1
|
Ochoa Tufiño V, Almira Casellas M, van Duynhoven A, Flis P, Salt DE, Schat H, Aarts MGM. Arabidopsis thaliana Zn transporter genes ZIP3 and ZIP5 provide the main Zn uptake route and act redundantly to face Zn deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17251. [PMID: 39930616 PMCID: PMC11811486 DOI: 10.1111/tpj.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 02/14/2025]
Abstract
In response to Zn deficiency, plants are thought to adjust Zn homeostasis through the coordinated expression of Zn transporters. Zn transporters are identified in the ZIP, HMA and CDF families of cation transporters, although only few are characterized. We determined gene expression over time, root-specific location of expression and phenotypes of single and double loss-of-function mutants of several Arabidopsis thaliana transporters, known to be induced by Zn deficiency. Transcription of Zn transporter genes is induced in the first 6 h of exposure to Zn deficiency. ZIP1 is predominantly expressed in the endodermis and stele, ZIP3 and ZIP5 in the epidermis and cortex, IRT3 from epidermis to stele and HMA2 in xylem parenchyma. ZIP3 and ZIP5 act redundantly, with the double-mutant zip3zip5 showing high sensitivity to Zn deficiency with low biomass production, expression of other transporter genes, low Zn uptake and increased metal translocation. The root expression map and timing indicate that Zn transporters act complementary in a concerted action to control Zn homeostasis. The lack of strong Zn-deficient phenotypes in single mutants suggests a high level of functional redundancy, best illustrated for ZIP3 and ZIP5.
Collapse
Affiliation(s)
- Valeria Ochoa Tufiño
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
- Present address:
Departmento de Ciencias de la VidaUniversidad de las Fuerzas Armadas – ESPESangolquíEcuador
| | - Maria Almira Casellas
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
- Present address:
Universitat Autònoma de Barcelona08193BellaterraSpain
| | - Aron van Duynhoven
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
| | - Paulina Flis
- Future Food Beacon of Excellence & School of BiosciencesUniversity of NottinghamLE12 5RDSutton BoningtonUK
| | - David E. Salt
- Future Food Beacon of Excellence & School of BiosciencesUniversity of NottinghamLE12 5RDSutton BoningtonUK
| | - Henk Schat
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
| |
Collapse
|
2
|
James M, Masclaux-Daubresse C, Balliau T, Marmagne A, Chardon F, Trouverie J, Etienne P. Multi-scale phenotyping of senescence-related changes in roots of rapeseed in response to nitrate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:312-330. [PMID: 39382543 PMCID: PMC11714756 DOI: 10.1093/jxb/erae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Root senescence remains largely unexplored. In this study, the time-course of the morphological, metabolic, and proteomic changes occurring with root aging were investigated, providing a comprehensive picture of the root senescence program. We found novel senescence-related markers for the characterization of the developmental stage of root tissues. The rapeseed root system is unique in that it consists of the taproot and lateral roots. Our study confirmed that the taproot, which transiently accumulates large quantities of starch and proteins, is specifically dedicated to nutrient storage and remobilization, while the lateral roots are mainly dedicated to nutrient uptake. Proteomic data from the taproot and lateral roots highlighted the different senescence-related events that control nutrient remobilization and nutrient uptake capacities. Both the proteome and enzyme activities revealed senescence-induced proteases and nucleotide catabolic enzymes that deserve attention as they may play important roles in nutrient remobilization efficiency in rapeseed roots. Taking advantage of publicly available transcriptomic and proteomic data on senescent Arabidopsis leaves, we provide a novel lists of senescence-related proteins specific or common to root organs and/or leaves.
Collapse
Affiliation(s)
- Maxence James
- Université de Caen Normandie, INRAE, UMR 950 EVA, SFR Normandie Végétal (FED4277), 14000 Caen, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Jacques Trouverie
- Université de Caen Normandie, INRAE, UMR 950 EVA, SFR Normandie Végétal (FED4277), 14000 Caen, France
| | - Philippe Etienne
- Université de Caen Normandie, INRAE, UMR 950 EVA, SFR Normandie Végétal (FED4277), 14000 Caen, France
| |
Collapse
|
3
|
Perveen A, Sheheryar S, Ahmad F, Mustafa G, Moura AA, Campos FAP, Domont GB, Nishan U, Ullah R, Ibrahim MA, Nogueira FCS, Shah M. Integrative physiological, biochemical, and proteomic analysis of the leaves of two cotton genotypes under heat stress. PLoS One 2025; 20:e0316630. [PMID: 39787180 PMCID: PMC11717266 DOI: 10.1371/journal.pone.0316630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes. In this study, we explored the proteomic changes underscoring the heat stress tolerance in the leaves of two locally developed cotton genotypes, i.e., heat tolerant (GH-Hamaliya Htol) and heat susceptible (CIM-789 Hsus), guided by morpho-physiological and biochemical analysis. These genotypes were sown at two different temperatures, control (35°C) and stress (45°C), in a glasshouse, in a randomized complete block design (RCBD) in three replications. At the flowering stage, a label-free quantitative shotgun proteomics of cotton leaves revealed the differential expression of 701 and 1270 proteins in the tolerant and susceptible genotypes compared to the control, respectively. Physiological and biochemical analysis showed that the heat-tolerant genotype responded uniquely to stress by maintaining the net photosynthetic rate (Pn) (25.2-17.5 μmolCO2m-2S-1), chlorophyll (8.5-7.8mg/g FW), and proline contents (4.9-7.4 μmole/g) compared to control, supported by the upregulation of many proteins involved in several pathways, including photosynthesis, oxidoreductase activity, response to stresses, translation, transporter activities, as well as protein and carbohydrate metabolic processes. In contrast, the distinctive pattern of protein downregulation involved in stress response, oxidoreductase activity, and carbohydrate metabolism was observed in susceptible plants. To the best of our knowledge, this is the first proteomic study on cotton leaves that has identified more than 8000 proteins with an array of differentially expressed proteins responsive to the heat treatment that could serve as potential markers in the breeding programs after further experimentation.
Collapse
Affiliation(s)
- Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sheheryar Sheheryar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Fiaz Ahmad
- Physiology/Chemistry Section, Central Cotton Research Institute, Multan, Pakistan
| | - Ghazala Mustafa
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Francisco A. P. Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Gilberto B. Domont
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, PR China
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fábio C. S. Nogueira
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
4
|
Ancín M, Soba D, Picazo PJ, Gámez AL, Le Page JF, Houdusse D, Aranjuelo I. Optimizing oilseed rape growth: Exploring the effect of foliar biostimulants on the interplay among metabolism, phenology, and yield. PHYSIOLOGIA PLANTARUM 2024; 176:e14561. [PMID: 39363578 DOI: 10.1111/ppl.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The current agricultural system is in search of new strategies to achieve a more sustainable production while keeping or even increasing crop yield and quality. In this scenario, the application of biostimulants constitutes a potent solution. In the current study, the impact of a blue-green microalgal extract (MB) and a pig tissue hydrolysate (PTH) on rapeseed plants' development was characterized. Obtained results revealed a positive effect on yield parameters of plants treated with MB and, especially, PTH; this was associated to an improvement on the photosynthetic performance. Moreover, this study remarked the effects of biostimulants on plant phenology through their pivotal role in modulating developmental processes. More specifically, proteomic, metabolomic, and hormone content analyses revealed distinct alterations associated with the acceleration of phenology induced by biostimulant application. Additionally, some antioxidant enzymes and stress-related compounds were up-regulated upon MB and PTH treatments, indicating enhanced plant defense mechanisms in response to accelerated phenological transitions. Such findings highlight the intricate interplay between biostimulants and plant physiology, wherein biostimulants orchestrate rapid developmental changes, ultimately influencing growth dynamics. Altogether, the current study reveals that the application of both MB and PTH biostimulants promoted rapeseed plant phenology and productivity associated with an improvement in the photosynthetic machinery while boosting other physiological and molecular mechanisms.
Collapse
Affiliation(s)
- María Ancín
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - Pedro J Picazo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - Angie L Gámez
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | | | | | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| |
Collapse
|
5
|
Baytar AA, Yanar EG, Frary A, Doğanlar S. Association mapping and candidate gene identification for yield traits in European hazelnut ( Corylus avellana L.). PLANT DIRECT 2024; 8:e625. [PMID: 39170862 PMCID: PMC11336203 DOI: 10.1002/pld3.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
European hazelnut (Corylus avellana L.) is an important nut crop due to its nutritional benefits, culinary uses, and economic value. Türkiye is the leading producer of hazelnut, followed by Italy and the United States. Quantitative trait locus studies offer promising opportunities for breeders and geneticists to identify genomic regions controlling desirable traits in hazelnut. A genome-wide association analysis was conducted with 5,567 single nucleotide polymorphisms on a Turkish core set of 86 hazelnut accessions, revealing 189 quantitative trait nucleotides (QTNs) associated with 22 of 31 traits (p < 2.9E-07). These QTNs were associated with plant and leaf, phenological, reproductive, nut, and kernel traits. Based on the close physical distance of QTNs associated with the same trait, we identified 23 quantitative trait loci. Furthermore, we identified 23 loci of multiple QTs comprising chromosome locations associated with more than one trait at the same position or in close proximity. A total of 159 candidate genes were identified for 189 QTNs, with 122 of them containing significant conserved protein domains. Some candidate matches to known proteins/domains were highly significant, suggesting that they have similar functions as their matches. This comprehensive study provides valuable insights for the development of breeding strategies and the improvement of hazelnut and enhances the understanding of the genetic architecture of complex traits by proposing candidate genes and potential functions.
