1
|
Dewing JM, Keable A, Laslo A, Chinezu L, Ivanescu A, Ratnayaka JA, Kalaria R, Slevin M, Verma A, Carare RO. Proportions of Basement Membrane Proteins in Cerebrovascular Smooth Muscle Cells After Exposure to Hypercapnia and Amyloid Beta. Cells 2025; 14:614. [PMID: 40277938 DOI: 10.3390/cells14080614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Vascular basement membranes (BMs), composed of laminins, collagen IV, fibronectin, and perlecan, are secreted by endothelial cells, pericytes, smooth muscle cells (SMCs), and astrocytes. In the brain, amyloid beta (Aβ) is eliminated along cerebrovascular BMs of capillaries and arteries as intramural periarterial drainage (IPAD). Ageing modifies vascular BMs, impairing IPAD and leading to Aβ deposition as cerebral amyloid angiopathy. To better understand the molecular determinants of IPAD in ageing, we quantified the relative abundance of BMs secreted by human-derived cerebral endothelial cells, pericytes, brain vascular SMCs, and astrocytes in vitro. We then assessed BM protein levels in SMCs under hypercapnia (8% CO2) as a model of vascular ageing, with and without Aβ exposure. Of the four cell types, we found SMCs secreted the highest levels of fibronectin, laminin, and perlecan, whilst pericytes secreted the highest levels of collagen IV. Hypercapnia increased the expression of collagen IV and fibronectin in SMCs but decreased the expression of laminin. The expression of perlecan increased under hypercapnia, but only in the presence of Aβ. This work highlights the varying compositions of vascular BMs and the dynamic differential responses of SMCs to Aβ and hypercapnia, helping to elucidate the age-related changes that impair IPAD in cerebral vessels.
Collapse
Affiliation(s)
- Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Abby Keable
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Alexandru Laslo
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology "G.E.Palade" Targu Mures, 540142 Targu-Mures, Romania
| | - Laura Chinezu
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology "G.E.Palade" Targu Mures, 540142 Targu-Mures, Romania
| | - Adrian Ivanescu
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology "G.E.Palade" Targu Mures, 540142 Targu-Mures, Romania
| | - J Arjuna Ratnayaka
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Raj Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Mark Slevin
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology "G.E.Palade" Targu Mures, 540142 Targu-Mures, Romania
| | - Ajay Verma
- Formation Venture Engineering Foundry, Boston, MA 02494, USA
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- British-Romanian Academic Institute of Neuroscience (BRAIN), University of Medicine, Pharmacy, Science and Technology "G.E.Palade" Targu Mures, 540142 Targu-Mures, Romania
| |
Collapse
|
2
|
Zvolanek KM, Moore JE, Jarvis K, Moum SJ, Bright MG. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. J Cereb Blood Flow Metab 2025; 45:746-764. [PMID: 39534950 PMCID: PMC11563552 DOI: 10.1177/0271678x241298588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n = 12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity (CVR) in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.
Collapse
Affiliation(s)
- Kristina M Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Jackson E Moore
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly Jarvis
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah J Moum
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Davies A, Gurung D, Ladthavorlaphatt K, Mankoo A, Panerai RB, Robinson TG, Minhas JS, Beishon LC. The effect of CO 2 on the age dependence of neurovascular coupling. J Appl Physiol (1985) 2024; 137:445-459. [PMID: 38961823 DOI: 10.1152/japplphysiol.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Prior studies have identified variable effects of aging on neurovascular coupling (NVC). Carbon dioxide (CO2) affects both cerebral blood velocity (CBv) and NVC, but the effects of age on NVC under different CO2 conditions are unknown. Therefore, we investigated the effects of aging on NVC in different CO2 states during cognitive paradigms. Seventy-eight participants (18-78 yr), with well-controlled comorbidities, underwent continuous recordings of CBv by bilateral insonation of middle (MCA) and posterior (PCA) cerebral arteries (transcranial Doppler), blood pressure, end-tidal CO2, and heart rate during poikilocapnia, hypercapnia (5% CO2 inhalation), and hypocapnia (paced hyperventilation). Neuroactivation via visuospatial (VS) and attention tasks (AT) was used to stimulate NVC. Peak percentage and absolute change in MCAv/PCAv, were compared between CO2 conditions and age groups (≤30, 31-60, and >60 yr). For the VS task, in poikilocapnia, younger adults had a lower NVC response compared with older adults [mean difference (MD): -7.92% (standard deviation (SD): 2.37), P = 0.004], but comparable between younger and middle-aged groups. In hypercapnia, both younger [MD: -4.75% (SD: 1.56), P = 0.009] and middle [MD: -4.58% (SD: 1.69), P = 0.023] age groups had lower NVC responses compared with older adults. Finally, in hypocapnia, both older [MD: 5.92% (SD: 2.21), P = 0.025] and middle [MD: 5.44% (SD: 2.27), P = 0.049] age groups had greater NVC responses, compared with younger adults. In conclusion, the magnitude of NVC response suppression from baseline during hyper- and hypocapnia, did not differ significantly between age groups. However, the middle age group demonstrated a different NVC response while under hypercapnic conditions, compared with hypocapnia.NEW & NOTEWORTHY This study describes the effects of age on neurovascular coupling under altered CO2 conditions. We demonstrated that both hypercapnia and hypocapnia suppress neurovascular coupling (NVC) responses. Furthermore, that middle age exhibits an NVC response comparable with younger adults under hypercapnia, and older adults under hypocapnia.
Collapse
Affiliation(s)
- Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Dewarkar Gurung
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Kannaphob Ladthavorlaphatt
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Alex Mankoo
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| |
Collapse
|
4
|
Wang J, Li H, Jia J, Shao X, Li Y, Zhou Y, Wang H, Jin L. Progressive Cerebrovascular Reactivity Reduction Occurs in Parkinson's Disease: A Longitudinal Study. Mov Disord 2024; 39:94-104. [PMID: 38013597 DOI: 10.1002/mds.29671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The change of microvascular function over the course of Parkinson's disease (PD) remains unclear. OBJECTIVE We aimed to ascertain regional cerebrovascular reactivity (CVR) changes in the patients with PD at baseline (V0) and during a 2-year follow-up period (V1). We further investigated whether alterations in CVR were linked to cognitive decline and brain functional connectivity (FC). METHODS We recruited 90 PD patients and 51 matched healthy controls (HCs). PD patients underwent clinical evaluations, neuropsychological assessments, and magnetic resonance (MR) scanning at V0 and V1, whereas HCs completed neuropsychological assessments and MR at baseline. The analysis included evaluating CVR and FC maps derived from resting-state functional magnetic resonance imaging and investigating CVR measurement reproducibility. RESULTS Compared with HCs, CVR reduction in left inferior occipital gyrus and right superior temporal cortex at V0 persisted at V1, with larger clusters. Longitudinal reduction in CVR of the left posterior cingulate cortex correlated with decline in Trail Making Test B performance within PD patients. Reproducibility validation further confirmed these findings. In addition, the results also showed that there was a tendency for FC to be weakened from posterior to anterior with the progression of the disease. CONCLUSIONS Microvascular dysfunction might be involved in disease progression, subsequently weaken brain FC, and partly contribute to executive function deficits in early PD. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University (Xiamen Branch), China
| | - Hongwei Li
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Jia Jia
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Xiali Shao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanfang Li
- Department of Neurology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Ying Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - He Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Johnson BJ, Lipford ME, Barcus RA, Olson JD, Schaaf GW, Andrews RN, Kim J, Dugan GO, Deycmar S, Reed CA, Whitlow CT, Cline JM. Assessing cerebrovascular reactivity (CVR) in rhesus macaques (Macaca mulatta) using a hypercapnic challenge and pseudo-continuous arterial spin labeling (pCASL). Neuroimage 2024; 285:120491. [PMID: 38070839 PMCID: PMC10842457 DOI: 10.1016/j.neuroimage.2023.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
Cerebrovascular reactivity (CVR) is a measure of cerebral small vessels' ability to respond to changes in metabolic demand and can be quantified using magnetic resonance imaging (MRI) coupled with a vasoactive stimulus. Reduced CVR occurs with neurodegeneration and is associated with cognitive decline. While commonly measured in humans, few studies have evaluated CVR in animal models. Herein, we describe methods to induce hypercapnia in rhesus macaques (Macaca mulatta) under gas anesthesia to measure cerebral blood flow (CBF) and CVR using pseudo-continuous arterial spin labeling (pCASL). Fifteen (13 M, 2 F) adult rhesus macaques underwent pCASL imaging that included a baseline segment (100% O2) followed by a hypercapnic challenge (isoflurane anesthesia with 5% CO2, 95% O2 mixed gas). Relative hypercapnia was defined as an end-tidal CO2 (ETCO2) ≥5 mmHg above baseline ETCO2. The mean ETCO2 during the baseline segment of the pCASL sequence was 34 mmHg (range: 23-48 mmHg). During this segment, mean whole-brain CBF was 51.48 ml/100g/min (range: 21.47-77.23 ml/100g/min). Significant increases (p<0.0001) in ETCO2 were seen upon inspiration of the mixed gas (5% CO2, 95% O2). The mean increase in ETCO2 was 8.5 mmHg and corresponded with a mean increase in CBF of 37.1% (p<0.0001). The mean CVR measured was 4.3%/mmHg. No anesthetic complications occurred as a result of the CO2 challenge. Our methods were effective at inducing a state of relative hypercapnia that corresponds with a detectable increase in whole brain CBF using pCASL MRI. Using these methods, a CO2 challenge can be performed in conjunction with pCASL imaging to evaluate CBF and CVR in rhesus macaques. The measured CVR in rhesus macaques is comparable to human CVR highlighting the translational utility of rhesus macaques in neuroscience research. These methods present a feasible means to measure CVR in comparative models of neurodegeneration and cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Brendan J Johnson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States.
