1
|
Listiyani P, Sanjaya R, Nathanael J, Chandra PS, Artadana IBM, Dwi Putra SE. Alteration of methylation pattern and gene expression of FTO, PPARγ and Slc2a4 on pre-diabetes-induced BALB/c mice. Mol Cell Biochem 2025; 480:2893-2901. [PMID: 39516340 DOI: 10.1007/s11010-024-05141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
T2DM is a serious global health problem and usually caused by unhealthy diet, such diet with high carbohydrate or monosodium glutamate (MSG). In this study, we used the T2DM mice (BALB/c) model by exposing the mice with foods high in carbohydrate (HCD) or MSG (HMD) to determine the changes in molecular expression and methylation pattern of genes correlated to the development of T2DM. The data including clinical data, i.e. body weight, fasting blood glucose, and glucose tolerance, as well as gene expression, methylation pattern of glucose transport related gene (Slc2a4, FTO, and PPARγ) and also collagen deposition were measured. HCD and HMD diet for 18 weeks failed to show any clinical development of T2DM. However, it was shown that both diets significantly altered the methylation pattern and gene expression. A decrease in the expression level of Slc2a4 accompanied with a decreased methylation level in its NF-κB attachment site was observed in both groups. In addition, both treatments also showed a decrease in the expression of PPARγ in contrast to its elevated methylation level. On the other hand, a significant increase in the expression of FTO was apparent. Furthermore, an increase in collagen deposition in both groups was also detected. Overall, this study showed that an alteration on the expression and methylation pattern of the genes that are associated with glucose transportation was observed in HCD and HMD despite having no T2DM clinical development. It can potentially be a new biomarker for detection of pre-diabetes.
Collapse
Affiliation(s)
- Priscilla Listiyani
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, 60293, Indonesia
- Division of Medical Biotechnology Research Group, Virtual Research Center for Bioinformatics and Biotechnology, Surabaya, Indonesia
| | - Ricky Sanjaya
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, 60293, Indonesia
| | - Joshua Nathanael
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, 60293, Indonesia
| | - Putu Suardana Chandra
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, 60293, Indonesia
| | - Ida Bagus Made Artadana
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, 60293, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Jl. Raya Kalirungkut, Surabaya, 60293, Indonesia.
| |
Collapse
|
2
|
Dyńka D, Rodzeń Ł, Rodzeń M, Łojko D, Kraszewski S, Ibrahim A, Hussey M, Deptuła A, Grzywacz Ż, Ternianov A, Unwin D. Beneficial Effects of the Ketogenic Diet on Nonalcoholic Fatty Liver Disease (NAFLD/MAFLD). J Clin Med 2024; 13:4857. [PMID: 39200999 PMCID: PMC11355934 DOI: 10.3390/jcm13164857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is likely to be approaching 38% of the world's population. It is predicted to become worse and is the main cause of morbidity and mortality due to hepatic pathologies. It is particularly worrying that NAFLD is increasingly diagnosed in children and is closely related, among other conditions, to insulin resistance and metabolic syndrome. Against this background is the concern that the awareness of patients with NAFLD is low; in one study, almost 96% of adult patients with NAFLD in the USA were not aware of their disease. Thus, studies on the therapeutic tools used to treat NAFLD are extremely important. One promising treatment is a well-formulated ketogenic diet (KD). The aim of this paper is to present a review of the available publications and the current state of knowledge of the effect of the KD on NAFLD. This paper includes characteristics of the key factors (from the point of view of NAFLD regression), on which ketogenic diet exerts its effects, i.e., reduction in insulin resistance and body weight, elimination of fructose and monosaccharides, limitation of the total carbohydrate intake, anti-inflammatory ketosis state, or modulation of gut microbiome and metabolome. In the context of the evidence for the effectiveness of the KD in the regression of NAFLD, this paper also suggests the important role of taking responsibility for one's own health through increasing self-monitoring and self-education.