Collapse
Affiliation(s)
- Asena Akköse Baytar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Ertuğrul Gazi Yanar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
- Plant Science and Technology Application and Research CenterIzmir Institute of TechnologyIzmirTürkiye
| |
Collapse
|
6
|
Li YM, Tang XS, Sun MH, Zhang HX, Xie ZS. Expression and function identification of senescence-associated genes under continuous drought treatment in grapevine ( Vitis vinifera L.) leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:877-891. [PMID: 38974354 PMCID: PMC11222358 DOI: 10.1007/s12298-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024]
Abstract
Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01465-2.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Meng-Hao Sun
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Deng J, Huang X, Chen J, Vanholme B, Guo J, He Y, Qin W, Zhang J, Yang W, Liu J. Shade stress triggers ethylene biosynthesis to accelerate soybean senescence and impede nitrogen remobilization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108658. [PMID: 38677188 DOI: 10.1016/j.plaphy.2024.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In gramineae-soybean intercropping systems, shade stress caused by taller plants impacts soybean growth specifically during the reproductive stage. However, the effects of shade stress on soybean senescence remain largely unexplored. In this research, we applied artificial shade treatments with intensities of 75% (S75) and 50% (S50) to soybean plants at the onset of flowering to simulate the shade stress experienced by soybeans in the traditional and optimized maize-soybean intercropping systems, respectively. Compared to the normal light control, both shade treatments led to a rapid decline in the dry matter content of soybean vegetative organs and accelerated their abscission. Moreover, shade treatments triggered the degradation of chlorophyll and soluble proteins in leaves and increased the expression of genes associated with leaf senescence. Metabolic profiling further revealed that ethylene biosynthesis and signal transduction were induced by shade treatment. In addition, the examination of nitrogen content demonstrated that shade treatments impeded the remobilization of nitrogen in vegetative tissues, consequently reducing the seed nitrogen harvest. It's worth noting that these negative effects were less pronounced under the S50 treatment compared to the S75 treatment. Taken together, this research demonstrates that shade stress during the reproductive stage accelerates soybean senescence and impedes nitrogen remobilization, while optimizing the field layout to improve soybean growth light conditions could mitigate these challenges in the maize-soybean intercropping system.
Collapse
Affiliation(s)
- Juncai Deng
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Xiangqing Huang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Gent, Belgium; VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052, Gent, Belgium
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Wenting Qin
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Jing Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China.
| | - Jiang Liu
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
8
|
Daldoul S, Hanzouli F, Boubakri H, Nick P, Mliki A, Gargouri M. Deciphering the regulatory networks involved in mild and severe salt stress responses in the roots of wild grapevine Vitis vinifera spp. sylvestris. PROTOPLASMA 2024; 261:447-462. [PMID: 37963978 DOI: 10.1007/s00709-023-01908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Transcriptional regulatory networks are pivotal components of plant's response to salt stress. However, plant adaptation strategies varied as a function of stress intensity, which is mainly modulated by climate change. Here, we determined the gene regulatory networks based on transcription factor (TF) TF_gene co-expression, using two transcriptomic data sets generated from the salt-tolerant "Tebaba" roots either treated with 50 mM NaCl (mild stress) or 150 mM NaCl (severe stress). The analysis of these regulatory networks identified specific TFs as key regulatory hubs as evidenced by their multiple interactions with different target genes related to stress response. Indeed, under mild stress, NAC and bHLH TFs were identified as central hubs regulating nitrogen storage process. Moreover, HSF TFs were revealed as a regulatory hub regulating various aspects of cellular metabolism including flavonoid biosynthesis, protein processing, phenylpropanoid metabolism, galactose metabolism, and heat shock proteins. These processes are essentially linked to short-term acclimatization under mild salt stress. This was further consolidated by the protein-protein interaction (PPI) network analysis showing structural and plant growth adjustment. Conversely, under severe salt stress, dramatic metabolic changes were observed leading to novel TF members including MYB family as regulatory hubs controlling isoflavonoid biosynthesis, oxidative stress response, abscisic acid signaling pathway, and proteolysis. The PPI network analysis also revealed deeper stress defense changes aiming to restore plant metabolic homeostasis when facing severe salt stress. Overall, both the gene co-expression and PPI network provided valuable insights on key transcription factor hubs that can be employed as candidates for future genetic crop engineering programs.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| | - Faouzia Hanzouli
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, El Manar II, 2092, Tunis, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, B.P 901, 2050, Hammam-Lif, Tunisia
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| |
Collapse
|
9
|
Velasco-Arroyo B, Curiel-Alegre S, Khan AHA, Rumbo C, Pérez-Alonso D, Rad C, De Wilde H, Pérez-de-Mora A, Barros R. Phytostabilization of metal(loid)s by ten emergent macrophytes following a 90-day exposure to industrially contaminated groundwater. N Biotechnol 2024; 79:50-59. [PMID: 38128697 DOI: 10.1016/j.nbt.2023.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Better understanding of macrophyte tolerance under long exposure times in real environmental matrices is crucial for phytoremediation and phytoattenuation strategies for aquatic systems. The metal(loid) attenuation ability of 10 emergent macrophyte species (Carex riparia, Cyperus longus, Cyperus rotundus, Iris pseudacorus, Juncus effusus, Lythrum salicaria, Menta aquatica, Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) was investigated using real groundwater from an industrial site, over a 90-day exposure period. A "phytobial" treatment was included, with 3 plant growth-promoting rhizobacterial strains. Plants exposed to the polluted water generally showed similar or reduced aerial biomass compared to the controls, except for C. riparia. This species, along with M. aquatica, exhibited improved biomass after bioaugmentation. Phytoremediation mechanisms accounted for more than 60% of As, Cd, Cu, Ni, and Pb removal, whilst abiotic mechanisms contributed to ∼80% removal of Fe and Zn. Concentrations of metal(loid)s in the roots were generally between 10-100 times higher than in the aerial parts. The macrophytes in this work can be considered "underground attenuators", more appropriate for rhizostabilization strategies, especially L. salicaria, M. aquatica, S. holoschoenus, and T. angustifolia. For I. pseudacorus, C. longus, and C. riparia; harvesting the aerial parts could be a complementary phytoextraction approach to further remove Pb and Zn. Of all the plants, S. holoschoenus showed the best balance between biomass production and uptake of multiple metal(loid)s. Results also suggest that multiple phytostrategies may be possible for the same plant depending on the final remedial aim. Phytobial approaches need to be further assessed for each macrophyte species.
Collapse
Affiliation(s)
- Blanca Velasco-Arroyo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, s/n, 09001 Burgos, Spain.
| | - Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Daniel Pérez-Alonso
- Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), University of Burgos, Faculty of Sciences, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Herwig De Wilde
- TAUW België nv, Dept. of Soil and Groundwater, Waaslandlaan 8A3, 9160 Lokeren, Belgium
| | - Alfredo Pérez-de-Mora
- TAUW GmbH, Dept. of Soil and Groundwater, Landsberger Str. 290, 80687 München, Germany
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
10
|
Wang Y, Zhao LM, Feng N, Zheng D, Shen XF, Zhou H, Jiang W, Du Y, Zhao H, Lu X, Deng P. Plant growth regulators mitigate oxidative damage to rice seedling roots by NaCl stress. PeerJ 2024; 12:e17068. [PMID: 38495756 PMCID: PMC10944629 DOI: 10.7717/peerj.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
The aim of this experiment was to investigate the effects of exogenous sprays of 5-aminolevulinic acid (5-ALA) and 2-Diethylaminoethyl hexanoate (DTA-6) on the growth and salt tolerance of rice (Oryza sativa L.) seedlings. This study was conducted in a solar greenhouse at Guangdong Ocean University, where 'Huanghuazhan' was selected as the test material, and 40 mg/L 5-ALA and 30 mg/L DTA-6 were applied as foliar sprays at the three-leaf-one-heart stage of rice, followed by treatment with 0.3% NaCl (W/W) 24 h later. A total of six treatments were set up as follows: (1) CK: control, (2) A: 40 mg⋅ L-1 5-ALA, (3) D: 30 mg⋅ L-1 DTA-6, (4) S: 0.3% NaCl, (5) AS: 40 mg⋅ L-1 5-ALA + 0.3% NaCl, and (6) DS: 30 mg⋅ L-1 DTA-6+0.3% NaCl. Samples were taken at 1, 4, 7, 10, and 13 d after NaCl treatment to determine the morphology and physiological and biochemical indices of rice roots. The results showed that NaCl stress significantly inhibited rice growth; disrupted the antioxidant system; increased the rates of malondialdehyde, hydrogen peroxide, and superoxide anion production; and affected the content of related hormones. Malondialdehyde content, hydrogen peroxide content, and superoxide anion production rate significantly increased from 12.57% to 21.82%, 18.12% to 63.10%, and 7.17% to 56.20%, respectively, in the S treatment group compared to the CK group. Under salt stress, foliar sprays of both 5-ALA and DTA-6 increased antioxidant enzyme activities and osmoregulatory substance content; expanded non-enzymatic antioxidant AsA and GSH content; reduced reactive oxygen species (ROS) accumulation; lowered malondialdehyde content; increased endogenous hormones GA3, JA, IAA, SA, and ZR content; and lowered ABA content in the rice root system. The MDA, H2O2, and O2- contents were reduced from 35.64% to 56.92%, 22.30% to 53.47%, and 7.06% to 20.01%, respectively, in the AS treatment group compared with the S treatment group. In the DS treatment group, the MDA, H2O2, and O2- contents were reduced from 24.60% to 51.09%, 12.14% to 59.05%, and 12.70% to 45.20%. In summary, NaCl stress exerted an inhibitory effect on the rice root system, both foliar sprays of 5-ALA and DTA-6 alleviated damage from NaCl stress on the rice root system, and the effect of 5-ALA was better than that of DTA-6.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Li-ming Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Xue Feng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, Guangdong, China
| | - Wenxin Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Youwei Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Huimin Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xutong Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Peng Deng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Zhang Z, Xu Y, He Z, Liu C, Wang R, Wang X, Peng Y, Chen L, Peng S, Ma L, Li Z, Tang W, Chen Y, Chen J, Yang X. Physiological and molecular characteristics associated with the anti-senescence in Camellia oleifera Abel. PHOTOSYNTHETICA 2024; 62:102-111. [PMID: 39650640 PMCID: PMC11609776 DOI: 10.32615/ps.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/10/2024] [Indexed: 12/11/2024]
Abstract
This study analyzed physiological and molecular characteristics associated with the resistance to aging or anti-senescence in Camellia oleifera Abel. Trees over 100 years old (ancient trees) were compared with those about 30 years old (mature trees). Total chlorophylls, chlorophyll a/b ratio, and hydrogen peroxide concentrations in ancient tree leaves were significantly higher than in their counterparts. Significantly higher activities of superoxide dismutase, peroxidase, and catalase were detected in ancient tree leaves. Nine Chl a/b-binding protein genes, 15 antioxidant enzyme genes, 21 hormone-related genes, and 301 stress-related genes were upregulated, and 42 protein-degradation genes were downregulated in ancient tree leaves. By increasing chlorophyll content and antioxidant enzyme activities and regulating the ageing-related genes expression, ancient C. oleifera leaves maintained remarkable vitality. Although further research is needed, our study may shed some light on how ancient C. oleifera trees can resist ageing and sustain their healthy growth.