| | - Megan E Lipford
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biomedical Engineering, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Richard A Barcus
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - George W Schaaf
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Rachel N Andrews
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Simon Deycmar
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Colin A Reed
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - Christopher T Whitlow
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Radiology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biomedical Engineering, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States; Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, United States
| |
Collapse
|
6
|
van Grinsven EE, Guichelaar J, Philippens MEP, Siero JCW, Bhogal AA. Hemodynamic imaging parameters in brain metastases patients - Agreement between multi-delay ASL and hypercapnic BOLD. J Cereb Blood Flow Metab 2023; 43:2072-2084. [PMID: 37632255 PMCID: PMC10925872 DOI: 10.1177/0271678x231196989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
Arterial spin labeling (ASL) MRI is a routine clinical imaging technique that provides quantitative cerebral blood flow (CBF) information. A related technique is blood oxygenation level-dependent (BOLD) MRI during hypercapnia, which can assess cerebrovascular reactivity (CVR). ASL is weighted towards arteries, whereas BOLD is weighted towards veins. Their associated parameters in heterogeneous tissue types or under different hemodynamic conditions remains unclear. Baseline multi-delay ASL MRI and BOLD MRI during hypercapnia were performed in fourteen patients with brain metastases. In the ROI analysis, the CBF and CVR values were positively correlated in regions showing sufficient reserve capacity (i.e. non-steal regions, rrm = 0.792). Additionally, longer hemodynamic lag times were related to lower baseline CBF (rrm = -0.822) and longer arterial arrival time (AAT; rrm = 0.712). In contrast, in regions exhibiting vascular steal an inverse relationship was found with higher baseline CBF related to more negative CVR (rrm = -0.273). These associations were confirmed in voxelwise analyses. The relationship between CBF, AAT and CVR measures seems to be dependent on the vascular status of the underlying tissue. Healthy tissue relationships do not hold in tissues experiencing impaired or exhausted autoregulation. CVR metrics can possibly identify at-risk areas before perfusion deficiencies become visible on ASL MRI, specifically within vascular steal regions.
Collapse
Affiliation(s)
- Eva E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jamila Guichelaar
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle EP Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen CW Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, Amsterdam, Netherlands
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Magyar-Stang R, Pál H, Csányi B, Gaál A, Mihály Z, Czinege Z, Csipo T, Ungvari Z, Sótonyi P, Varga A, Horváth T, Bereczki D, Koller A, Debreczeni R. Assessment of cerebral autoregulatory function and inter-hemispheric blood flow in older adults with internal carotid artery stenosis using transcranial Doppler sonography-based measurement of transient hyperemic response after carotid artery compression. GeroScience 2023; 45:3333-3357. [PMID: 37599343 PMCID: PMC10643517 DOI: 10.1007/s11357-023-00896-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023] Open
Abstract
Unhealthy vascular aging promotes atherogenesis, which may lead to significant internal carotid artery stenosis (CAS) in 5 to 7.5% of older adults. The pathogenic factors that promote accelerated vascular aging and CAS also affect the downstream portion of the cerebral microcirculation in these patients. Primary treatments of significant CAS are eversion endarterectomy or endarterectomy with patch plasty. Factors that determine adequate hemodynamic compensation and thereby the clinical consequences of CAS as well as medical and surgical complications of carotid reconstruction surgery likely involve the anatomy of the circle of Willis (CoW), the magnitude of compensatory inter-hemispheric blood flow, and the effectiveness of cerebral microcirculatory blood flow autoregulation. This study aimed to test two hypotheses based on this theory. First, we hypothesized that patients with symptomatic and asymptomatic CAS would exhibit differences in autoregulatory function and inter-hemispheric blood flow. Second, we predicted that anatomically compromised CoW would associate with impaired inter-hemispheric blood flow compensation. We enrolled older adults with symptomatic or asymptomatic internal CAS (>70% NASCET criteria; n = 46) and assessed CoW integrity by CT angiography. We evaluated transient hyperemic responses in the middle cerebral arteries (MCA) after common carotid artery compression (CCC; 10 s) by transcranial Doppler sonography (TCD). We compared parameters reflecting autoregulatory function (e.g., transient hyperemic response ratio [THRR], return to baseline time [RTB], changes of vascular resistance) and inter-hemispheric blood flow (residual blood flow velocity). Our findings revealed that CAS was associated with impaired cerebral vascular reactivity. However, we did not observe significant differences in autoregulatory function or inter-hemispheric blood flow between patients with symptomatic and asymptomatic CAS. Moreover, anatomically compromised CoW did not significantly affect these parameters. Notably, we observed an inverse correlation between RTB and THRR, and 49% of CAS patients exhibited a delayed THRR, which associated with decreased inter-hemispheric blood flow. Future studies should investigate how TCD-based evaluation of autoregulatory function and inter-hemispheric blood flow can be used to optimize surgical techniques and patient selection for internal carotid artery revascularization.
Collapse
Affiliation(s)
- Rita Magyar-Stang
- Department of Neurology, Semmelweis University, Budapest, Hungary.