Collapse
Affiliation(s)
- Damian Dyńka
- Rodzen Brothers Foundation, 64-234 Wieleń, Poland
| | | | | | - Dorota Łojko
- Department of Psychiatry, Poznan University of Medical Science, 60-572 Poznan, Poland
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ali Ibrahim
- Schoen Inpatient Children’s Eating Disorders Service, 147 Chester Rd, Streetly, Sutton Coldfield B74 3NE, UK
| | - Maria Hussey
- Private General Medical Practice Maria Hussey, Ojcowa Wola 5, 14-420 Mlynary, Poland
| | - Adam Deptuła
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Żaneta Grzywacz
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Alexandre Ternianov
- Primary Care Centre Vila Olimpica, Parc Sanitary Pere Virgili, c. Joan Miró 17, 08005 Barcelona, Spain
| | - David Unwin
- Faculty of Health Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| |
Collapse
|
3
|
Godoy G, Bernardo C, Casagrande L, Sérgio M, Zanoni J, Perles J, Curi R, Bazotte R. Linseed oil attenuates fatty liver disease in mice fed a high-carbohydrate diet. Braz J Med Biol Res 2023; 56:e12927. [PMID: 37703111 PMCID: PMC10496762 DOI: 10.1590/1414-431x2023e12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
The impact of linseed oil as a lipid source on liver disease induced by a high-carbohydrate diet (HCD) was evaluated. Adult male Swiss mice received an HCD containing carbohydrates (72.1%), proteins (14.2%), and lipids (4.0%). The Control HCD group (HCD-C) received an HCD containing lard (3.6%) and soybean oil (0.4%) as lipid sources. The L10 and L100 groups received an HCD with 10 and 100% linseed oil as lipid sources, respectively. A group of mice were euthanized before receiving the diets (day 0) and the remaining groups after 56 days of receiving the diets (HCD-C, L10, and L-100 groups). Morphological and histopathological analyses, as well as collagen deposition were evaluated. Perivenous hepatocytes (PVH) of the HCD-C group were larger (P<0.05) than periportal hepatocytes (PPH) in the median lobe (ML) and left lobe (LL). There was a greater (P<0.05) deposition of type I collagen in PPH (vs PVH) and in the ML (vs LL). The ML exhibited a higher proportion of apoptotic bodies, inflammatory infiltrate, and hepatocellular ballooning. All these alterations (hepatocyte size, deposition of type I collagen, apoptotic bodies, inflammatory infiltrate, and hepatocellular ballooning) induced by HCD were prevented or attenuated in L10 and L100 groups. Another indicator of the beneficial effects of linseed oil was the lower (P<0.05) number of binucleated hepatocytes (HCD-C vs L10 or L100 group). In general, the L100 group had greater effects than the L10 group. In conclusion, linseed oil impedes or reduces the liver injury progression induced by an HCD.
Collapse
Affiliation(s)
- G. Godoy
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C.C.O. Bernardo
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - L. Casagrande
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M.L.M. Sérgio
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - J.N. Zanoni
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - J.V.C.M. Perles
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R. Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
- Seção de Produção de Imunobiológicos, Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - R.B. Bazotte
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
4
|
Borges JCO, Oliveira VAB, Serdan TDA, Silva FLR, Santos CS, Pauferro JRB, Ribas ASF, Manoel R, Pereira ACG, Correa IS, Pereira JNB, Bazotte RB, Levada-Pires AC, Pithon-Curi TC, Gorjão R, Curi R, Hirabara SM, Masi LN. Brain glucose hypometabolism and hippocampal inflammation in Goto-Kakizaki rats. Braz J Med Biol Res 2023; 56:e12742. [PMID: 37377307 DOI: 10.1590/1414-431x2023e12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
Brain glucose hypometabolism and neuroinflammation are early pathogenic manifestations in neurological disorders. Neuroinflammation may also disrupt leptin signaling, an adipokine that centrally regulates appetite and energy balance by acting on the hypothalamus and exerting neuroprotection in the hippocampus. The Goto-Kakizaki (GK) rat is a non-obese type 2 diabetes mellitus (T2DM) animal model used to investigate diabetes-associated molecular mechanisms without obesity jeopardizing effects. Wistar and GK rats received the maintenance adult rodent diet. Also, an additional control group of Wistar rats received a high-fat and high-sugar diet (HFHS) provided by free consumption of condensed milk. All diets and water were provided ad libitum for eight weeks. Brain glucose uptake was evaluated by 2-deoxy-2-[fluorine-18] fluoro-D-glucose under basal (saline administration) or stimulated (CL316,243, a selective β3-AR agonist) conditions. The animals were fasted for 10-12 h, anesthetized, and euthanized. The brain was quickly dissected, and the hippocampal area was sectioned and stored at -80°C in different tubes for protein and RNA analyses on the same animal. GK rats exhibited attenuated brain glucose uptake compared to Wistar animals and the HFHS group under basal conditions. Also, the hippocampus of GK rats displayed upregulated leptin receptor, IL-1β, and IL-6 gene expression and IL-1β and the subunit of the transcription factor NF-κB (p-p65) protein expression. No significant alterations were detected in the hippocampus of HFHS rats. Our data indicated that a genetic predisposition to T2DM has significant brain deteriorating features, including brain glucose hypometabolism, neuroinflammation, and leptin signaling disruption in the hippocampal area.