Collapse
Affiliation(s)
- Z. Zhang
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - Y.M. Xu
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - Z.L. He
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - C.X. Liu
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - R. Wang
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - X.N. Wang
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - Y.H. Peng
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - L.S. Chen
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - S.F. Peng
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - L. Ma
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - Z.G. Li
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - W. Tang
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - Y.Z. Chen
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| | - J. Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Science, University of Florida, 32703 Apopka, USA
| | - X.H. Yang
- Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
| |
Collapse
|
12
|
Knödler M, Frank K, Kerpen L, Buyel JF. Design, optimization, production and activity testing of recombinant immunotoxins expressed in plants and plant cells for the treatment of monocytic leukemia. Bioengineered 2023; 14:2244235. [PMID: 37598369 PMCID: PMC10444015 DOI: 10.1080/21655979.2023.2244235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/22/2023] Open
Abstract
Antibody-drug conjugates (ADCs) can improve therapeutic indices compared to plain monoclonal antibodies (mAbs). However, ADC synthesis is complex because the components are produced separately in CHO cells (mAb) and often by chemical synthesis (drug). They are individually purified, coupled, and then the ADC is purified, increasing production costs compared to regular mAbs. In contrast, it is easier to produce recombinant fusion proteins consisting of an antibody derivative, linker and proteinaceous toxin, i.e. a recombinant immunotoxin (RIT). Plants are capable of the post-translational modifications needed for functional antibodies and can also express active protein toxins such as the recombinant mistletoe lectin viscumin, which is not possible in prokaryotes and mammalian cells respectively. Here, we used Nicotiana benthamiana and N. tabacum plants as well as tobacco BY-2 cell-based plant cell packs (PCPs) to produce effective RITs targeting CD64 as required for the treatment of myelomonocytic leukemia. We compared RITs with different subcellular targeting signals, linkers, and proteinaceous toxins. The accumulation of selected candidates was improved to ~ 40 mg kg-1 wet biomass using a design of experiments approach, and corresponding proteins were isolated with a purity of ~ 80% using an optimized affinity chromatography method with an overall yield of ~ 84%. One anti-CD64 targeted viscumin-based drug candidate was characterized in terms of storage stability and cytotoxicity test in vitro using human myelomonocytic leukemia cell lines. We identified bottlenecks in the plant-based expression platform that require further improvement and assessed critical process parameters that should be considered during process development for plant-made RITs.
Collapse
Affiliation(s)
- Matthias Knödler
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Katharina Frank
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lucy Kerpen
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Johannes Felix Buyel
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Vienna, Austria
| |
Collapse
|
13
|
Xie Z, Zhang Q, Xia C, Dong C, Li D, Liu X, Kong X, Zhang L. Identification of the early leaf senescence gene ELS3 in bread wheat (Triticum aestivum L.). PLANTA 2023; 259:5. [PMID: 37994951 DOI: 10.1007/s00425-023-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Characterization of the early leaf senescence mutant els3 and identification of its causal gene ELS3, which encodes an LRR-RLK protein in wheat. Leaf senescence is an important agronomic trait that affects both crop yield and quality. However, few senescence-related genes in wheat have been cloned and functionally analyzed. Here, we report the characterization of the early leaf senescence mutant els3 and fine mapping of its causal gene ELS3 in wheat. Compared with wild-type Yanzhan4110 (YZ4110), the els3 mutant had a decreased chlorophyll content and a degraded chloroplast structure after the flowering stage. Further biochemical assays in flag leaves showed that the superoxide anion and hydrogen peroxide contents increased, while the activities of antioxidant enzymes, including catalase, superoxide dismutase and glutathione reductase, decreased gradually after the flowering stage in the els3 mutant. To clone the causal gene underlying the phenotype of leaf senescence, a genetic map was constructed using 10,133 individuals of F2:3 populations, and ELS3 was located in a 2.52 Mb region on chromosome 2DL containing 16 putative genes. Subsequent sequence analysis and gene annotation identified only one SNP (C to T) in the first exon of TraesCS2D02G332700, resulting in an amino acid substitution (Pro329Ser), and TraesCS2D02G332700 was preliminarily considered as the candidate gene of ELS3. ELS3 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) protein that is localized on the cell membrane. We also found that the transient expression of mutant TraesCS2D02G332700 can induce leaf senescence in N. benthamiana. Taken together, TraesCS2D02G332700 is likely to be the candidate gene of ELS3 and may have a function in regulating leaf senescence.
Collapse
Affiliation(s)
- Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Vorster J, van der Westhuizen W, du Plessis G, Marais D, Sparvoli F, Cominelli E, Camilli E, Ferrari M, Le Donne C, Marconi S, Lisciani S, Losa A, Sala T, Kunert K. In order to lower the antinutritional activity of serine protease inhibitors, we need to understand their role in seed development. FRONTIERS IN PLANT SCIENCE 2023; 14:1252223. [PMID: 37860251 PMCID: PMC10582697 DOI: 10.3389/fpls.2023.1252223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Proteases, including serine proteases, are involved in the entire life cycle of plants. Proteases are controlled by protease inhibitors (PI) to limit any uncontrolled or harmful protease activity. The role of PIs in biotic and abiotic stress tolerance is well documented, however their role in various other plant processes has not been fully elucidated. Seed development is one such area that lack detailed work on the function of PIs despite the fact that this is a key process in the life cycle of the plant. Serine protease inhibitors (SPI) such as the Bowman-Birk inhibitors and Kunitz-type inhibitors, are abundant in legume seeds and act as antinutrients in humans and animals. Their role in seed development is not fully understood and present an interesting research target. Whether lowering the levels and activity of PIs, in order to lower the anti-nutrient levels in seed will affect the development of viable seed, remains an important question. Studies on the function of SPI in seed development are therefore required. In this Perspective paper, we provide an overview on the current knowledge of seed storage proteins, their degradation as well as on the serine protease-SPI system in seeds and what is known about the consequences when this system is modified. We discuss areas that require investigation. This includes the identification of seed specific SPIs; screening of germplasms, to identify plants with low seed inhibitor content, establishing serine protease-SPI ratios and lastly a focus on molecular techniques that can be used to modify seed SPI activity.
Collapse
Affiliation(s)
- Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Willem van der Westhuizen
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Gedion du Plessis
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Diana Marais
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Taria S, Arora A, Krishna H, Manjunath KK, Meena S, Kumar S, Singh B, Krishna P, Malakondaiah AC, Das R, Alam B, Kumar S, Singh PK. Multivariate analysis and genetic dissection of staygreen and stem reserve mobilisation under combined drought and heat stress in wheat ( Triticum aestivum L.). Front Genet 2023; 14:1242048. [PMID: 37705611 PMCID: PMC10496116 DOI: 10.3389/fgene.2023.1242048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction: Abiotic stresses significantly reduce crop yield by adversely affecting many physio-biochemical processes. Several physiological traits have been targeted and improved for yield enhancement in limiting environmental conditions. Amongst them, staygreen and stem reserve mobilisation are two important mutually exclusive traits contributing to grain filling under drought and heat stress in wheat. Henceforth, the present study was carried out to identify the QTLs governing these traits and to identify the superiors' lines through multi-trait genotype-ideotype distance index (MGIDI) Methods: A mapping population consisting of 166 recombinant inbred lines (RILs) developed from a cross between HD3086 and HI1500 was utilized in this study. The experiment was laid down in alpha lattice design in four environmental conditions viz. Control, drought, heat and combined stress (heat and drought). Genotyping of parents and RILs was carried out with 35 K Axiom® array (Wheat breeder array). Results and Discussion: Medium to high heritability with a moderate to high correlation between traits was observed. Principal component analysis (PCA) was performed to derive latent variables in the original set of traits and the relationship of these traits with latent variables.From this study, 14 QTLs were identified, out of which 11, 2, and 1 for soil plant analysis development (SPAD) value, leaf senescence rate (LSR), and stem reserve mobilisation efficiency (SRE) respectively. Quantitative trait loci (QTLs) for SPAD value harbored various genes like Dirigent protein 6-like, Protein FATTY ACID EXPORT 3, glucan synthase-3 and Ubiquitin carboxyl-terminal hydrolase, whereas QTLs for LSR were found to contain various genes like aspartyl protease family protein, potassium transporter, inositol-tetrakisphosphate 1-kinase, and DNA polymerase epsilon subunit D-like. Furthermore, the chromosomal region for SRE was found to be associated with serine-threonine protein kinase. Serine-threonine protein kinases are involved in many signaling networks such as ABA mediated ROS signaling and acclimation to environmental stimuli. After the validation of QTLs in multilocation trials, these QTLs can be used for marker-assisted selection (MAS) in breeding programs.