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary.
| | - Hanga Pál
- Department of Neurology, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Borbála Csányi
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Gaál
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Mihály
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Zsófia Czinege
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary
| | - Andrea Varga
- Department of Diagnostic Radiology, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Horváth
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Dániel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Akos Koller
- Research Center for Sport Physiology, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology & Physiology, Faculty of Health Sciences, and Translational Medicine Institute, Faculty of Medicine, and ELKH-SE, Cerebrovascular and Neurocognitive Disorders Research Group, Semmelweis University, Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|
8
|
Domingos C, Fouto AR, Nunes RG, Ruiz-Tagle A, Esteves I, Silva NA, Vilela P, Gil-Gouveia R, Figueiredo P. Impact of susceptibility-induced distortion correction on perfusion imaging by pCASL with a segmented 3D GRASE readout. Magn Reson Imaging 2023:S0730-725X(23)00104-2. [PMID: 37343905 DOI: 10.1016/j.mri.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE The consensus for the clinical implementation of arterial spin labeling (ASL) perfusion imaging recommends a segmented 3D Gradient and Spin-Echo (GRASE) readout for optimal signal-to-noise-ratio(SNR). The correction of the associated susceptibility-induced geometric distortions has been shown to improve diagnostic precision, but its impact on ASL data has not been systematically assessed and it is not consistently part of pre-processing pipelines. Here, we investigate the effects of susceptibility-induced distortion correction on perfusion imaging by pseudo-continuous ASL (pCASL) with a segmented 3D GRASE readout. METHODS Data acquired from 28 women using pCASL with 3D GRASE at 3T was analyzed using three pre-processing options: without distortion correction, with distortion correction, and with spatial smoothing (without distortion correction) matched to control for blurring effects induced by distortion correction. Maps of temporal SNR (tSNR) and relative perfusion were analyzed in eight regions-of-interest (ROIs) across the brain. RESULTS Distortion correction significantly affected tSNR and relative perfusion across the brain. Increases in tSNR were like those produced by matched spatial smoothing in most ROIs, indicating that they were likely due to blurring effects. However, that was not the case in the frontal and temporal lobes, where we also found increased relative perfusion with distortion correction even compared with matched spatial smoothing. These effects were found in both controls and patients, with no interactions with the participant group. CONCLUSION Correction of Susceptibility-induced distortions significantly impacts ASL perfusion imaging using a segmented 3D GRASE readout, and this step should therefore be considered in ASL pre-processing pipelines. This is of special importance in clinical studies, reporting perfusion across ROIs defined on relatively undistorted images and when conducting group analyses requiring the alignment of images across different subjects.
Collapse
Affiliation(s)
- Catarina Domingos
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Funchal, Portugal.
| | - Ana R Fouto
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Nunes
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Amparo Ruiz-Tagle
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Pedro Vilela
- Neurology Department, Hospital da Luz, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Neurology Department, Hospital da Luz, Lisbon, Portugal.; Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Fico BG, Miller KB, Rivera-Rivera LA, Corkery AT, Pearson AG, Loggie NA, Howery AJ, Rowley HA, Johnson KM, Johnson SC, Wieben O, Barnes JN. Cerebral hemodynamics comparison using transcranial doppler ultrasound and 4D flow MRI. Front Physiol 2023; 14:1198615. [PMID: 37304825 PMCID: PMC10250020 DOI: 10.3389/fphys.2023.1198615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Age-related changes in cerebral hemodynamics are controversial and discrepancies may be due to experimental techniques. As such, the purpose of this study was to compare cerebral hemodynamics measurements of the middle cerebral artery (MCA) between transcranial Doppler ultrasound (TCD) and four-dimensional flow MRI (4D flow MRI). Methods: Twenty young (25 ± 3 years) and 19 older (62 ± 6 years) participants underwent two randomized study visits to evaluate hemodynamics at baseline (normocapnia) and in response to stepped hypercapnia (4% CO2, and 6% CO2) using TCD and 4D flow MRI. Cerebral hemodynamic measures included MCA velocity, MCA flow, cerebral pulsatility index (PI) and cerebrovascular reactivity to hypercapnia. MCA flow was only assessed using 4D flow MRI. Results: MCA velocity between the TCD and 4D flow MRI methods was positively correlated across the normocapnia and hypercapnia conditions (r = 0.262; p = 0.004). Additionally, cerebral PI was significantly correlated between TCD and 4D flow MRI across the conditions (r = 0.236; p = 0.010). However, there was no significant association between MCA velocity using TCD and MCA flow using 4D flow MRI across the conditions (r = 0.079; p = 0.397). When age-associated differences in cerebrovascular reactivity using conductance were compared using both methodologies, cerebrovascular reactivity was greater in young adults compared to older adults when using 4D flow MRI (2.11 ± 1.68 mL/min/mmHg/mmHg vs. 0.78 ± 1.68 mL/min/mmHg/mmHg; p = 0.019), but not with TCD (0.88 ± 1.01 cm/s/mmHg/mmHg vs. 0.68 ± 0.94 cm/s/mmHg/mmHg; p = 0.513). Conclusion: Our results demonstrated good agreement between the methods at measuring MCA velocity during normocapnia and in response to hypercapnia, but MCA velocity and MCA flow were not related. In addition, measurements using 4D flow MRI revealed effects of aging on cerebral hemodynamics that were not apparent using TCD.
Collapse
Affiliation(s)
- Brandon G. Fico
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Kathleen B. Miller
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam T. Corkery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew G. Pearson
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicole A. Loggie
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J. Howery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Howard A. Rowley
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin M. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jill N. Barnes
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol Rev 2023; 103:1137-1191. [PMID: 36239451 PMCID: PMC9886361 DOI: 10.1152/physrev.00037.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
Collapse
Affiliation(s)
- Joseph A Taylor
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David B Bartlett
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas A Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Wang C, Reid G, Mackay CE, Hayes G, Bulte DP, Suri S. A Systematic Review of the Association Between Dementia Risk Factors and Cerebrovascular Reactivity. Neurosci Biobehav Rev 2023; 148:105140. [PMID: 36944391 DOI: 10.1016/j.neubiorev.2023.105140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Cumulative evidence suggests that impaired cerebrovascular reactivity (CVR), a regulatory response critical for maintaining neuronal health, is amongst the earliest pathological changes in dementia. However, we know little about how CVR is affected by dementia risk, prior to disease onset. Understanding this relationship would improve our knowledge of disease pathways and help inform preventative interventions. This systematic review investigates 59 studies examining how CVR (measured by magnetic resonance imaging) is affected by modifiable, non-modifiable, and clinical risk factors for dementia. We report that non-modifiable risk (older age and apolipoprotein ε4), some modifiable factors (diabetes, traumatic brain injury, hypertension) and some clinical factors (stroke, carotid artery occlusion, stenosis) were consistently associated with reduced CVR. We also note a lack of conclusive evidence on how other behavioural factors such as physical inactivity, obesity, or depression, affect CVR. This review explores the biological mechanisms underpinning these brain- behaviour associations, highlights evident gaps in the literature, and identifies the risk factors that could be managed to preserve CVR in an effort to prevent dementia.
Collapse
Affiliation(s)
- Congxiyu Wang
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Graham Reid
- Department of Psychiatry, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Genevieve Hayes
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Daniel P Bulte
- Institute of Biomedical Engineering, University of Oxford, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| |
Collapse
|
12
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
13
|
Stickland RC, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Lag-Optimized Blood Oxygenation Level Dependent Cerebrovascular Reactivity Estimates Derived From Breathing Task Data Have a Stronger Relationship With Baseline Cerebral Blood Flow. Front Neurosci 2022; 16:910025. [PMID: 35801183 PMCID: PMC9254683 DOI: 10.3389/fnins.2022.910025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebrovascular reactivity (CVR), an important indicator of cerebrovascular health, is commonly studied with the Blood Oxygenation Level Dependent functional MRI (BOLD-fMRI) response to a vasoactive stimulus. Theoretical and empirical evidence suggests that baseline cerebral blood flow (CBF) modulates BOLD signal amplitude and may influence BOLD-CVR estimates. We address how acquisition and modeling choices affect the relationship between baseline cerebral blood flow (bCBF) and BOLD-CVR: whether BOLD-CVR is modeled with the inclusion of a breathing task, and whether BOLD-CVR amplitudes are optimized for hemodynamic lag effects. We assessed between-subject correlations of average GM values and within-subject spatial correlations across cortical regions. Our results suggest that a breathing task addition to a resting-state acquisition, alongside lag-optimization within BOLD-CVR modeling, can improve BOLD-CVR correlations with bCBF, both between- and within-subjects, likely because these CVR estimates are more physiologically accurate. We report positive correlations between bCBF and BOLD-CVR, both between- and within-subjects. The physiological explanation of this positive correlation is unclear; research with larger samples and tightly controlled vasoactive stimuli is needed. Insights into what drives variability in BOLD-CVR measurements and related measurements of cerebrovascular function are particularly relevant when interpreting results in populations with altered vascular and/or metabolic baselines or impaired cerebrovascular reserve.