Collapse
Affiliation(s)
- J C O Borges
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - V A B Oliveira
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - T D A Serdan
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - F L R Silva
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - C S Santos
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - J R B Pauferro
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - A S F Ribas
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R Manoel
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - A C G Pereira
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - I S Correa
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - J N B Pereira
- Seção de Produção de Imunobiológicos, Bioindustrial Centro, Instituto Butantan, São Paulo, SP, Brasil
| | - R B Bazotte
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - A C Levada-Pires
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - T C Pithon-Curi
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R Gorjão
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R Curi
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
- Seção de Produção de Imunobiológicos, Bioindustrial Centro, Instituto Butantan, São Paulo, SP, Brasil
| | - S M Hirabara
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - L N Masi
- Programa Interdisciplinar de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| |
Collapse
|
5
|
Thangavel H, Lizardo K, Dhanyalayam D, De Assis S, Nagajyothi JF. Diets Differently Regulate Tumorigenesis in Young E0771 Syngeneic Breast Cancer Mouse Model. J Clin Med 2023; 12:413. [PMID: 36675341 PMCID: PMC9862441 DOI: 10.3390/jcm12020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer type, accounting for one in eight cancer diagnoses worldwide. Epidemiological studies have shown that obesity is associated with increased risk of BC in post-menopausal women, whereas adiposity reduces the risk of BC in premenopausal women. The mechanistic link between obesity and BC has been examined by combining murine BC models with high-fat diet (HFD) induced obesity. However, the effect of adiposity (not obesity) induced by a short period of HFD consumption on BC pathogenesis is not well understood. In the current study, we examined the effects of different diet compositions on BC pathogenesis using a young E0771 syngeneic BC mouse model fed on either an HFD or regular diet (RD: a low-fat high-carbohydrate diet) for a short period (4 weeks) before implanting mammary tumors in mice. We analyzed the effect of diet composition on the onset of tumor growth, metastasis, and metabolic and immune status in the tumor microenvironment (TME) using various methods including in vivo bioluminescence imaging and immunoblotting analyses. We showed for the first time that a short-term HFD delays the onset of tumorigenesis by altering the immune and metabolic signaling and energy mechanism in the TME. However, RD may increase the risk of tumorigenesis and metastasis by increasing pro-inflammatory factors in the TME in young mice. Our data suggest that diet composition, adipogenesis, and loss of body fat likely regulate the pathogenesis of BC in a manner that differs between young and post-menopausal subjects.
Collapse
Affiliation(s)
- Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Sonia De Assis
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
6
|
Zanol JF, Niño OMS, da Costa CS, Zimerman J, Silva NP, Oliveira TM, Maas EMSWD, Dos Santos FCF, Miranda-Alves L, Graceli JB. High-refined carbohydrate diet alters different metabolic functions in female rats. Mol Cell Endocrinol 2022; 558:111774. [PMID: 36096379 DOI: 10.1016/j.mce.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022]
Abstract
A diet containing refined carbohydrate (HCD) caused obesity and white adipose tissue (WAT) abnormalities, but it is unclear if HCD is linked with other metabolic dysfunctions in female models. Thus, we assessed whether HCD results in WAT, pancreas, liver, skeletal muscle (SM) and thyroid (TH) abnormalities in female rats. Female rats were fed with HCD for 15 days and metabolic morphophysiology, inflammation, oxidative stress (OS), and fibrosis markers were assessed. HCD rats presented large adipocytes, hyperleptinemia, and WAT OS. HCD caused irregular glucose metabolism, low insulin levels, and large pancreatic isle. Granulomas, reduced glycogen, and OS were observed in HCD livers. HCD caused hypertrophy and increased in glycogen in SM. HCD caused irregular TH morphophysiology, reduced colloid area and high T3 levels. In all selected tissues, inflammation and fibrosis were observed in HCD rats. Collectively, these data suggest that the HCD impairs metabolic function linked with irregularities in WAT, pancreas, liver, SM and TH in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Natalia P Silva