Collapse
Affiliation(s)
- Sukumar Taria
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Shashi Meena
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Biswabiplab Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pavithra Krishna
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Badre Alam
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
16
|
Rahman MA, Ullah H. Receptor for Activated C Kinase1B (RACK1B) Delays Salinity-Induced Senescence in Rice Leaves by Regulating Chlorophyll Degradation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2385. [PMID: 37376011 DOI: 10.3390/plants12122385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The widely conserved Receptor for Activated C Kinase1 (RACK1) protein is a WD-40 type scaffold protein that regulates diverse environmental stress signal transduction pathways. Arabidopsis RACK1A has been reported to interact with various proteins in salt stress and Light-Harvesting Complex (LHC) pathways. However, the mechanism of how RACK1 contributes to the photosystem and chlorophyll metabolism in stress conditions remains elusive. In this study, using T-DNA-mediated activation tagging transgenic rice (Oryza sativa L.) lines, we show that leaves from rice RACK1B gene (OsRACK1B) gain-of-function (RACK1B-OX) plants exhibit the stay-green phenotype under salinity stress. In contrast, leaves from down-regulated OsRACK1B (RACK1B-UX) plants display an accelerated yellowing. qRT-PCR analysis revealed that several genes which encode chlorophyll catabolic enzymes (CCEs) are differentially expressed in both RACK1B-OX and RACK1B-UX rice plants. In addition to CCEs, stay-green (SGR) is a key component that forms the SGR-CCE complex in senescing chloroplasts, and which causes LHCII complex instability. Transcript and protein profiling revealed a significant upregulation of OsSGR in RACK1B-UX plants compared to that in RACK1B-OX rice plants during salt treatment. The results imply that senescence-associated transcription factors (TFs) are altered following altered OsRACK1B expression, indicating a transcriptional reprogramming by OsRACK1B and a novel regulatory mechanism involving the OsRACK1B-OsSGR-TFs complex. Our findings suggest that the ectopic expression of OsRACK1B negatively regulates chlorophyll degradation, leads to a steady level of LHC-II isoform Lhcb1, an essential prerequisite for the state transition of photosynthesis for adaptation, and delays salinity-induced senescence. Taken together, these results provide important insights into the molecular mechanisms of salinity-induced senescence, which can be useful in circumventing the effect of salt on photosynthesis and in reducing the yield penalty of important cereal crops, such as rice, in global climate change conditions.
Collapse
Affiliation(s)
| | - Hemayet Ullah
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
17
|
Hutasingh N, Chuntakaruk H, Tubtimrattana A, Ketngamkum Y, Pewlong P, Phaonakrop N, Roytrakul S, Rungrotmongkol T, Paemanee A, Tansrisawad N, Siripatrawan U, Sirikantaramas S. Metabolite profiling and identification of novel umami compounds in the chaya leaves of two species using multiplatform metabolomics. Food Chem 2023; 404:134564. [DOI: 10.1016/j.foodchem.2022.134564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
|
18
|
Leaf Senescence of the Seagrass Cymodocea nodosa in Cádiz Bay, Southern Spain. DIVERSITY 2023. [DOI: 10.3390/d15020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leaf decay in seagrasses is enhanced in some seasons since large green senescent beach-cast seagrass leaves are frequently recorded during autumn and winter seasons. Here, we explore if senescence is operating in seagrass leaf decay or if hydrodynamic stress is responsible for the seasonal leaf abscission. A seasonal study on the temperate seagrass Cymodocea nodosa was carried out in four locations with contrasting hydrodynamic regimes. The morphological, biomechanical and material properties of C. nodosa were measured. The force required to break the ligule was always lower than that required to break the blade. This could be considered an adaptive strategy to reduce acute drag forces and thus lessen the chance of plant uprooting. The absolute force needed to dislodge the blade at the ligule level varied with season and location, with the lowest forces recorded in autumn. This may indicate that senescence is operating in this species. On the other hand, the minimum estimated failure velocities for leaf abscission were also recorded in autumn. Consequently, this may cause the premature shedding of leaves in this season before the senescence process has finished and can probably explain the occurrence of green beach-cast seagrass leaves usually found during autumn and winter.
Collapse
|
19
|
Moloi SJ, Ngara R. The roles of plant proteases and protease inhibitors in drought response: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1165845. [PMID: 37143877 PMCID: PMC10151539 DOI: 10.3389/fpls.2023.1165845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
Upon exposure to drought, plants undergo complex signal transduction events with concomitant changes in the expression of genes, proteins and metabolites. For example, proteomics studies continue to identify multitudes of drought-responsive proteins with diverse roles in drought adaptation. Among these are protein degradation processes that activate enzymes and signalling peptides, recycle nitrogen sources, and maintain protein turnover and homeostasis under stressful environments. Here, we review the differential expression and functional activities of plant protease and protease inhibitor proteins under drought stress, mainly focusing on comparative studies involving genotypes of contrasting drought phenotypes. We further explore studies of transgenic plants either overexpressing or repressing proteases or their inhibitors under drought conditions and discuss the potential roles of these transgenes in drought response. Overall, the review highlights the integral role of protein degradation during plant survival under water deficits, irrespective of the genotypes' level of drought resilience. However, drought-sensitive genotypes exhibit higher proteolytic activities, while drought-tolerant genotypes tend to protect proteins from degradation by expressing more protease inhibitors. In addition, transgenic plant biology studies implicate proteases and protease inhibitors in various other physiological functions under drought stress. These include the regulation of stomatal closure, maintenance of relative water content, phytohormonal signalling systems including abscisic acid (ABA) signalling, and the induction of ABA-related stress genes, all of which are essential for maintaining cellular homeostasis under water deficits. Therefore, more validation studies are required to explore the various functions of proteases and their inhibitors under water limitation and their contributions towards drought adaptation.
Collapse
|
20
|
Mangena P. Pleiotropic effects of recombinant protease inhibitors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994710. [PMID: 36119571 PMCID: PMC9478479 DOI: 10.3389/fpls.2022.994710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Recombinant gene encoded protease inhibitors have been identified as some of the most effective antidigestive molecules to guard against proteolysis of essential proteins and plant attacking proteases from herbivorous pests and pathogenic microorganisms. Protease inhibitors (PIs) can be over expressed in transgenic plants to complement internal host defense systems, Bt toxins in genetically modified pest resistance and abiotic stress tolerance achieved through cystatins expression. Although the understanding of the role of proteolytic enzymes and their inhibitors encoded by both endogenous and transgenes expressed in crop plants has significantly advanced, their implication in biological systems still requires further elucidations. This paper, therefore, succinctly reviewed most recently published literature on recombinant proteases inhibitors (RPIs), focusing mainly on their unintended consequences in plants, other living organisms, and the environment. The review discusses major negative and unintended effects of RPIs involving the inhibitors' non-specificity on protease enzymes, non-target organisms and ubiquitous versatility in their mechanism of inhibition. The paper also discusses some direct and indirect effects of RPIs such as degradation by distinct classes of proteases, reduced functionality due to plant exposure to severe environmental stress and any other potential negative influences exerted on both the host plant as well as the environment. These pleiotropic effects must be decisively monitored to eliminate and prevent any potential adverse effects that transgenic plants carrying recombinant inhibitor genes may have on non-target organisms and biodiversity.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Polokwane, Limpopo, South Africa
| |
Collapse
|
21
|
Hajibarat Z, Saidi A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J Genet Eng Biotechnol 2022; 20:101. [PMID: 35819732 PMCID: PMC9276853 DOI: 10.1186/s43141-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Background Plants use escape strategies including premature senescence and leaf reduction to cope in response to drought stress, which in turn reduces plant leaves and photosynthesis. This strategy allows the new generation (seeds) to survive under drought but, plants experience more yield loss during stress condition. The amount of damage caused by drought stress is compensated by the expression of genes involved in regulating leaf aging. Leaf senescence alters the expression of thousands of genes and ultimately affecting grain protein content, grain yield, and nitrogen utilization efficiency. Also, under drought stress, nitrogen in the soil will not become as much available and causes the beginning and acceleration of the senescence process of leaves. The main body of the abstract This review identified proteins signaling and functional proteins involved in senescence. Further, transcription factors and cell wall degradation enzymes (proteases) related to senescence during drought stress were surveyed. We discuss the regulatory pathways of genes as a result of the degradation of proteins during senescence process. Senescence is strongly influenced by plant hormones and environmental factors including the availability of nitrogen. During maturity or drought stress, reduced nitrogen uptake can cause nitrogen to be remobilized from leaves and stems to seeds, eventually leading to leaf senescence. Under these conditions, genes involved in chloroplast degradation and proteases show increased expression. The functional (proteases) and regulatory proteins such as protein kinases and phosphatases as well as transcription factors (AP2/ERF, NAC, WRKY, MYB, and bZIP) are involved in leaf senescence and drought stress. Short conclusion In this review, senescence-associated proteins involved in leaf senescence and regulatory and functional proteins in response to drought stress during grain filling were surveyed. The present study predicts on the role of nitrogen transporters, transcription factors and regulatory genes involved in the late stages of plant growth with the aim of understanding their mechanisms of action during grain filling stage. For a better understanding, the relevant evidence for the balance between grain filling and protein breakdown during grain filling in cereals is presented.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
22
|
Gonin M, Jeong K, Coudert Y, Lavarenne J, Hoang GT, Bes M, To HTM, Thiaw MN, Do TV, Moukouanga D, Guyomarc'h S, Bellande K, Brossier J, Parizot B, Nguyen HT, Beeckman T, Bergougnoux V, Rouster J, Sallaud C, Laplaze L, Champion A, Gantet P. CROWN ROOTLESS1 binds DNA with a relaxed specificity and activates OsROP and OsbHLH044 genes involved in crown root formation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:546-566. [PMID: 35596715 PMCID: PMC9542200 DOI: 10.1111/tpj.15838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.