Collapse
Affiliation(s)
- Rachael C. Stickland
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Spain
- University of the Basque Country EHU/UPV, Donostia, Spain
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
14
|
Wu T, Shi Z, Chen B, Geng Y, Pan J. TCD hemodynamics findings in the subacute phase of anterior circulation stroke patients treated with mechanical thrombectomy. Open Med (Wars) 2022; 17:606-613. [PMID: 35434377 PMCID: PMC8961283 DOI: 10.1515/med-2022-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/03/2022] Open
Abstract
Despite mechanical thrombectomy, the prognosis for many patients with anterior circulation ischemic stroke (ACIS) remains poor. This retrospective study reports consecutive mechanical thrombectomy procedures for ACIS at our hospital over 4 years. Hemodynamics were explored using transcranial Doppler ultrasound. The functional outcome was assessed using the modified Rankin scale. A total of 121 eligible cases were included: 61 (50.4%) exhibited good outcomes (modified Rankin scale score ≤2) by day 90. The logistic regression analysis showed that ipsilateral middle cerebral artery (iMCA) systolic blood flow (SBF) (OR = 0.983, 95% CI: 0.969–0.997, P = 0.014), preoperative National Institutes of Health Stroke Scale (NIHSS)score (OR = 1.160, 95% CI: 1.067–1.261, P < 0.001), intracranial hemorrhage after therapy (OR = 19.514, 95% CI: 4.364–87.265, P < 0.001), and Alberta Stroke Program Early Computed Tomography Score (OR = 0.639, 95% CI: 0.416–0.981, P = 0.040) were independently associated with prognosis. The iMCA SBF and preoperative NIHSS score were significantly predictive of a good outcome in the receiver operating characteristic analysis. In conclusion, elevated iMCA SBF might be a prognostic indicator of a good 90-day outcome following endovascular treatment in ACIS patients treated with mechanical thrombectomy, but large prospective studies are mandatory to validate the findings of our study.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College) , Hangzhou , 310014 , Zhejiang China
| | - Zongjie Shi
- Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College) , Hangzhou , 310014 , Zhejiang China
| | - Bo Chen
- Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College) , Hangzhou , 310014 , Zhejiang China
| | - Yu Geng
- Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College) , Hangzhou , 310014 , Zhejiang China
| | - Jie Pan
- Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College) , No. 158 Shangtang Road , Hangzhou , 310014 , Zhejiang China
- Medical College of Soochow University , Suzhou , 215123 , China
| |
Collapse
|
15
|
Chen YW, Wengler K, He X, Canli T. Individual Differences in Cerebral Perfusion as a Function of Age and Loneliness. Exp Aging Res 2022; 48:1-23. [PMID: 34036895 PMCID: PMC8617054 DOI: 10.1080/0361073x.2021.1929748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Loneliness is defined as the subjective feeling that one's social needs are not satisfied by both quantity and quality of one's social relationships. Loneliness has been linked to a broad range of adverse physical and mental health consequences. There is an interest in identifying the neural and molecular processes by which loneliness adversely affects health. Prior imaging studies reported divergent networks involved in cognitive, emotional, and social processes associated with loneliness. Although loneliness is common among both younger and older adults, it is experienced differently across the lifespan and has different antecedents and consequences. The current study measured regional cerebral blood flow (CBF) using pulsed arterial spin labeling imaging. Forty-five older (Mage = 63.4) and forty-four younger adults (Mage = 20.9) with comparable degrees of loneliness were included. Whole-brain voxel-wise analysis revealed a main effect of age (in superior temporal and supramarginal gyri), but no main effect of loneliness. Furthermore, the age effect was only observed among people who reported higher level of loneliness. These regions have previously been implicated in social- and attention-related functions. The moderation of loneliness on age and regional CBF suggests that younger and older individuals present differential neural manifestations in response to loneliness, even with comparable levels of loneliness.
Collapse
Affiliation(s)
- Yen-Wen Chen
- Department of Psychology, Stony Brook University, Stony Brook, NY,Corresponding author: Yen-Wen Chen, Department of Psychology, Stony Brook University, Psychology B Building, Room 325, Stony Brook, NY 11794-2500, USA.
| | - Kenneth Wengler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Xiang He
- Department of Radiology, Stony Brook University, Stony Brook, NY
| | - Turhan Canli
- Department of Psychology, Stony Brook University, Stony Brook, NY,Department of Psychiatry, Stony Brook University, Stony Brook, NY
| |
Collapse
|
16
|
Wang R, Oh JM, Motovylyak A, Ma Y, Sager MA, Rowley HA, Johnson KM, Gallagher CL, Carlsson CM, Bendlin BB, Johnson SC, Asthana S, Eisenmenger L, Okonkwo OC. Impact of sex and APOE ε4 on age-related cerebral perfusion trajectories in cognitively asymptomatic middle-aged and older adults: A longitudinal study. J Cereb Blood Flow Metab 2021; 41:3016-3027. [PMID: 34102919 PMCID: PMC8545048 DOI: 10.1177/0271678x211021313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Cerebral hypoperfusion is thought to contribute to cognitive decline in Alzheimer's disease, but the natural trajectory of cerebral perfusion in cognitively healthy adults has not been well-studied. This longitudinal study is consisted of 950 participants (40-89 years), who were cognitively unimpaired at their first visit. We investigated the age-related changes in cerebral perfusion, and their associations with APOE-genotype, biological sex, and cardiometabolic measurements. During the follow-up period (range 0.13-8.24 years), increasing age was significantly associated with decreasing cerebral perfusion, in total gray-matter (β=-1.43), hippocampus (-1.25), superior frontal gyrus (-1.70), middle frontal gyrus (-1.99), posterior cingulate (-2.46), and precuneus (-2.14), with all P-values < 0.01. Compared with male-ɛ4 carriers, female-ɛ4 carriers showed a faster decline in global and regional cerebral perfusion with increasing age, whereas the age-related decline in cerebral perfusion was similar between male- and female-ɛ4 non-carriers. Worse cardiometabolic profile (i.e., increased blood pressure, body mass index, total cholesterol, and blood glucose) was associated with lower cerebral perfusion at all the visits. When time-varying cardiometabolic measurements were adjusted in the model, the synergistic effect of sex and APOE-ɛ4 on age-related cerebral perfusion-trajectories became largely attenuated. Our findings demonstrate that APOE-genotype and sex interactively impact cerebral perfusion-trajectories in mid- to late-life. This effect may be partially explained by cardiometabolic alterations.
Collapse
Affiliation(s)
- Rui Wang
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The Swedish School of Sport and Health Science, GIH, Stockholm, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jennifer M Oh
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Alice Motovylyak
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L Gallagher
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Laura Eisenmenger
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
17
|
Graff BJ, Payne SJ, El-Bouri WK. The Ageing Brain: Investigating the Role of Age in Changes to the Human Cerebral Microvasculature With an in silico Model. Front Aging Neurosci 2021; 13:632521. [PMID: 34421568 PMCID: PMC8374868 DOI: 10.3389/fnagi.2021.632521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Ageing causes extensive structural changes to the human cerebral microvasculature, which have a significant effect on capillary bed perfusion and oxygen transport. Current models of brain capillary networks in the literature focus on healthy adult brains and do not capture the effects of ageing, which is critical when studying neurodegenerative diseases. This study builds upon a statistically accurate model of the human cerebral microvasculature based on ex-vivo morphological data. This model is adapted for “healthy” ageing using in-vivo measurements from mice at three distinct age groups—young, middle-aged, and old. From this new model, blood and molecular exchange parameters are calculated such as permeability and surface-area-to-volume ratio, and compared across the three age groups. The ability to alter the model vessel-by-vessel is used to create a continuous gradient of ageing. It was found that surface-area-to-volume ratio reduced in old age by 6% and permeability by 24% from middle-age to old age, and variability within the networks also increased with age. The ageing gradient indicated a threshold in the ageing process around 75 years old, after which small changes have an amplified effect on blood flow properties. This gradient enables comparison of studies measuring cerebral properties at discrete points in time. The response of middle aged and old aged capillary beds to micro-emboli showed a lower robustness of the old age capillary bed to vessel occlusion. As the brain ages, there is thus increased vulnerability of the microvasculature—with a “tipping point” beyond which further remodeling of the microvasculature has exaggerated effects on the brain. When developing in-silico models of the brain, age is a very important consideration to accurately assess risk factors for cognitive decline and isolate early biomarkers of microvascular health.