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Thalita M Oliveira
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Edgar M S W D Maas
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
7
|
Church JS, Renzelman ML, Schwartzer JJ. Ten-week high fat and high sugar diets in mice alter gut-brain axis cytokines in a sex-dependent manner. J Nutr Biochem 2022; 100:108903. [PMID: 34748922 PMCID: PMC8761169 DOI: 10.1016/j.jnutbio.2021.108903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 02/03/2023]
Abstract
Diets high in fat and sugar induce inflammation throughout the body, particularly along the gut-brain axis; however, the way these changes in immune signaling mediate one another remains unknown. We investigated cytokine changes in the brain and colon following prolonged high fat or sugar diet in female and male adult C57BL/6 mice. Ten weeks of high fat diet increased levels of TNFα, IL-1β, IL-6, IFNγ, and IL-10 in the female hippocampus and altered cytokines in the frontal cortex of both sexes. High sugar diet increased hippocampal cytokines and decreased cytokines in the diencephalon and frontal cortex. In the colon, high fat diet changed cytokine expression in both sexes, while high sugar diet only increased TNFα in males. Causal mediation analysis confirmed that colon IL-10 and IL-6 mediate high fat diet-induced neuroimmune changes in the female hippocampus and male frontal cortex. Additionally, high fat diet increased food consumption and weight gain in both sexes, while high sugar diet decreased male weight gain. These findings reveal a novel causal link between gut and brain inflammation specific to prolonged consumption of high fat, not high sugar, diet. Importantly, this work includes females which have been under-represented in diet research, and demonstrates that diet-induced neuroinflammation varies by brain region between sexes. Furthermore, our data suggest female brains are more vulnerable than males to inflammatory changes following excessive fat and sugar consumption, which may help explain the increased risk of inflammation-associated psychiatric conditions in women who eat a Western Diet rich in both dietary components.
Collapse
Affiliation(s)
- Jamie S. Church
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Margaret L. Renzelman
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Jared J. Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| |
Collapse
|
8
|
Masetto Antunes M, Godoy G, Curi R, Vergílio Visentainer J, Barbosa Bazotte R. The Myristic Acid:Docosahexaenoic Acid Ratio Versus the n-6 Polyunsaturated Fatty Acid:n-3 Polyunsaturated Fatty Acid Ratio as Nonalcoholic Fatty Liver Disease Biomarkers. Metab Syndr Relat Disord 2021; 20:69-78. [PMID: 34813379 DOI: 10.1089/met.2021.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well established that diets containing an increased omega-6 polyunsaturated fatty acid (n-6 PUFA) to omega-3 polyunsaturated fatty acid (n-3 PUFA) ratios are linked to inflammation and chronic diseases such as nonalcoholic fatty liver disease (NAFLD). However, the influence of an elevated n-6 PUFA:n-3 PUFA ratio in the tissues requires clarification. Herein, we identified primary experimental and clinical studies where it is possible to compare the performance of the myristic acid (Myr):docosahexaenoic acid (DHA) and n-6 PUFA:n-3 PUFA ratios in the liver and/or serum as potential NAFLD biomarkers. Articles were included if quantitative values of n-6 PUFA, n-3 PUFA, Myr, DHA, and information about liver inflammation or liver disease progression parameters were provided. Overall, most experimental (91.6%) and clinical studies (87.5%) reported higher Myr:DHA ratios associated with inflammation and/or NAFLD progression than the n-6 PUFA:n-3 PUFA ratio. We conclude that the Myr:DHA ratio represents a better biomarker of NAFLD than the n-6 PUFA:n-3 PUFA ratio. Future studies are necessary for verifying this observation.