Collapse
Affiliation(s)
- Mathieu Gonin
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Kwanho Jeong
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyon69007France
| | - Jeremy Lavarenne
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Giang Thi Hoang
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE2Agricultural Genetic Institute11300HanoiVietnam
| | - Martine Bes
- CIRAD, UMR AGAPF‐34398MontpellierFrance
- UMR AGAPUniversité de Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance
| | - Huong Thi Mai To
- University of Science and Technology of Hanoi, LMIRICE2Vietnam Academy of Science and Technology11300HanoiVietnam
| | - Marie‐Rose Ndella Thiaw
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Toan Van Do
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE2Agricultural Genetic Institute11300HanoiVietnam
| | - Daniel Moukouanga
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Soazig Guyomarc'h
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Kevin Bellande
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Jean‐Rémy Brossier
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Boris Parizot
- Department of Plant Biotechnology and BioinformaticsGhent UniversityB‐9052GhentBelgium
- VIB Center for Plant Systems Biology9052GhentBelgium
| | - Hieu Trang Nguyen
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityB‐9052GhentBelgium
- VIB Center for Plant Systems Biology9052GhentBelgium
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Centre of Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Jacques Rouster
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de RechercheRoute d'EnnezatChappesFrance
| | - Christophe Sallaud
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de RechercheRoute d'EnnezatChappesFrance
| | - Laurent Laplaze
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Antony Champion
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Pascal Gantet
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
- Czech Advanced Technology and Research Institute, Centre of Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| |
Collapse
|
23
|
Kern CC, Gems D. Semelparous Death as one Element of Iteroparous Aging Gone Large. Front Genet 2022; 13:880343. [PMID: 35754809 PMCID: PMC9218716 DOI: 10.3389/fgene.2022.880343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
24
|
Zhang L, Chu C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:30. [PMID: 35701545 PMCID: PMC9198118 DOI: 10.1186/s12284-022-00572-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/29/2022] [Indexed: 05/13/2023]
Abstract
Selenium (Se) is an essential trace element for humans and other animals. The human body mainly acquires Se from plant foods, especially cereal grains. Rice is the staple food for more than half of the world's population. Increasing the Se concentration of rice grains can increase the average human dietary Se intake. This review summarizes recent advances in the molecular mechanisms of Se uptake, transport, subcellular distribution, retranslocation, volatilization, and Se-containing protein degradation in plants, especially rice. The strategies for improving Se concentration in rice grains by increasing Se accumulation, reducing Se volatilization, and optimizing Se form were proposed, which provide new insight into Se biofortification in rice by improving the utilization efficiency of Se.
Collapse
Affiliation(s)
- Lianhe Zhang
- Luoyang Key Laboratory of Plant Nutrition and Environmental Ecology, Agricultural College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chengcai Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture and Technology, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Tortosa M, Velasco P, Rodríguez VM, Cartea ME. Changes in Brassica oleracea Leaves Infected With Xanthomonas campestris pv. campestris by Proteomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 12:781984. [PMID: 35211128 PMCID: PMC8860909 DOI: 10.3389/fpls.2021.781984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Understanding plant's response mechanisms against pathogenesis is fundamental for the development of resistant crop varieties and more productive agriculture. In this regard, "omic" approaches are heralded as valuable technologies. In this work, combining isobaric tags for relative and absolute quantification (iTRAQ) technology with mass spectrometry, the proteomes from leaves of Brassica oleracea plants infected with Xanthomonas campestris pv. campestris (Xcc), and control plants at two different post-infection times were compared. Stronger proteomic changes were obtained at 12 days post-infection in comparison with 3 days. The responses observed involved different cell processes, from primary metabolism, such as photosynthesis or photorespiration, to other complex processes such as redox homeostasis, hormone signaling, or defense mechanisms. Most of the proteins decreased in the earlier response were involved in energetic metabolism, whereas later response was characterized by a recovery of primary metabolism. Furthermore, our results indicated that proteolysis machinery and reactive oxygen species (ROS) homeostasis could be key processes during this plant-pathogen interaction. Current data provide new insights into molecular mechanisms that may be involved in defense responses of B. oleracea to Xcc.
Collapse
Affiliation(s)
| | | | | | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), Pontevedra, Spain
| |
Collapse
|
26
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
27
|
Nozue H, Shigarami T, Fukuda S, Chino T, Saruta R, Shirai K, Nozue M, Kumazaki S. Growth-phase dependent morphological alteration in higher plant thylakoid is accompanied by changes in both photodamage and repair rates. PHYSIOLOGIA PLANTARUM 2021; 172:1983-1996. [PMID: 33786842 DOI: 10.1111/ppl.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Thylakoid membranes of young leaves consist of grana and stroma lamellae (stroma-grana [SG] structure). The SG thylakoid is gradually converted into isolated grana (IG), almost lacking the stroma lamellae during growth. This morphological alteration was found to cause a reduction in maximum photosynthetic rate and an enhancement of photoinhibition in photosystem II (PSII). In situ microspectrometric measurements of chlorophyll fluorescence in individual chloroplasts suggested an increase of the PSII/PSI ratio in IG thylakoids of mature leaves. Western blot analysis of isolated IG thylakoids showed relative increases in some PSII components, including the core protein (D1) and light-harvesting components CP24 and Lhcb2. Notably, a nonphotochemical quenching-related factor in the PSII supercomplex, PsbS, decreased by 40%. Changes in the high light response of PSII were detected through parameters of pulse-amplitude modulation fluorometry. Chlorophyll fluorescence lifetime indicated an increase of fluorescence quantum yield in IG. A minimal photodamage-repair rate analysis on a lincomycin treatment of the leaves indicated that repair rate constant of IG is slower than that of SG, while photodamage rate of IG is higher than that of SG. These results suggest that IG thylakoids are relatively sensitive to high light, which is not only due to a higher photodamage rate caused by some rearrangements of PS complexes, but also to the retarded PSII repair that may result from the lack of stroma lamellae. The IG thylakoids found among many plant species thus seem to be an adaptive form to low light environments, although their physiological roles still remain unclear.
Collapse
Affiliation(s)
- Hatsumi Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Takashi Shigarami
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Shinji Fukuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takayuki Chino
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Ryouta Saruta
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kana Shirai
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Masayuki Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Gujjar RS, Roytrakul S, Chuekong W, Supaibulwatana K. A synthetic cytokinin influences the accumulation of leaf soluble sugars and sugar transporters, and enhances the drought adaptability in rice. 3 Biotech 2021; 11:369. [PMID: 34295609 DOI: 10.1007/s13205-021-02908-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Oryza sativa cv. PTT1 (Pathumthani1) was treated with phenyl-urea-based synthetic cytokinin under drought stress. Soluble sugar contents were examined in rice flag leaves at tillering and grain-filling stages. The same leaf samples were used to analyze the differential abundance intensities of proteins related to metabolism and transport of soluble sugars, and the process of senescence. The results showed drought-induced accumulation of hexose sugars (glucose and fructose) in rice flag leaves, which could be corroborated with enhanced accumulation of MST8 under drought stress. On the other hand, cytokinin-treated plants maintained the normal contents of hexose sugar in their flag leaves under drought stress, alike well-watered plants. In the case of sucrose, cytokinin treatment reduced its accumulation at tillering stage, but the results were reversed at the grain-filling stage, where the cytokinin-treated plants maintained significantly higher contents of sucrose under drought stress. Growth stage dependent variations in sucrose contents corroborated with the accumulation of SPS (SPS1, SPS2, and SPS5) proteins, implicated in sucrose biosynthesis. In our study, among the proteins involved in sucrose transport, SUT1 transporter was induced by drought stress at both the growth stages, whereas SUT2 transporter accumulated equally in all the treatments. However, cytokinin treatment reversed the effect of drought on the accumulation of SUT1. Similarly, SWEET5, and SWEET13 proteins, which were induced by drought stress treatment, were inhibited by cytokinin treatment. However, the accumulation SWEET6, SWEET7, and SWEET15 was not influenced by the treatment of cytokinin in the flag leaves of rice. In addition, cytokinin treatment reduced the leaf wilting, enhanced the fresh weight and grain yield, and curtailed the accumulation of proteins involved in drought-induced senescence. In conclusion, the cytokinin treatment had a positive agro-economic impact on the rice plants and provided better drought adaptability.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok, 10400 Thailand
- Present Address: Division of Crop Improvement, Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Wannisa Chuekong
- Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok, 10400 Thailand
| | | |
Collapse
|
29
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
30
|
Low Light/Darkness as Stressors of Multifactor-Induced Senescence in Rice Plants. Int J Mol Sci 2021; 22:ijms22083936. [PMID: 33920407 PMCID: PMC8069932 DOI: 10.3390/ijms22083936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Leaf senescence, as an integral part of the final development stage for plants, primarily remobilizes nutrients from the sources to the sinks in response to different stressors. The premature senescence of leaves is a critical challenge that causes significant economic losses in terms of crop yields. Although low light causes losses of up to 50% and affects rice yield and quality, its regulatory mechanisms remain poorly elucidated. Darkness-mediated premature leaf senescence is a well-studied stressor. It initiates the expression of senescence-associated genes (SAGs), which have been implicated in chlorophyll breakdown and degradation. The molecular and biochemical regulatory mechanisms of premature leaf senescence show significant levels of redundant biomass in complex pathways. Thus, clarifying the regulatory mechanisms of low-light/dark-induced senescence may be conducive to developing strategies for rice crop improvement. This review describes the recent molecular regulatory mechanisms associated with low-light response and dark-induced senescence (DIS), and their effects on plastid signaling and photosynthesis-mediated processes, chloroplast and protein degradation, as well as hormonal and transcriptional regulation in rice.