Collapse
Affiliation(s)
- Barnaby J Graff
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Stephen J Payne
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Wahbi K El-Bouri
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.,Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Marquez-Romero JM, Huerta-Franco MR, Vargas-Luna M, Madrigal-Gutiérrez CA, Esparza-Hernández JM, Velázquez-Barcena MG. Dose Escalation and Safety of Capsaicin for Cerebral Perfusion Augmentation: A Pilot Study. Stroke 2021; 52:2203-2209. [PMID: 33966493 DOI: 10.1161/strokeaha.120.032773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | - Miguel Vargas-Luna
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías (M.V.-L.), Universidad de Guanajuato, Mexico
| | | | | | - María Guadalupe Velázquez-Barcena
- Instituto Mexicano del Seguro Social HGZ 2, Aguascalientes, Mexico (J.M.M.-R., C.A.M.-G., M.G.V.-B.).,Endocrinology Department, Centenario Hospital "Miguel Hidalgo," Aguascalientes, Mexico (M.G.V.-B.)
| |
Collapse
|
19
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Zhuang C, Poublanc J, Mcketton L, Venkatraghavan L, Sobczyk O, Duffin J, Crawley AP, Fisher JA, Wu R, Mikulis DJ. The value of a shorter-delay arterial spin labeling protocol for detecting cerebrovascular impairment. Quant Imaging Med Surg 2021; 11:608-619. [PMID: 33532261 DOI: 10.21037/qims-20-148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The aim of this study was to determine the relationship between blood oxygen level dependent (BOLD) cerebrovascular reactivity (CVR) and cerebral blood flow (CBF) obtained from arterial spin labeling (ASL) using different post labeling delays (PLD). Methods Forty-two patients with steno-occlusive diseases and impaired CVR were divided into two groups, one scanned with a 1.5-second (1.5-s) and the other with a 2.5-second (2.5-s) PLD ASL protocol. For all patients, a region of interest (ROI) was drawn around the CVR impairment. This affected ROI was then left-right flipped across the brain midline to obtain the control ROI. For both groups, the difference in grey matter CVR between affected and control ROI was first tested to confirm significance. The average grey matter CBF of affected and control ROIs were then compared. The same analysis method was used to compare affected and control hemispheres. Results In both groups of 1.5-s and 2.5-s PLD, CVR values in the affected ROI (-0.049±0.055 and -0.042±0.074%/mmHg, respectively) were significantly lower compared to that in the control ROI (0.152±0.054 and 0.152±0.053%/mmHg, respectively, P<0.0001). In the group with the 1.5-s PLD, CBF in the affected ROI (37.62±11.37 mL/100 g/min) was significantly lower compared to CBF in the control ROI (44.13±11.58 mL/100 g/min, P<0.05). However, in the group with the 2.5-s PLD, no significant differences could be seen between CBF in the affected ROI (40.50±14.82 mL/100 g/min) and CBF in the control ROI (39.68±12.49 mL/100 g/min, P=0.73). In the hemisphere-based analysis, CBF was significantly lower in the affected side than in the control side for the group with the 1.5-s PLD (P<0.05) when CVR was impaired (P<0.0001), but not for the group with the 2.5-s PLD (P=0.49). Conclusions In conclusion, our study reveals and highlights the value of a shorter-PLD ASL protocol, which is able to reflect CVR impairment. At the same time, we offer a better understanding of the relationship between BOLD CVR and CBF obtained from ASL.
Collapse
Affiliation(s)
- Caiyu Zhuang
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada.,Department of Medical Imaging, the First Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Larissa Mcketton
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | | | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - James Duffin
- Department of Anaesthesia, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University Health Network, Toronto, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Joseph A Fisher
- Department of Anaesthesia, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University Health Network, Toronto, Canada
| | - Renhua Wu
- Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
22
|
Comhaire F, Decleer W. Can the biological mechanisms of ageing be corrected by food supplementation. The concept of health care over sick care. Aging Male 2020; 23:1146-1157. [PMID: 31973615 DOI: 10.1080/13685538.2020.1713080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
"From care for the sick to care for health" implies that age-related diseases and discomforts, which impair the quality of life, should be prevented rather than treated. Healthy lifestyle and nutrition, and hormone supplementation - when needed - are of crucial importance. Food supplementation with nutraceuticals composed of vitamins, oligo-minerals, plant extracts and essential amino- and fatty acids should reduce age-related oxidative and epigenetic damage to DNA, and inhibit inflammatory and metabolic impairment. This study of the potential beneficial effects of novel nutraceuticals on the biological mechanisms of physical and mental ageing suggests these supplements may be scientifically justified. In the absence of adverse side effects and the expected favourable effect on the quality-adjusted life years, the benefit over risk ratio of nutraceutical supplementation should be positive.
Collapse
Affiliation(s)
| | - Wim Decleer
- Department of Reproductive Medicine, AZ Palfijn, Ghent, Belgium
- Fertility Clinic, Aalter, Belgium
| |
Collapse
|
23
|
Ma J, Ma Y, Shuaib A, Winship IR. Improved collateral flow and reduced damage after remote ischemic perconditioning during distal middle cerebral artery occlusion in aged rats. Sci Rep 2020; 10:12392. [PMID: 32709950 PMCID: PMC7381676 DOI: 10.1038/s41598-020-69122-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023] Open
Abstract
Circulation through cerebral collaterals can maintain tissue viability until reperfusion is achieved. However, collateral circulation is time limited, and failure of collaterals is accelerated in the aged. Remote ischemic perconditioning (RIPerC), which involves inducing a series of repetitive, transient peripheral cycles of ischemia and reperfusion at a site remote to the brain during cerebral ischemia, may be neuroprotective and can prevent collateral failure in young adult rats. Here, we demonstrate the efficacy of RIPerC to improve blood flow through collaterals in aged (16-18 months of age) Sprague Dawley rats during a distal middle cerebral artery occlusion. Laser speckle contrast imaging and two-photon laser scanning microscopy were used to directly measure flow through collateral connections to ischemic tissue. Consistent with studies in young adult rats, RIPerC enhanced collateral flow by preventing the stroke-induced narrowing of pial arterioles during ischemia. This improved flow was associated with reduced early ischemic damage in RIPerC treated aged rats relative to controls. Thus, RIPerC is an easily administered, non-invasive neuroprotective strategy that can improve penumbral blood flow via collaterals. Enhanced collateral flow supports further investigation as an adjuvant therapy to recanalization therapy and a protective treatment to maintain tissue viability prior to reperfusion.