Collapse
Affiliation(s)
- Marina Masetto Antunes
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Guilherme Godoy
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Roberto Barbosa Bazotte
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil.,Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| |
Collapse
|
9
|
Masetto Antunes M, Godoy G, Masi LN, Curi R, Barbosa Bazotte R. Prefrontal Cortex and Hippocampus Inflammation in Mice Fed High-Carbohydrate or High-Fat Diets. J Med Food 2021; 25:110-113. [PMID: 34495750 DOI: 10.1089/jmf.2021.0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that a high-carbohydrate diet (HCD) induced systemic inflammation and higher gene expression of proinflammatory mediators in the liver, skeletal muscle, and brain than a high-fat diet (HFD). However, the differences between the groups were less pronounced in the brain. In this study, we extended the evaluation of inflammation to specific areas of the brain. In this study, we evaluated the gene expression of caspase 2, caspase 3, caspase 9, cyclooxygenase-2 (Cox 2), inducible nitric oxide synthase (iNOS), interleukin (IL), IL-6, IL-1β, IL-10, IL-4, tumor necrosis factor-alpha (TNF-α), integrin subunit alpha m (Itgam), S100 protein (S100), allograft inflammatory factor 1 (Aif1), and glial fibrillary acidic protein (Gfap) in the prefrontal cortex and hippocampus of male Swiss mice that were fed with HCD or HFD for 8 weeks. The HCD group exhibited higher IL-1β expression, whereas the HFD group showed higher TNF-α expression in the prefrontal cortex. In the hippocampus, TNF-α expression was higher in the HFD group. IL-1β and TNF-α are proinflammatory cytokines that have been associated with impaired brain function and numerous brain disorders. Our results indicate that both HCD and HFD promote prefrontal cortex inflammation; however, the hippocampus seems more sensitive to a HFD than HCD.
Collapse
Affiliation(s)
- Marina Masetto Antunes
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Guilherme Godoy
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil and Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil and Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Roberto Barbosa Bazotte
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil.,Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| |
Collapse
|
10
|
Walhin JP, Gonzalez JT, Betts JA. Physiological responses to carbohydrate overfeeding. Curr Opin Clin Nutr Metab Care 2021; 24:379-384. [PMID: 33871420 DOI: 10.1097/mco.0000000000000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To consider emerging research into the physiological effects of excessive dietary carbohydrate intake, with a particular focus on interactions with physical activity. RECENT FINDINGS A single episode of massive carbohydrate overload initiates physiological responses to stimulate additional peptide hormone secretion by the gut and the conversion of carbohydrate into lipid by the intestine, liver and adipose tissue. These acute responses maintain glycaemic control both via increased oxidation of carbohydrate (rather than lipid) and via nonoxidative disposal of surplus carbohydrate into endogenous glycogen and lipid storage depots. Sustained carbohydrate overfeeding therefore results in a chronic accumulation of lipid in the liver, skeletal muscle and adipose tissue, which can impair insulin sensitivity and cardiometabolic health in general. Beyond any direct effect of such lipid deposition on body mass/composition, there is not yet clear evidence of physiologically meaningful metabolic or behavioural adaptations to carbohydrate overfeeding in terms of other components of energy balance. However, regular physical exercise can mitigate the negative health effects of carbohydrate overfeeding, independent of any effect on the net carbohydrate surplus. SUMMARY Research in this area has advanced understanding regarding the mechanisms of weight gain and associated health outcomes within the modern context of an abundant supply of dietary carbohydrate.
Collapse
Affiliation(s)
- Jean-Philippe Walhin
- Centre for Nutrition, Exercise & Metabolism, Department for Health, University of Bath, Bath, UK
| | | | | |
Collapse
|
11
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) was defined in 1980 and has the same histological characteristics as alcoholic liver disease except for alcohol consumption. After 40 years, the understanding of this disease is still imperfect. Without specific drugs available for treatment, the number of patients with NAFLD is increasing rapidly, and NAFLD currently affects more than one-quarter of the global population. NAFLD is mostly caused by a sedentary lifestyle and excessive energy intake of fat and sugar. To ameliorate or avoid NAFLD, people commonly replace high-fat foods with high-carbohydrate foods (especially starchy carbohydrates) as a way to reduce caloric intake and reach satiety. However, there are few studies that concentrate on the effect of carbohydrate intake on liver metabolism in patients with NAFLD, much fewer than the studies on fat intake. Besides, most of these studies are not systematic, which has made identification of the mechanism difficult. In this review, we collected and analysed data from studies on human and animal models and, surprisingly, found that carbohydrates and liver steatosis could be linked by inflammation. This review not only describes the effects of carbohydrates on NAFLD and body lipid metabolism but also analyses and predicts possible molecular pathways of carbohydrates in liver lipid synthesis that involve inflammation. Furthermore, the limitations of recent research and possible targets for regulating inflammation and lipogenesis are discussed. This review describes the effects of starchy carbohydrates, a nutrient signal, on NAFLD from the perspective of inflammation.