Collapse
|
31
|
Huang X, Zhang H, Guo R, Wang Q, Liu X, Kuang W, Song H, Liao J, Huang Y, Wang Z. Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice. PLANTA 2021; 253:26. [PMID: 33410920 PMCID: PMC7790769 DOI: 10.1007/s00425-020-03544-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/19/2020] [Indexed: 05/30/2023]
Abstract
Circular RNAs (circRNAs) identification, expression profiles, and construction of circRNA-parental gene relationships and circRNA-miRNA-mRNA ceRNA networks indicate that circRNAs are involved in flag leaf senescence of rice. Circular RNAs (circRNAs) are a class of 3'-5' head-to-tail covalently closed non-coding RNAs which have been proved to play important roles in various biological processes. However, no systematic identification of circRNAs associated with leaf senescence in rice has been studied. In this study, a genome-wide high-throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. Here, a total of 6612 circRNAs were identified, among which, 113 circRNAs were differentially expressed (DE) during the leaf senescence process. Moreover, 4601 (69.59%) circRNAs were derived from the exons or introns of their parental genes, while 2110 (71%) of the parental genes produced only one circRNA. The sequence alignment analysis showed that hundreds of rice circRNAs were conserved among different plant species. Gene Ontology (GO) enrichment analysis revealed that parental genes of DE circRNAs were enriched in many biological processes closely related to leaf senescence. Through weighted gene co-expression network analysis (WGCNA), six continuously down-expressed circRNAs, 18 continuously up-expressed circRNAs and 15 turn-point high-expressed circRNAs were considered to be highly associated with leaf senescence. Additionally, a total of 17 senescence-associated circRNAs were predicted to have parental genes, in which, regulations of three circRNAs to their parental genes were validated by qRT-PCR. The competing endogenous RNA (ceRNA) networks were also constructed. And a total of 11 senescence-associated circRNAs were predicted to act as miRNA sponges to regulate mRNAs, in which, regulation of two circRNAs to eight mRNAs was validated by qRT-PCR. It is discussed that senescence-associated circRNAs were involved in flag leaf senescence probably through mediating their parental genes and ceRNA networks, to participate in several well-studied senescence-associated processes, mainly including the processes of transcription, translation, and posttranslational modification (especially protein glycosylation), oxidation-reduction process, involvement of senescence-associated genes, hormone signaling pathway, proteolysis, and DNA damage repair. This study not only showed the systematic identification of circRNAs involved in leaf senescence of rice, but also laid a foundation for functional research on candidate circRNAs.
Collapse
Affiliation(s)
- Xiaoping Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Rong Guo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Xuanzhi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Weigang Kuang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Haiyan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education of the P.R. China, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| |
Collapse
|
32
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
33
|
Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:47-59. [PMID: 33075710 DOI: 10.1016/j.plaphy.2020.09.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Soil salinity and drought stress (DS) are the massive problem for worldwide agriculture. Both stresses together become more toxic to the plant growth and development. Silicon (Si) being the second most abundant element in the earth's crust, exerts beneficial effects on plants under both stress and non-stress conditions. However, limited information is available to substantiate the beneficial role of Si in delaying the premature leaf senescence and imparting tolerance of mustard (Brassica juncea L.) plants to salinity and DS. Therefore, the present study aimed to explore the role of Si (source K2SiO3) in chlorophyll (Chl) biosynthesis, nutrients uptake, relative water content (RWC), proline (Pro) metabolism, antioxidant system and delaying of premature leaf senescence in mustard plants under sodium chloride (NaCl) and DS conditions. Results of this study show that exogenous Si (1.7 mM) significantly delayed the salt plus DS-induced premature leaf senescence. This was further accompanied by the enhanced nutrients accumulation and activity of chlorophyll metabolizing enzymes [δ-aminolevulinic acid (δ-ALA) dehydratase and porphobilinogen deaminase] and levels of δ-ALA, and Chls a and b and also by decreased the Chl degradation and Chl degrading enzymes (Chlorophyllase, Chl-degrading peroxidase, pheophytinase) activity. Exogenous Si treatment induced redox homoeostasis in B. juncea L. plants, which is evident by a reduced generation of reactive oxygen species (ROS) resulting due to suppressed activity of their generating enzymes (glycolate oxidase and NADPH oxidase) and enhanced defence system. Furthermore, application of Si inhibited the activity of protease and triggered the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and plasma membrane H+-ATPase activity. In conclusion, all these results reveal that Si could help in the modulation of Chl metabolism, redox hemostasis, and the regulation of nutrients (nitrogen, phosphorus, Si and potassium) uptake in the mustard plants that lead to the postponement of premature leaf senescence under salinity plus DS.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Yanbo Hu
- Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin City, 150040, PR China
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Tariq Aftab
- Department of Botany, Plant Physiology Section, Aligarh Muslim University, Aligarh, 202002, India
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, 22620, Haripur, Pakistan; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Manzoor Ahmad
- Department of Agriculture, Bacha Khan University, Charsadda, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| |
Collapse
|
34
|
Veliz CG, Criado MV, Galotta MF, Roberts IN, Caputo C. Regulation of senescence-associated protease genes by sulphur availability according to barley (Hordeum vulgare L.) phenological stage. ANNALS OF BOTANY 2020; 126:435-444. [PMID: 32300777 PMCID: PMC7424724 DOI: 10.1093/aob/mcaa071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Proteases are responsible for protein degradation during leaf senescence, allowing nutrients to be redirected to sink tissues. In a previous work, we reported that sulphur deficiency produced a delay in the leaf senescence of barley (Hordeum vulgare L.) plants, at both vegetative and reproductive stages. In this work, we analyse the effect of sulphur deficiency on the expression of several genes coding for proteases of different catalytic groups, which have been strongly associated with leaf senescence. METHODS Four independent experiments were performed in order to impose low sulphur availability conditions: one of steady-state sulphur deficiency during the vegetative stage and three of sulphur starvation during vegetative and reproductive stages. KEY RESULTS Sulphur deficiency inhibited or reduced the senescence-associated induction of seven of the eight proteases analysed. Their induction, as well as senescence and phloem amino acid remobilization, could be achieved with senescence inducers such as methyl-jasmonate (a hormonal stimulus) and darkness, but with different rates of induction dependent on each gene. Sulphur deficiency also exerted an opposite effect on the expression of two cysteine-protease genes (HvSAG12 and HvLEGU) as well as on one serine-protease gene (HvSUBT) according to leaf age and plant phenological stages. All three genes were induced in green leaves but were repressed in senescent leaves of sulphur-deficient plants at the vegetative stage. At the reproductive stage, both cysteine-proteases were only repressed in senescent leaves, while the serine-protease was induced in green and senescent leaves by sulphur deficiency. CONCLUSIONS Our results highlight the relevance of adequate sulphur nutrition in order to ensure leaf senescence onset and induction of protease genes, which will consequently impact on grain protein composition and quality. In addition, our results provide evidence that leaf age, plant developmental stage and the nature of the stress modulate the sulphur responses.
Collapse
Affiliation(s)
- Cintia G Veliz
- CONICET—Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
| | - Maria Victoria Criado
- Cátedra de Microbiología, Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
| | - María Florencia Galotta
- CONICET—Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
| | - Irma N Roberts
- Cátedra de Microbiología, Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
| | - Carla Caputo
- CONICET—Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
- Cátedra de Bioquímica, Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Buenos Aires, Argentina
| |
Collapse
|
35
|
High-throughput sequencing reveals the molecular mechanisms determining the stay-green characteristic in soybeans. J Biosci 2020. [DOI: 10.1007/s12038-020-00074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Protective Roles of Cytosolic and Plastidal Proteasomes on Abiotic Stress and Pathogen Invasion. PLANTS 2020; 9:plants9070832. [PMID: 32630761 PMCID: PMC7412383 DOI: 10.3390/plants9070832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023]
Abstract
Protein malfunction is typically caused by abiotic stressors. To ensure cell survival during conditions of stress, it is important for plant cells to maintain proteins in their respective functional conformation. Self-compartmentalizing proteases, such as ATP-dependent Clp proteases and proteasomes are designed to act in the crowded cellular environment, and they are responsible for degradation of misfolded or damaged proteins within the cell. During different types of stress conditions, the levels of misfolded or orphaned proteins that are degraded by the 26S proteasome in the cytosol and nucleus and by the Clp proteases in the mitochondria and chloroplasts increase. This allows cells to uphold feedback regulations to cellular-level signals and adjust to altered environmental conditions. In this review, we summarize recent findings on plant proteolytic complexes with respect to their protective functions against abiotic and biotic stressors.