Collapse
Affiliation(s)
- Junqiang Ma
- Neurochemical Research Unit, Department of Psychiatry, 12-127 Clinical Sciences Building, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yonglie Ma
- Neurochemical Research Unit, Department of Psychiatry, 12-127 Clinical Sciences Building, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Ashfaq Shuaib
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, 12-127 Clinical Sciences Building, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
24
|
Bracko O, Njiru BN, Swallow M, Ali M, Haft-Javaherian M, Schaffer CB. Increasing cerebral blood flow improves cognition into late stages in Alzheimer's disease mice. J Cereb Blood Flow Metab 2020; 40:1441-1452. [PMID: 31495298 PMCID: PMC7308509 DOI: 10.1177/0271678x19873658] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease is associated with a 20-30% reduction in cerebral blood flow. In the APP/PS1 mouse model of Alzheimer's disease, inhibiting neutrophil adhesion using an antibody against the neutrophil specific protein Ly6G was recently shown to drive rapid improvements in cerebral blood flow that was accompanied by an improvement in performance on short-term memory tasks. Here, in a longitudinal aging study, we assessed how far into disease development a single injection of anti-Ly6G treatment can acutely improve short-term memory function. We found that APP/PS1 mice as old as 15-16 months had improved performance on the object replacement and Y-maze tests of spatial and working short-term memory, measured at one day after anti-Ly6G treatment. APP/PS1 mice at 17-18 months of age or older did not show acute improvements in cognitive performance, although we did find that capillary stalls were still reduced and cerebral blood flow was still increased by 17% in 21-22-months-old APP/PS1 mice given anti-Ly6G antibody. These data add to the growing body of evidence suggesting that cerebral blood flow reductions are an important contributing factor to the cognitive dysfunction associated with neurodegenerative disease. Thus, interfering with neutrophil adhesion could be a new therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver Bracko
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brendah N Njiru
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Madisen Swallow
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Muhammad Ali
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mohammad Haft-Javaherian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Intzandt B, Sabra D, Foster C, Desjardins-Crépeau L, Hoge RD, Steele CJ, Bherer L, Gauthier CJ. Higher cardiovascular fitness level is associated with lower cerebrovascular reactivity and perfusion in healthy older adults. J Cereb Blood Flow Metab 2020; 40:1468-1481. [PMID: 31342831 PMCID: PMC7308519 DOI: 10.1177/0271678x19862873] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
Abstract
Aging is accompanied by vascular and structural changes in the brain, which include decreased grey matter volume (GMV), cerebral blood flow (CBF), and cerebrovascular reactivity (CVR). Enhanced fitness in aging has been related to preservation of GMV and CBF, and in some cases CVR, although there are contradictory relationships reported between CVR and fitness. To gain a better understanding of the complex interplay between fitness and GMV, CBF and CVR, the present study assessed these factors concurrently. Data from 50 participants, aged 55 to 72, were used to derive GMV, CBF, CVR and VO2peak. Results revealed that lower CVR was associated with higher VO2peak throughout large areas of the cerebral cortex. Within these regions lower fitness was associated with higher CBF and a faster hemodynamic response to hypercapnia. Overall, our results indicate that the relationships between age, fitness, cerebral health and cerebral hemodynamics are complex, likely involving changes in chemosensitivity and autoregulation in addition to changes in arterial stiffness. Future studies should collect other physiological outcomes in parallel with quantitative imaging, such as measures of chemosensitivity and autoregulation, to further understand the intricate effects of fitness on the aging brain, and how this may bias quantitative measures of cerebral health.
Collapse
Affiliation(s)
- Brittany Intzandt
- INDI Department, Concordia University,
Montreal, Canada
- PERFORM Centre, Concordia University,
Montreal, Canada
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - Dalia Sabra
- Départment de Médecine, Université de
Montréal, Canada
| | - Catherine Foster
- PERFORM Centre, Concordia University,
Montreal, Canada
- Physics Department, Concordia
University, Montreal, Canada
| | - Laurence Desjardins-Crépeau
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| | - Richard D Hoge
- Department of Neurology and
Neurosurgery, McGill University, Canada
| | - Christopher J Steele
- Department of Psychology, Concordia
University, Montreal, Canada
- Department of Neurology, Max Planck
Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Louis Bherer
- PERFORM Centre, Concordia University,
Montreal, Canada
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
- Départment de Médecine, Université de
Montréal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| | - Claudine J Gauthier
- PERFORM Centre, Concordia University,
Montreal, Canada
- Physics Department, Concordia
University, Montreal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| |
Collapse
|
26
|
Li N, Liu Y, Zhao Y, Wu X, Tong J, Hua Y. Cerebrovascular reactivity in young and old patients with obstructive sleep apnea. Sleep Med 2020; 73:125-129. [PMID: 32827884 DOI: 10.1016/j.sleep.2020.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Impaired cerebrovascular reactivity (CVR) in patients with obstructive sleep apnea syndrome (OSAS) increases the risk of ischemic stroke. CVR also decreases with age in normal individuals. However, it is unclear whether OSAS affects CVR differently in young and old patients. The aim of this study was to compare CVR in old and young patients with OSAS via transcranial Doppler (TCD) measurements of changes in cerebral blood flow velocity in the middle cerebral artery (MCAmv) during breath holding and hyperventilation. METHODS A total of 20 old patients (≥65 y) and 40 young patients (<65 y) with similar distributions of sex and OSAS severity were recruited for this study. The breath-holding index (BHI) and the hyperventilation index (HVI) were calculated to measure CVR. RESULTS No differences were found in MCAmv at baseline, apnea or hyperventilation between the two groups with different OSAS severities. However, reduced BHI (P < 0.01) and HVI (P < 0.01) were found in the young group with increasing severity of OSAS. Notably, the decline in BHI and HVI associated with OSAS severity was steeper in young patients than in old patients (P < 0.01). CONCLUSIONS These findings suggest that CVR in young patients is more impacted by OSAS severity than that in old patients, suggesting the existence of age-related cerebrovascular susceptibility to OSAS.
Collapse
Affiliation(s)
- Na Li
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yumei Liu
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Beijing, 100053 China
| | - Ying Zhao
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaoguang Wu
- Evidence-based Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Junyao Tong
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yang Hua
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Beijing, 100053 China.
| |
Collapse
|
27
|
Ma J, Ma Y, Shuaib A, Winship IR. Impaired Collateral Flow in Pial Arterioles of Aged Rats During Ischemic Stroke. Transl Stroke Res 2020; 11:243-253. [PMID: 31203565 PMCID: PMC7067739 DOI: 10.1007/s12975-019-00710-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/02/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
Cerebral collateral circulation and age are critical factors in determining outcome from acute ischemic stroke. Aging may lead to rarefaction of cerebral collaterals, and thereby accelerate ischemic injury by reducing penumbral blood flow. Dynamic changes in pial collaterals after onset of cerebral ischemia may vary with age but have not been extensively studied. Here, laser speckle contrast imaging (LSCI) and two-photon laser scanning microscopy (TPLSM) were combined to monitor cerebral pial collaterals between the anterior cerebral artery (ACA) and the middle cerebral artery (MCA) in young adult and aged male Sprague Dawley rats during distal middle cerebral artery occlusion (dMCAo). Histological analysis showed that aged rats had significantly greater volumes of ischemic damage than young rats. LSCI showed that cerebral collateral perfusion declined over time after stroke in aged and young rats, and that this decline was significantly greater in aged rats. TPLSM demonstrated that pial arterioles narrowed faster after dMCAo in aged rats compared to young adult rats. Notably, while arteriole vessel narrowing was comparable 4.5 h after ischemic onset in aged and young adult rats, red blood cell velocity was stable in young adults but declined over time in aged rats. Overall, red blood cell flux through pial arterioles was significantly reduced at all time-points after 90 min post-dMCAo in aged rats relative to young adult rats. Thus, collateral failure is more severe in aged rats with significantly impaired pial collateral dynamics (reduced diameter, red blood cell velocity, and red blood cell flux) relative to young adult rats.