Collapse
|
12
|
Leocádio PCL, Lopes SC, Dias RP, Alvarez-Leite JI, Guerrant RL, Malva JO, Oriá RB. The Transition From Undernutrition to Overnutrition Under Adverse Environments and Poverty: The Risk for Chronic Diseases. Front Nutr 2021; 8:676044. [PMID: 33968973 PMCID: PMC8102690 DOI: 10.3389/fnut.2021.676044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Paola Caroline L Leocádio
- Laboratory of Atherosclerosis and Nutritional Biochemistry, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Nutrition, Nursing School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Synara C Lopes
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Ronaldo P Dias
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Jacqueline I Alvarez-Leite
- Laboratory of Atherosclerosis and Nutritional Biochemistry, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Richard L Guerrant
- Center for Global Health, University of Virginia, Charlottesville, VA, United States
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Reinaldo B Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
13
|
de Almeida-Souza CB, Antunes MM, Carbonera F, Godoy G, da Silva MARCP, Masi LN, Visentainer JV, Curi R, Bazotte RB. A High-Fat Diet Induces Lower Systemic Inflammation than a High-Carbohydrate Diet in Mice. Metab Syndr Relat Disord 2021; 19:296-304. [PMID: 33570478 DOI: 10.1089/met.2020.0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: We previously established that male Swiss mice (Mus musculus) receiving a high-fat diet (HFD) during 8 weeks exhibit similar caloric ingestion and body weight (grams) compared with mice fed a high-carbohydrate diet (HCD). HFD mice exhibit a lower inflammatory state than an HCD in the liver, skeletal muscle, and brain. In addition, we demonstrated that HFD and HCD modulated fatty acids (FA) composition in these tissues. In this study, our objective was to compare HFD mice and HCD mice in terms of systemic inflammation. Methods: Saturated FA (SFA), monounsaturated FA, omega-6 polyunsaturated FA (n-6 PUFA), and n-3 PUFA were evaluated at the time points 0, 1, 7, 14, 28, and 56 days after starting the administration of the diets. We investigated n-6 PUFA:n-3 PUFA, SFA:n-3 PUFA, palmitic acid:α-linolenic acid (ALA), and myristic acid:docosahexaenoic acid (DHA) ratios as potential serum biomarkers of systemic inflammation. We also measured the serum levels of basic fibroblast growth factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), inducible protein 10 (IP-10), interferon gamma (IFN-γ), interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, macrophage inflammatory protein-1α (MIP-1-α), monocyte chemotactic protein 1 (MCP-1), monokine induced by IFN-γ (MIG), and tumor necrosis factor α (TNF-α). Results: The HFD group had lower (P < 0.05) n-6 PUFA:n-3 PUFA, palmitic acid:ALA, myristic acid:DHA ratios, and lower plasma levels of proinflammatory cytokines (IFN-γ, MIG, GM-CSF, and IL-6). Conclusion: The HFD mice showed lower systemic inflammation compared with a caloric ingestion-body weight-matched control HCD mice.
Collapse
Affiliation(s)
| | - Marina M Antunes
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Fabiana Carbonera
- Department of Chemistry, State University of Maringá, Maringá, Brazil
| | - Guilherme Godoy
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Maria A R C P da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Laureane N Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Roberto B Bazotte
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil.,Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| |
Collapse
|
14
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
15
|
Antunes MM, Godoy G, Fernandes IDL, Manin LP, Zappielo C, Masi LN, de Oliveira VAB, Visentainer JV, Curi R, Bazotte RB. The Dietary Replacement of Soybean Oil by Canola Oil Does Not Prevent Liver Fatty Acid Accumulation and Liver Inflammation in Mice. Nutrients 2020; 12:E3667. [PMID: 33260679 PMCID: PMC7760057 DOI: 10.3390/nu12123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
A high-carbohydrate diet (HCD) is a well-established experimental model of accelerated liver fatty acid (FA) deposition and inflammation. In this study, we evaluated whether canola oil can prevent these physiopathological changes. We evaluated hepatic FA accumulation and inflammation in mice fed with a HCD (72.1% carbohydrates) and either canola oil (C group) or soybean oil (S group) as a lipid source for 0, 7, 14, 28, or 56 days. Liver FA compositions were analyzed by gas chromatography. The mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was measured as an indicator of lipogenesis. The mRNA expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, as mediators of liver inflammation, were also measured. The C group stored less n-6 polyunsaturated FAs (n-6 PUFAs) and had more intense lipid deposition of monounsaturated FAs (MUFAs), n-3 PUFAs, and total FAs. The C group also showed higher ACC1 expression. Moreover, on day 56, the C group showed higher expressions of the inflammatory genes F4/80, TNF-α, IL-1β, and IL-6, as well as the anti-inflammatory IL-10. In conclusion, a diet containing canola oil as a lipid source does not prevent the fatty acid accumulation and inflammation induced by a HCD.