Collapse
|
37
|
Medina-Villar S, Uscola M, Pérez-Corona ME, Jacobs DF. Environmental stress under climate change reduces plant performance, yet increases allelopathic potential of an invasive shrub. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02286-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Mangena P. Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein Pept Lett 2020; 27:135-144. [PMID: 31612812 DOI: 10.2174/0929866526666191014125453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/06/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
Abstract
Plant cystatins, also called phytocystatins constitute a family of specific cysteine protease inhibitors found in several monocots and dicots. In soybean, phytocystatins regulate several endogenous processes contributing immensely to this crop's tolerance to abiotic stress factors. Soybeans offer numerous nutritional, pharmaceutical and industrial benefits; however, their growth and yields is hampered by drought, which causes more than 10% yield losses recorded every harvest period worldwide. This review analyses the role of papain-like cysteine proteases and their inhibitors in soybean plant growth and development under drought stress. It also describes their localisation, regulation, target organs and tissues, and the overall impact of cystatins on generating drought tolerance soybean plants. These proteins have many functions that remain poorly characterized, particularly under abiotic stress. Although much information is available on the utilisation of proteases for industrial applications, very few reports have focused on the impact of proteases on plant stress responses. The exploitation of cystatins in plant engineering, as competitive proteases inhibitors is one of the means that will guarantee the continued utilisation of soybeans as an important oilseed crop.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga, 0727,South Africa
| |
Collapse
|
39
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
40
|
Lallemand F, Martin-Magniette ML, Gilard F, Gakière B, Launay-Avon A, Delannoy É, Selosse MA. In situ transcriptomic and metabolomic study of the loss of photosynthesis in the leaves of mixotrophic plants exploiting fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:826-841. [PMID: 30735596 DOI: 10.1111/tpj.14276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/15/2023]
Abstract
Mycoheterotrophic plants have lost photosynthesis and obtain carbon through mycorrhizal fungi colonizing their roots. They are likely to have evolved from mixotrophic ancestors, which rely on both photosynthesis and fungal carbon for their development. Whereas our understanding of the ecological and genomic changes associated with the evolutionary shift to mycoheterotrophy is deepening, little information is known about the specific metabolic and physiological features driving this evolution. We investigated this issue in naturally occurring achlorophyllous variants of temperate mixotrophic orchids. We carried out an integrated transcriptomic and metabolomic analysis of the response to achlorophylly in the leaves of three mixotrophic species sampled in natura. Achlorophyllous leaves showed major impairment of their photosynthetic and mineral nutrition functions, strong accumulation of free amino acids, overexpression of enzymes and transporters related to sugars, amino acids and fatty acid catabolism, as well as induction of some autophagy-related and biotic stress genes. Such changes were reminiscent of these reported for variegated leaves and appeared to be symptomatic of a carbon starvation response. Rather than decisive metabolic innovations, we suggest that the evolution towards mycoheterotrophy in orchids is more likely to be reliant on the versatility of plant metabolism and an ability to exploit fungal organic resources, especially amino acids, to replace missing photosynthates.
Collapse
Affiliation(s)
- Félix Lallemand
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405, Orsay, France
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405, Orsay, France
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Étienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
41
|
Gomez-Sanchez A, Gonzalez-Melendi P, Santamaria ME, Arbona V, Lopez-Gonzalvez A, Garcia A, Hensel G, Kumlehn J, Martinez M, Diaz I. Repression of drought-induced cysteine-protease genes alters barley leaf structure and responses to abiotic and biotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2143-2155. [PMID: 30452688 DOI: 10.1093/jxb/ery410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/08/2018] [Indexed: 05/23/2023]
Abstract
To survive under water deficiency, plants alter gene expression patterns, make structural and physiological adjustments, and optimize the use of water. Rapid degradation and turnover of proteins is required for effective nutrient recycling. Here, we examined the transcriptional responses of the C1A cysteine protease family to drought in barley and found that four genes were up-regulated in stressed plants. Knock-down lines for the protease-encoding genes HvPap-1 and HvPap-19 showed unexpected changes in leaf cuticle thickness and stomatal pore area. The efficiency of photosystem II and the total amount of proteins were almost unaltered in stressed transgenic plants while both parameters decreased in stressed wild-type plants. Although the patterns of proteolytic activities in the knock-down lines did not change, the amino acid accumulation increased in response to drought, concomitant with a higher ABA content. Whilst jasmonic acid (JA) and JA-Ile concentrations increased in stressed leaves of the wild-type and the HvPap-1 knock-down lines, their levels were lower in the HvPap-19 knock-down lines, suggesting the involvement of a specific hormone interaction in the process. Our data indicate that the changes in leaf cuticle thickness and stomatal pore area had advantageous effects on leaf defense against fungal infection and mite feeding mediated by Magnaporthe oryzae and Tetranychus urticae, respectively.
Collapse
Affiliation(s)
- Andrea Gomez-Sanchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| | - Vicente Arbona
- Ecofisiologia i Biotecnologia, Dpt. Ciències Agràries i del Medi Natural, Universitat Jaume I - Campus Riu Sec, Castelló de la Plana, Spain
| | - Angeles Lopez-Gonzalvez
- Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| |
Collapse
|
42
|
Buono RA, Hudecek R, Nowack MK. Plant proteases during developmental programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2097-2112. [PMID: 30793182 PMCID: PMC7612330 DOI: 10.1093/jxb/erz072] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Proteases are among the key regulators of most forms of programmed cell death (PCD) in animals. Many PCD processes have also been associated with protease expression or activation in plants, However, functional evidence for the roles and actual modes of action of plant proteases in PCD remains surprisingly limited. In this review, we provide an update on protease involvement in the context of developmentally regulated plant PCD. To illustrate the diversity of protease functions, we focus on several prominent developmental PCD processes, including xylem and tapetum maturation, suspensor elimination, endosperm degradation, and seed coat formation, as well as plant senescence processes. Despite the substantial advances in the field, protease functions are often only correlatively linked to developmental PCD, and the specific molecular roles of proteases in many developmental PCD processes remain to be elucidated.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Hudecek
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
43
|
Fernandes FF, Esposito MP, da Silva Engela MRG, Cardoso-Gustavson P, Furlan CM, Hoshika Y, Carrari E, Magni G, Domingos M, Paoletti E. The passion fruit liana (Passiflora edulis Sims, Passifloraceae) is tolerant to ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1091-1101. [PMID: 30625641 DOI: 10.1016/j.scitotenv.2018.11.425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Passiflora edulis Sims is a liana species of high economic interest and is an interesting model plant for understanding ozone action on disturbed vegetation. In this work we hypothesized that P. edulis has adaptive responses to oxidative stress that enable it to tolerate ozone damage based on its capacity to grow under a diversity of environmental conditions and to dominate disturbed areas. We exposed seedlings to three levels of ozone in a Free-Air Controlled Exposure (FACE) system (22, 41 and 58 ppb h AOT40 and 13.52, 17.24 and 20.62 mmol m-2 POD0, over 97 days) for identifying its tolerance mechanisms. Anatomical (leaf blade structure and fluorescence emission of chloroplast metabolites), physiological (leaf gas exchange, growth rate and biomass production) and biochemical (pigments, total sugars, starch, enzymatic and non-enzymatic antioxidant metabolites, reactive oxygen species and lipid peroxidation derivatives) responses were assessed. Ozone caused decreased total number of leaves, hyperplasia and hypertrophy of the mesophyll cells, and accelerated leaf senescence. However, O3 did not affect carbohydrates content, net photosynthetic rate, or total biomass production, indicating that the carboxylation efficiency and associated physiological processes were not affected. In addition, P. edulis showed higher leaf contents of ascorbic acid, glutathione (as well high ratio between their reduced and total forms), carotenoids, and flavonoids located in the chloroplast outer envelope membrane. Our results indicate that P. edulis is an O3-tolerant species due to morphological acclimation responses and an effective antioxidant defense system represented by non-enzymatic antioxidants, which maintained the cellular redox balance under ozone.
Collapse
Affiliation(s)
- Francine Faia Fernandes
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, Miguel Stéfano Ave. 3687, 04045-972 SP, Brazil.
| | - Marisia Pannia Esposito
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, Miguel Stéfano Ave. 3687, 04045-972 SP, Brazil
| | | | - Poliana Cardoso-Gustavson
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Arcturus St. 03, 09606-070 SBC, Brazil
| | - Claudia Maria Furlan
- Universidade de São Paulo, Instituto de Biociências, Matão St. 257, 05508-090 SP, Brazil
| | - Yasutomo Hoshika
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Elisa Carrari
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giada Magni
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, Miguel Stéfano Ave. 3687, 04045-972 SP, Brazil
| | - Elena Paoletti
- National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
44
|
Jansing J, Buyel JF. The Correlation Between DsRed mRNA Levels and Transient DsRed Protein Expression in Plants Depends on Leaf Age and the 5' Untranslated Region. Biotechnol J 2019; 14:e1800075. [PMID: 29701331 DOI: 10.1002/biot.201800075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/18/2018] [Indexed: 11/08/2022]
Abstract
The yield of recombinant proteins in plants determines their economic competitiveness as a production platform compared to microbes and mammalian cells. The promoter, untranslated regions (UTRs) and codon usage can all contribute to the yield, but potential interactions among these components have not been examined in detail. Here the effect of two promoters (35SS and nos) and four 5'UTRs on the spatiotemporal expression of DsRed mRNA and the accumulation of DsRed protein during transient expression in tobacco (Nicotiana tabacum) mediated by Agrobacterium tumefaciens is investigated. The authors found that the mRNA levels peaked 2-3 days post-infiltration (dpi), and rapidly declined thereafter, whereas DsRed protein was first detected after ≈3 days and concentrations continued to increase until at least 5 dpi. This temporal decoupling of mRNA and protein expression was strongest in the older leaves, which also produced the lowest DsRed yields. The accumulation of DsRed linearly correlated with mRNA levels in all but the youngest leaves, where more DsRed was synthesized per mRNA molecule. This was the case for both promoters, although the nos promoter had a higher protein/mRNA ratio than the 35SS promoter. Furthermore, the type of 5'UTR affected DsRed protein accumulation by 50% starting from similar levels of mRNA. The authors concluded that DsRed mRNA levels are not the limiting factor for DsRed protein expression in plants, but that translation-associated processes such as initiation, elongation, and release are bottlenecks that should be addressed in future studies.