Collapse
Affiliation(s)
- Junqiang Ma
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 12-127 Clinical Sciences Building, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yonglie Ma
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 12-127 Clinical Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Ashfaq Shuaib
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 12-127 Clinical Sciences Building, Edmonton, AB, T6G 2R3, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Lin SY, Lin CL, Chen WS, Lin CC, Lin CH, Hsu WH, Hsu CY, Kao CH. Association Between Alcoholic Cirrhosis and Hemorrhagic Stroke: A Nationwide Population-based Study. Alcohol Alcohol 2019; 54:302-309. [PMID: 30957143 DOI: 10.1093/alcalc/agz025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
AIMS This study investigated whether patients with alcoholic cirrhosis have a high risk of hemorrhagic stroke. METHODS In this study, 17,094 patients diagnosed with cirrhosis between 2000 and 2010 were identified using the Taiwan National Health Insurance claims data. Identified patients were randomly selected and propensity score matched with individuals without cirrhosis according to age, sex, comorbidities and index year. RESULTS The overall incidence rate of stroke was 4.41 and 12.1 per 1000 person-years in the chronic liver disease and cirrhosis (CLDC) with hepatitis B virus (HBV) or hepatitis C virus (HCV) cohort and the alcoholic CLDC cohort, respectively. The alcoholic CLDC cohort exhibited a 4.53-fold higher risk of hemorrhagic stroke (adjusted subhazard ratio [aSHR] = 4.53, 95% confidence interval [CI] = 3.05-6.71) than did the non-CLDC cohort, and the CLDC with HBV or HCV cohort exhibited a 1.40-fold higher risk of hemorrhagic stroke (aSHR = 1.40, 95% CI = 1.10-1.78) than did the non-CLDC cohort. The alcoholic CLDC cohort and the CLDC with HBV or HCV cohort showed an aSHR of 1.80 (95% CI = 1.36-2.40) and 0.95 (95% CI = 0.83-1.07) for ischemic stroke, respectively, compared with the non-CLDC cohort. CONCLUSION Alcoholic patients with CLDC had a higher risk of hemorrhagic stroke compared with non-alcoholic patients with CLDC and patients without CLDC.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taiwan.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Shan Chen
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taiwan.,Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsueh Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taiwan.,Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taiwan.,Division of Pulmonary and Critical Care Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taiwan.,Department of Nuclear Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
29
|
Yoshino Y, Koga I, Kitazawa T, Sakurai K, Oba H, Matsuda H, Furui S, Ota Y. Cerebral blood flow in young and middle-aged people living with HIV. Infect Dis (Lond) 2019; 52:75-79. [PMID: 31608759 DOI: 10.1080/23744235.2019.1677939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Purpose: Neurocognitive disorder has been noted as a long-term complication in individuals with HIV. In people living with HIV, regardless of treatment, age-related changes like arteriosclerosis are well-known to be accelerated. Such accelerated aging changes may decrease cerebral blood flow in younger generations with HIV, increasing the rate of occurrence of neurocognitive disorders. We investigated regional cerebral blood flows in well-controlled Japanese people living with HIV under 65 years old to clarify whether age-related changes in regional cerebral blood flows are accelerated in people living with HIV.Method: Japanese male HIV patients >20 years old but <65 years old who visited Teikyo University Hospital between August 2013 and September 2015 were recruited to and enrolled in this study. Healthy coeval male volunteers during the same period were recruited as controls. Magnetic resonance imaging was performed. Twelve regional cerebral blood flows were calculated from pseudocontinuous arterial spine labelling data.Results: Participants in this study comprised 40 individuals with HIV (HIV-positive group) and 33 non-HIV individuals (Control group). Median age was 40.15 years [interquartile range (IQR), 32.80-50.55 years] for the HIV-positive group and 48.00 years [IQR, 37.75-59.25 years; p = 0.3585] for the Control group. No significant differences in regional cerebral blood flows were seen between groups. In the HIV-positive group, cerebral blood flows decreased with age in the neocortex, although no significant decrease was observed in any of the regions in the control group.Conclusions: Significant age-related declines in cerebral blood flows in the neocortex may occur earlier in HIV patients.
Collapse
Affiliation(s)
- Yusuke Yoshino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Ichiro Koga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takatoshi Kitazawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Keita Sakurai
- Department of Radiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroshi Oba
- Department of Radiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shigeru Furui
- Department of Radiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuo Ota
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.,Department of Internal Medicine, National Hospital Organization Higashi Saitama Hospital, Saitama, Japan
| |
Collapse
|
30
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Alosco ML, Sugarman MA, Besser LM, Tripodis Y, Martin B, Palmisano JN, Kowall NW, Au R, Mez J, DeCarli C, Stein TD, McKee AC, Killiany RJ, Stern RA. A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 2019; 63:1347-1360. [PMID: 29843242 DOI: 10.3233/jad-180017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND White matter hyperintensities (WMH) on magnetic resonance imaging (MRI) have been postulated to be a core feature of Alzheimer's disease. Clinicopathological studies are needed to elucidate and confirm this possibility. OBJECTIVE This study examined: 1) the association between antemortem WMH and autopsy-confirmed Alzheimer's disease neuropathology (ADNP), 2) the relationship between WMH and dementia in participants with ADNP, and 3) the relationships among cerebrovascular disease, WMH, and ADNP. METHODS The sample included 82 participants from the National Alzheimer's Coordinating Center's Data Sets who had quantitated volume of WMH from antemortem FLAIR MRI and available neuropathological data. The Clinical Dementia Rating (CDR) scale (from MRI visit) operationalized dementia status. ADNP+ was defined by moderate to frequent neuritic plaques and Braak stage III-VI at autopsy. Cerebrovascular disease neuropathology included infarcts or lacunes, microinfarcts, arteriolosclerosis, atherosclerosis, and cerebral amyloid angiopathy. RESULTS 60/82 participants were ADNP+. Greater volume of WMH predicted increased odds for ADNP (p = 0.037). In ADNP+ participants, greater WMH corresponded with increased odds for dementia (CDR≥1; p = 0.038). WMH predicted cerebral amyloid angiopathy, microinfarcts, infarcts, and lacunes (ps < 0.04). ADNP+ participants were more likely to have moderate-severe arteriolosclerosis and cerebral amyloid angiopathy compared to ADNP-participants (ps < 0.04). CONCLUSIONS This study found a direct association between total volume of WMH and increased odds for having ADNP. In patients with Alzheimer's disease, FLAIR MRI WMH may be able to provide key insight into disease severity and progression. The association between WMH and ADNP may be explained by underlying cerebrovascular disease.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael A Sugarman
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neuropsychology, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Lilah M Besser
- National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.,Neurology Service, VA Boston Healthcare System, Boston, MA, USA
| | - Rhoda Au
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA.,Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis Health System, Sacramento, CA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.,U.S. Department of Veteran Affairs, VA Boston Healthcare System, Boston, MA, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.,U.S. Department of Veteran Affairs, VA Boston Healthcare System, Boston, MA, USA.,Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ronald J Killiany
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
32
|
Toma S, MacIntosh BJ, Swardfager W, Goldstein BI. Cerebral blood flow in bipolar disorder: A systematic review. J Affect Disord 2018; 241:505-513. [PMID: 30149339 DOI: 10.1016/j.jad.2018.08.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neuroimaging of cerebral blood flow (CBF) can inform our understanding of the pathophysiology of bipolar disorder (BD) as there is increasing support for the concept that BD is in part a vascular disease. Despite numerous studies examining CBF in BD, there has not yet been a review of the literature on the topic of CBF in BD. METHODS A systematic review of the literature on CBF in BD was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Studies included measured CBF by single-photon emission computerized tomography (SPECT), positron emission tomography (PET), arterial spin labelling (ASL) or perfusion weighted imaging (PWI) in a group of BD patients. RESULTS Thirty-three studies with a total of 508 subjects with BD and 538 controls were included (n = 15 SPECT; n = 8 PET; n = 7 ASL; n = 1 PWI; n = 2 other). The majority of studies in BD depression and mania reported widespread resting hypoperfusion in cingulate gyrus, frontal, and anterior temporal regions in comparison to healthy controls (HC). Findings in euthymic BD subjects and in symptomatically heterogeneous groups were less consistent. Studies that examined CBF responses to cognitive or emotional stimuli in BD subjects have reported hypoperfusion or different regions involved in comparison to HC. LIMITATIONS Important methodological heterogeneity between studies, and small number of subjects per study. CONCLUSIONS The most consistent findings to date are hypoperfusion in BD mood episodes, and hypoactive CBF responses to emotional or cognitive challenges. Future studies examining CBF are warranted, including prospective studies, studies examining CBF as a treatment target, and multimodal imaging studies.