Collapse
Affiliation(s)
- Marina Masetto Antunes
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| | - Guilherme Godoy
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| | - Ingrid de Lima Fernandes
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Luciana Pelissari Manin
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Caroline Zappielo
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Vivian Araújo Barbosa de Oliveira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Jesuí Vergílio Visentainer
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| |
Collapse
|
16
|
Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS One 2020; 15:e0233364. [PMID: 32530969 PMCID: PMC7292416 DOI: 10.1371/journal.pone.0233364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/04/2020] [Indexed: 12/28/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is among the most prevalent diseases in the world, affecting over 420 million people. The disease is marked by a poor metabolic effect of insulin leading to chronic hyperglycaemia, which can result in microvascular complications. It is widely known that postprandial glycaemia is reliant on the total carbohydrate content of a meal. However, the importance of the amount and the source of these carbohydrates remains controversial due to mechanisms other than insulin secretion. Oxidative stress, inflammation, pyruvate production and the quality of the intestinal microbiota, resulting in plasma lipopolysaccharides and short-chain fatty acids production, play an important role in blood sugar control and consequently in type 2 diabetes. Thus, we systematically reviewed the preclinical evidences on the impact of the amount and type of carbohydrate found in different diets and its influence on blood glucose levels in diabetic animals. We used a comprehensive and structured search in biomedical databases Medline (PubMed), Scopus and Web of Science, recovering and analyzing 27 original studies. Results showed that sucrose-rich diets deteriorated diabetic condition in animal models regardless of the total dietary carbohydrate content. On the other hand, fiber, particularly resistant starch, improved blood glucose parameters through direct and indirect mechanisms, such as delayed gastric emptying and improved gut microbiota. All studies used rodents as animal models and male animals were preferred over females. Improvements in T2DM parameters in animal models were more closely related to the type of dietary carbohydrate than to its content on a diet, i. e., resistant starch seems to be the most beneficial source for maintaining normoglycemia. Results show that current literature is at high risk of bias due to neglecting experimental methods.
Collapse
|
17
|
Chiurazzi M, Di Maro M, Cozzolino M, Colantuoni A. Mitochondrial Dynamics and Microglia as New Targets in Metabolism Regulation. Int J Mol Sci 2020; 21:ijms21103450. [PMID: 32414136 PMCID: PMC7279384 DOI: 10.3390/ijms21103450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Energy homeostasis regulation is essential for the maintenance of life. Neuronal hypothalamic populations are involved in the regulation of energy balance. In order play this role, they require energy: mitochondria, indeed, have a key role in ensuring a constant energy supply to neurons. Mitochondria are cellular organelles that are involved in dynamic processes; their dysfunction has been associated with many diseases, such as obesity and type 2 diabetes, indicating their importance in cellular metabolism and bioenergetics. Food intake excess can induce mitochondrial dysfunction with consequent production of reactive oxygen species (ROS) and oxidative stress. Several studies have shown the involvement of mitochondrial dynamics in the modulation of releasing agouti-related protein (AgRP) and proopiomelanocortin (POMC) neuronal activity, although the mechanisms are still unclear. However, recent studies have shown that changes in mitochondrial metabolism, such as in inflammation, can contribute also to the activation of the microglial system in several diseases, especially degenerative diseases. This review is aimed to summarize the link between mitochondrial dynamics and hypothalamic neurons in the regulation of glucose and energy homeostasis. Furthermore, we focus on the importance of microglia activation in the pathogenesis of many diseases, such as obesity, and on the relationship with mitochondrial dynamics, although this process is still largely unknown.
Collapse
Affiliation(s)
- Martina Chiurazzi
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.M.); (A.C.)
- Correspondence: ; Tel.: +39-388-372-4757
| | - Martina Di Maro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.M.); (A.C.)
| | - Mauro Cozzolino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA;
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Calle Tulipán, Móstoles, 28933 Madrid, Spain
- IVIRMA, IVI Foundation, Health Research Institute La Fe, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.D.M.); (A.C.)
| |
Collapse
|