitosan-based nanodelivery suggest that nanoparticles may be an efficient carrier to improve the immunogenicity of DNA vaccination upon intramuscular administration and the platform could be further exploited as a potential cancer vaccine candidate in humans.
Collapse
|
36
|
DNA vaccine encoding HPV-16 E7 with mutation in L-Y-C-Y-E pRb-binding motif induces potent anti-tumor responses in mice. J Virol Methods 2014; 206:12-8. [PMID: 24880067 DOI: 10.1016/j.jviromet.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/11/2023]
Abstract
Cervical cancer is the second most common cancer among women worldwide and remains a clinical problem despite improvements in early detection and therapy. The human papillomavirus (HPV) type 16 (HPV16) E7 oncoprotein expressed in cervical carcinoma cells are considered as attractive tumor-specific antigen targets for immunotherapy. Since the transformation potential of the oncogenes, vaccination based of these oncogenes is not safe. In present study, DNA vaccine expressing the modified variant with mutation in pRb-binding motif of the HPV-16 E7 oncoprotein was generated. A novel modified E7 gene with mutation in LYCYE motif was designed and constructed and the immunogenicity and antitumor effect of therapeutic DNA vaccines encoding the mutant and wild type of E7 gene were investigated. The L-Y-C-Y-E pRb-binding motif of E7 proteins has been involved in the immortalization and transformation of the host cell. The results showed that the mutant and wild type HPV-16 E7 vectors expressed the desired protein. Furthermore, the immunological mechanism behind mutant E7 DNA vaccine can be attributed at least partially to increased cytotoxic T lymphocyte, accompanied by the up-regulation of Th1-cytokine IFN-γ and TNF-β and down-regulation of Th3-cytokine TGF-β. Immunized mice with mutant plasmid demonstrated significantly stronger cell immune responses and higher levels of tumor protection than wild-type E7 DNA vaccine. The results exhibit that modified E7 DNA vaccine may be a promising candidate for development of therapeutic vaccine against HPV-16 cancers.
Collapse
|
37
|
Hunter P. Vaccines against cancer: Despite setbacks, attempts to harness the patient's immune system to fight tumor cells show promise in clinical trials. EMBO Rep 2014; 15:485-8. [PMID: 24743446 DOI: 10.1002/embr.201438780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
38
|
Villarreal DO, Wise MC, Walters JN, Reuschel EL, Choi MJ, Obeng-Adjei N, Yan J, Morrow MP, Weiner DB. Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Res 2014; 74:1789-800. [PMID: 24448242 DOI: 10.1158/0008-5472.can-13-2729] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies of interleukin (IL)-33 reveal a number of pleiotropic properties. Here, we report that IL-33 has immunoadjuvant effects in a human papilloma virus (HPV)-associated model for cancer immunotherapy where cell-mediated immunity is critical for protection. Two biologically active isoforms of IL-33 exist that are full-length or mature, but the ability of either isoform to function as a vaccine adjuvant that influences CD4 T helper 1 or CD8 T-cell immune responses is not defined. We showed that both IL-33 isoforms are capable of enhancing potent antigen-specific effector and memory T-cell immunity in vivo in a DNA vaccine setting. In addition, although both IL-33 isoforms drove robust IFN-γ responses, neither elevated secretion of IL-4 or immunoglobulin E levels. Further, both isoforms augmented vaccine-induced antigen-specific polyfunctional CD4(+) and CD8(+) T-cell responses, with a large proportion of CD8(+) T cells undergoing plurifunctional cytolytic degranulation. Therapeutic studies indicated that vaccination with either IL-33 isoform in conjunction with an HPV DNA vaccine caused rapid and complete regressions in vivo. Moreover, IL-33 could expand the magnitude of antigen-specific CD8(+) T-cell responses and elicit effector-memory CD8(+) T cells. Taken together, our results support the development of these IL-33 isoforms as immunoadjuvants in vaccinations against pathogens, including in the context of antitumor immunotherapy.
Collapse
Affiliation(s)
- Daniel O Villarreal
- Authors' Affiliations: Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia; Inovio Pharmaceuticals, Inc., Blue Bell, Pennsylvania; and Korea Food and Drug Administration, Osong-eup, Cheongwon-gun, Chungcheongbuk-do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wayteck L, Breckpot K, Demeester J, De Smedt SC, Raemdonck K. A personalized view on cancer immunotherapy. Cancer Lett 2013; 352:113-25. [PMID: 24051308 DOI: 10.1016/j.canlet.2013.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 02/08/2023]
Abstract
Recent progress in cancer immunotherapy has resulted in complete responses in patients refractory to current standard cancer therapies. However, due to tumor heterogeneity and inter-individual variations in anti-tumor immunity, only subsets of patients experience clinical benefit. This review highlights the implementation of a personalized approach to enhance treatment efficacy and reduce side effects, including the identification of tumor-specific antigens for cancer vaccination and adoptive T cell therapies. Furthermore, together with the current advances and promising clinical outcomes of combination cancer (immuno-)therapies, the screening for predictive biomarkers in a patient-specific manner is emphasized.