Collapse
Affiliation(s)
- Simina Toma
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Walter Swardfager
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
33
|
McKetton L, Sobczyk O, Duffin J, Poublanc J, Sam K, Crawley AP, Venkatraghavan L, Fisher JA, Mikulis DJ. The aging brain and cerebrovascular reactivity. Neuroimage 2018; 181:132-141. [DOI: 10.1016/j.neuroimage.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/24/2022] Open
|
34
|
Chen JJ. Cerebrovascular-Reactivity Mapping Using MRI: Considerations for Alzheimer's Disease. Front Aging Neurosci 2018; 10:170. [PMID: 29922153 PMCID: PMC5996106 DOI: 10.3389/fnagi.2018.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/18/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is associated with well-established macrostructural and cellular markers, including localized brain atrophy and deposition of amyloid. However, there is growing recognition of the link between cerebrovascular dysfunction and AD, supported by continuous experimental evidence in the animal and human literature. As a result, neuroimaging studies of AD are increasingly aiming to incorporate vascular measures, exemplified by measures of cerebrovascular reactivity (CVR). CVR is a measure that is rooted in clinical practice, and as non-invasive CVR-mapping techniques become more widely available, routine CVR mapping may open up new avenues of investigation into the development of AD. This review focuses on the use of MRI to map CVR, paying specific attention to recent developments in MRI methodology and on the emerging stimulus-free approaches to CVR mapping. It also summarizes the biological basis for the vascular contribution to AD, and provides critical perspective on the choice of CVR-mapping techniques amongst frail populations.
Collapse
Affiliation(s)
- J J Chen
- Rotman Research Institute, Baycrest, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Liu P, De Vis JB, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. Neuroimage 2018; 187:104-115. [PMID: 29574034 DOI: 10.1016/j.neuroimage.2018.03.047] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular reserve and provides important information about vascular health in a range of brain conditions and diseases. Unlike steady-state vascular parameters, such as cerebral blood flow (CBF) and cerebral blood volume (CBV), CVR measures the ability of cerebral vessels to dilate or constrict in response to challenges or maneuvers. Therefore, CVR mapping requires a physiological challenge while monitoring the corresponding hemodynamic changes in the brain. The present review primarily focuses on methods that use CO2 inhalation as a physiological challenge while monitoring changes in hemodynamic MRI signals. CO2 inhalation has been increasingly used in CVR mapping in recent literature due to its potency in causing vasodilation, rapid onset and cessation of the effect, as well as advances in MRI-compatible gas delivery apparatus. In this review, we first discuss the physiological basis of CVR mapping using CO2 inhalation. We then review the methodological aspects of CVR mapping, including gas delivery apparatus, the timing paradigm of the breathing challenge, the MRI imaging sequence, and data analysis. In addition, we review alternative approaches for CVR mapping that do not require CO2 inhalation.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| | - Jill B De Vis
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21287, United States; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, United States
| |
Collapse
|
36
|
Daou MAZ, Boyd BD, Donahue MJ, Albert K, Taylor WD. Anterior-posterior gradient differences in lobar and cingulate cortex cerebral blood flow in late-life depression. J Psychiatr Res 2018; 97:1-7. [PMID: 29156413 PMCID: PMC5742550 DOI: 10.1016/j.jpsychires.2017.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
Vascular pathology is common in late-life depression, contributing to changes in cerebral function. We examined whether late-life depression was associated with differences in cerebral blood flow (CBF) and whether such differences were related to vascular risk and cerebrovascular pathology, specifically white matter hyperintensity (WMH) volumes. Twenty-three depressed elders and 20 age- and sex-matched elders with no psychiatric history completed cranial 3T MRI. MRI procedures included a pseudo-continuous Arterial Spin Labeling (pcASL) acquisition obtained while on room air and during a hypercapnia challenge allowing for calculation of cerebrovascular reactivity (CVR). Brain segmentation identified frontal, temporal, parietal and cingulate sub-regions in which CBF and CVR were calculated. The depressed group exhibited an anterior-posterior gradient in CBF, with lower CBF throughout the frontal lobe but higher CBF in the parietal lobe, temporal lobe, thalamus and hippocampus. A similar anterior to posterior gradient was observed in the cingulate cortex, with anterior regions exhibiting lower CBF and posterior regions exhibiting higher CBF. We did not observe any group differences in CVR measures. We did not observe significant relationships between CBF and CVR with vascular risk or WMH volumes, aside from an isolated finding associating higher WMH volumes with lower CBF in the rostral anterior cingulate cortex. Decreased anterior CBF in depressed elders might reflect decreased metabolic activity in these regions, while increased posterior CBF may represent either compensatory processes or different activity of posterior intrinsic functional networks. Future work should examine how these findings are related to compensatory changes with aging.
Collapse
Affiliation(s)
- Margarita Abi Zeid Daou
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA
| | - Brian D. Boyd
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA
| | - Manus J. Donahue
- The Department of Radiology and Radiological Science, Vanderbilt
University Medical Center, Nashville, TN, 37212, USA
| | - Kimberly Albert
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA
| | - Warren D. Taylor
- The Center for Cognitive Medicine, Department of Psychiatry and
Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212,
USA,Geriatric Research, Education and Clinical Center, Department of
Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN,
37212, USA
| |
Collapse
|
37
|
Zoghi A, Petramfar P, Nikseresht A, Sakhaee E. Investigation of ischemic and demyelinating lesions by cerebral vasoreactivity based on transcranial Doppler sonography: a comparative study. Neuropsychiatr Dis Treat 2018; 14:2323-2328. [PMID: 30254443 PMCID: PMC6141114 DOI: 10.2147/ndt.s150062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Variations of cerebral blood flow in response to hypoxia and hyperoxia in different disease conditions can provide new insights into disease etiopathogenesis. This study aimed to determine the characteristics of cerebral vasoreactivity for ischemia and demyelination. MATERIALS AND METHODS This case-control study included: 28 patients with lacunar infarctions verified by history, physical examination, and MRI; 28 age- and sex-matched healthy controls; 28 patients with relapsing-remitting multiple sclerosis (MS), based on McDonald criteria; and 28 age- and sex-matched healthy controls for the MS group. Transcranial Doppler sonography was undertaken in all subjects to calculate the mean flow velocity (MFV) of the right middle cerebral artery (MCA) and, after a breath-holding (BH) maneuver, the breath-holding index (BHI) was determined. RESULTS There was no significant difference of BHI and changes of MFV of the MCA in MS patients compared to controls (1.02 ± 0.4 vs 1.02 ± 0.3, p = 0.993; and 16.8 ± 8.1 vs 11.3 ± 10.8, p = 0.057). BHI in patients with lacunar infarctions was significantly lower (0.8 ± 0.4 vs 1.2 ± 0.3, p < 0.001) compared to controls. The BHI (p = 0.040) and variations of MFV of MCA (p = 0.007) in MS patients were significantly higher than in patients with lacunar infarctions. The vasoreactivity of demyelinating lesions was higher than that of ischemic ones. CONCLUSION Therefore, cerebral vasoreactivity determined by transcranial Doppler could be utilized for differentiating demyelinating from ischemic lesions.
Collapse
Affiliation(s)
- Anahita Zoghi
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Petramfar
- Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Alireza Nikseresht
- Clinical Neurology Research Center, Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Ehsan Sakhaee
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|