Collapse
Affiliation(s)
- Laura Wayteck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Immunology and Physiology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| |
Collapse
|
40
|
Schmitz S, Ang KK, Vermorken J, Haddad R, Suarez C, Wolf GT, Hamoir M, Machiels JP. Targeted therapies for squamous cell carcinoma of the head and neck: current knowledge and future directions. Cancer Treat Rev 2013; 40:390-404. [PMID: 24176789 DOI: 10.1016/j.ctrv.2013.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022]
Abstract
Despite progress in the therapeutic management of patients with squamous cell carcinoma of the head and neck (SCCHN), the mortality rate of patients presenting with advanced disease remains high. One approach to improve treatment efficacy is to add novel molecular targeted agents to the classical treatment regimens. Monoclonal antibodies targeting the epidermal growth factor receptor (EGFR) have shown clinical benefits in palliative and curative settings. However, only a minority of patients presenting with recurrent or metastatic (R/M) SCCHN have meaningful tumor regression with these agents and virtually all who do develop acquired tumor resistance after a few months of treatment. For these reasons, other inhibitors of EGFR or molecules that interfere with known molecular pathways activated in SCCHN are of considerable interest, either as single agents or in combination with other treatment modalities. In this review, we discuss the different molecular therapeutic approaches explored in SCCHN. We also briefly outline new trial designs that could be used to accelerate the investigation of emerging therapeutic agents in this disease.
Collapse
Affiliation(s)
- Sandra Schmitz
- Cancer Center, Department of Medical Oncology and Head and Neck Surgery, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| | - Kie Kian Ang
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jan Vermorken
- Antwerp University Hospital, Department of Medical Oncology, Wilrijkstraat 10, 2650 Edegem, Belgium.
| | - Robert Haddad
- Department of Medical Oncology, Head and Neck Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Carlos Suarez
- Department of Otolaryngology, Hospital Universitario Central de Asturias Oviedo, Celestino Villamil SN, 33006 Oviedo, Asturias, Spain.
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | - Marc Hamoir
- Cancer Center, Department of Medical Oncology and Head and Neck Surgery, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| | - Jean-Pascal Machiels
- Cancer Center, Department of Medical Oncology and Head and Neck Surgery, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| |
Collapse
|
41
|
Nirmala S, Sudandiradoss C. Prediction of Promiscuous Epitopes in the E6 Protein of Three High Risk Human Papilloma Viruses: A Computational Approach. Asian Pac J Cancer Prev 2013; 14:4167-75. [DOI: 10.7314/apjcp.2013.14.7.4167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Haedicke J, Iftner T. Human papillomaviruses and cancer. Radiother Oncol 2013; 108:397-402. [PMID: 23830197 DOI: 10.1016/j.radonc.2013.06.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
Human papillomaviruses (HPV) are small oncogenic DNA viruses of which more than 200 types have been identified to date. A small subset of these is etiologically linked to the development of anogenital malignancies such as cervical cancer. In addition, recent studies established a causative relationship between these high-risk HPV types and tonsillar and oropharyngeal cancer. Clinical management of cervical cancer and head and neck squamous cell carcinomas (HNSCCs) is largely standardized and involves surgical removal of the tumor tissue as well as adjuvant chemoradiation therapy. Notably, the response to therapeutic intervention of HPV-positive HNSCCs has been found to be better as compared to HPV-negative tumors. Although the existing HPV vaccine is solely licensed for the prevention of cervical cancer, it might also have prophylactic potential for the development of high-risk HPV-associated HNSCCs. Another group of viruses, which belongs to the beta-HPV subgroup, has been implicated in nonmelanoma skin cancer, however, the etiology remains to be established. Treatment of HPV-induced nonmelanoma skin cancer is based on local excision. However, topically applied immune-modulating substances represent non-surgical alternatives for the management of smaller cutaneous tumors. In this review we present the current knowledge of the role of HPV in cancer development and discuss clinical management options as well as targets for the development of future intervention therapies.
Collapse
Affiliation(s)
- Juliane Haedicke
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen, Germany
| | | |
Collapse
|
43
|
Oviedo-Orta E, Plotkin SA, Ulmer JB, Ahmed SS. Therapeutic vaccines and immunotherapies: current challenges and new frontiers. Expert Rev Vaccines 2013; 12:243-4. [DOI: 10.1586/erv.13.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|