Collapse
Affiliation(s)
- Julia Jansing
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,Aachen, 52074, Germany
| | - Johannes F Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1,Aachen, 52074, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6,Aachen, 52074, Germany
| |
Collapse
|
45
|
Poret M, Chandrasekar B, van der Hoorn RAL, Déchaumet S, Bouchereau A, Kim TH, Lee BR, Macquart F, Hara-Nishimura I, Avice JC. A Genotypic Comparison Reveals That the Improvement in Nitrogen Remobilization Efficiency in Oilseed Rape Leaves Is Related to Specific Patterns of Senescence-Associated Protease Activities and Phytohormones. FRONTIERS IN PLANT SCIENCE 2019; 10:46. [PMID: 30778361 PMCID: PMC6369165 DOI: 10.3389/fpls.2019.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 05/24/2023]
Abstract
Oilseed rape (Brassica napus L.) is an oleoproteaginous crop characterized by low N use efficiency (NUE) that is mainly related to a weak Nitrogen Remobilization Efficiency (NRE) during the sequential leaf senescence of the vegetative stages. Based on the hypothesis that proteolysis efficiency is crucial for the improvement of leafNRE, our objective was to characterize key senescence-associated proteolytic mechanisms of two genotypes (Ténor and Samouraï) previously identified with contrasting NREs. To reach this goal, biochemical changes, protease activities and phytohormone patterns were studied in mature leaves undergoing senescence in two genotypes with contrasting NRE cultivated in a greenhouse under limiting or ample nitrate supply. The genotype with the higher NRE (Ténor) possessed enhanced senescence processes in response to nitrate limitation, and this led to greater degradation of soluble proteins compared to the other genotype (Samouraï). This efficient proteolysis is associated with (i) an increase in serine and cysteine protease (CP) activities and (ii) the appearance of new CP activities (RD21-like, SAG12-like, RD19-like, cathepsin-B, XBCP3-like and aleurain-like proteases) during senescence induced by N limitation. Compared to Samouraï, Ténor has a higher hormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes senescence, particularly under low N conditions, and this is correlated with the stronger protein degradation and serine/CP activities observed during senescence. Short statement: The improvement in N recycling during leaf senescence in a genotype of Brassica napus L. characterized by a high nitrogen remobilization efficiency is related to a high phytohormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes leaf senescence and is correlated with an increase or the induction of specific serine and cysteine protease activities.
Collapse
Affiliation(s)
- Marine Poret
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sylvain Déchaumet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Alain Bouchereau
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Flavien Macquart
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| | - Ikuko Hara-Nishimura
- Laboratory of Plant Cell Biology, Faculty of Science and Engineering, Konan University Okamoto, Kobe, Japan
| | - Jean-Christophe Avice
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| |
Collapse
|
46
|
Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S. A systematic reconsideration on proteases. Int J Biol Macromol 2019; 128:254-267. [PMID: 30664968 DOI: 10.1016/j.ijbiomac.2019.01.081] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Proteases are a group of large complex enzyme molecules that perform highly focused proteolysis functions. A vast quantity of the protease enzymes is predominantly sourced from microbial fermentation process, although proteases tend to natively present in plant, animals and humans. Proteases possess a pervasive importance in medical and pharmaceutical sector, because of its enriched specificity towards biomolecules. They are also actively encompassed in regulating certain physiological pathways. A distinct territory of human disorders is treated by substrate specific proteases. Enormous numbers of catalytic activities in habitual metabolism process of a living organism are protease dependent. Pilot scale researches and product development in industrial biotechnology sectors are wholly based on any one of the protease enzymes. The applications of the protease enzymes and its economic benefits of being an eco-friendly material are far-reaching. This review presents a brief overview on the classification and sources of various types of proteases. We describe the essential evidences of role of protease in different sectors. The proteases could be a potential relieves to harmful synthetic chemicals in distinctive industrial processes and thus gains global perception.
Collapse
Affiliation(s)
- Poorani Gurumallesh
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Kamalini Alagu
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Baskar Ramakrishnan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India.
| | | |
Collapse
|
47
|
Zhao HM, Huang HB, Luo YM, Huang CQ, Du H, Xiang L, Cai QY, Li YW, Li H, Mo CH, He Z. Differences in Root Physiological and Proteomic Responses to Dibutyl Phthalate Exposure between Low- and High-DBP-Accumulation Cultivars of Brassica parachinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13541-13551. [PMID: 30525579 DOI: 10.1021/acs.jafc.8b04956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Di- n-butyl phthalate (DBP), as an endocrine-disrupting chemical that tends to be accumulated in crops, poses great risks to human health through the food chain. To identify the molecular mechanism underlying differences in their DBP accumulation, the root physiological and proteomic responses to DBP stress of two Brassica parachinensis cultivars, a high-DBP accumulator (Huaguan) and a low-DBP accumulator (Lvbao), were investigated. Root damage of greater severity and significantly greater ( p < 0.05) decreases in root protein content and root activity were detected in Lvbao than in Huaguan, suggesting that Lvbao had lower tolerance to DBP. In total, 52 DBP-responsive proteins were identified by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. More proteins involved in basic metabolic processes, such as protein synthesis and energy metabolism, were downregulated in Lvbao, possibly explaining its lower tolerance and root damage. Several proteins involved in starch metabolism, cell-wall biosynthesis and modification, and stress response were activated in Huaguan, suggesting greater tolerance to DBP. Overall, differences in root proteome between the two cultivars might be responsible for the genotype-dependent DBP tolerance and accumulation in B. parachinensis.
Collapse
Affiliation(s)
- Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences , University of Florida , Fort Pierce , Florida 34945 , United States
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Yu-Mei Luo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Chun-Qing Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences , University of Florida , Fort Pierce , Florida 34945 , United States
| |
Collapse
|
48
|
Soltabayeva A, Srivastava S, Kurmanbayeva A, Bekturova A, Fluhr R, Sagi M. Early Senescence in Older Leaves of Low Nitrate-Grown Atxdh1 Uncovers a Role for Purine Catabolism in N Supply. PLANT PHYSIOLOGY 2018; 178:1027-1044. [PMID: 30190419 PMCID: PMC6236613 DOI: 10.1104/pp.18.00795] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/25/2018] [Indexed: 05/19/2023]
Abstract
The nitrogen (N)-rich ureides allantoin and allantoate, which are products of purine catabolism, play a role in N delivery in Leguminosae. Here, we examined their role as an N source in nonlegume plants using Arabidopsis (Arabidopsis thaliana) plants mutated in XANTHINE DEHYDROGENASE1 (AtXDH1), a catalytic bottleneck in purine catabolism. Older leaves of the Atxdh1 mutant exhibited early senescence, lower soluble protein, and lower organic N levels as compared with wild-type older leaves when grown with 1 mm nitrate but were comparable to the wild type under 5 mm nitrate. Similar nitrate-dependent senescence phenotypes were evident in the older leaves of allantoinase (Ataln) and allantoate amidohydrolase (Ataah) mutants, which also are impaired in purine catabolism. Under low-nitrate conditions, xanthine accumulated in older leaves of Atxdh1, whereas allantoin accumulated in both older and younger leaves of Ataln but not in wild-type leaves, indicating the remobilization of xanthine-degraded products from older to younger leaves. Supporting this notion, ureide transporter expression was enhanced in older leaves of the wild type in low-nitrate as compared with high-nitrate conditions. Elevated transcripts and proteins of AtXDH and AtAAH were detected in low-nitrate-grown wild-type plants, indicating regulation at protein and transcript levels. The higher nitrate reductase activity in Atxdh1 leaves compared with wild-type leaves indicated a need for nitrate assimilation products. Together, these results indicate that the absence of remobilized purine-degraded N from older leaves of Atxdh1 caused senescence symptoms, a result of higher chloroplastic protein degradation in older leaves of low-nitrate-grown plants.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Sudhakar Srivastava
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Assylay Kurmanbayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Aizat Bekturova
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Sagi
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
49
|
Dhanushkodi R, Matthew C, McManus MT, Dijkwel PP. Drought-induced senescence of Medicago truncatula nodules involves serpin and ferritin to control proteolytic activity and iron levels. THE NEW PHYTOLOGIST 2018; 220:196-208. [PMID: 29974467 DOI: 10.1111/nph.15298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/20/2018] [Indexed: 05/09/2023]
Abstract
Drought is a major constraint for legume growth and yield. Senescence of nitrogen-fixing nodules is one of the early drought responses and may cause nutrient stress in addition to water stress in legumes. For nodule senescence to function as part of a drought-survival strategy, we propose that the intrinsically destructive senescence process must be tightly regulated. Medicago truncatula protease inhibitor and iron scavenger-encoding genes, possibly involved in controlling nodule senescence, were identified. RNA interference (RNAi) lines were constructed in which expression of a serpin or ferritins was knocked down. Both wild-type and RNAi lines were subjected to drought stress and nodule activity and plant physiological responses were measured. Drought caused M. truncatula to initiate nodule senescence before plant growth was affected and before an increase in papain-like proteolytic activity and free iron levels was apparent. Knock-down expression of serpin6 and ferritins caused increased protease activity, free iron levels, early nodule senescence and reduced plant growth. The results suggest that M. truncatula nodule-expressed serpin6 and ferritins mediate ordered drought-induced senescence by regulating papain-like cysteine protease activity and free iron levels. This strategy may allow the drought-stressed plants to benefit maximally from residual nitrogen fixation and nutrient recovery resulting from break down of macromolecules.
Collapse
Affiliation(s)
- Ramadoss Dhanushkodi
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Cory Matthew
- Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
50
|
Ma G, Shi X, Zou Q, Tian D, An X, Zhu K. iTRAQ-based quantitative proteomic analysis reveals dynamic changes during daylily flower senescence. PLANTA 2018; 248:859-873. [PMID: 29943113 DOI: 10.1007/s00425-018-2943-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 05/12/2023]
Abstract
Sugar-related metabolic biological processes and metabolic pathways as well as invertase, protease, and ribosomal proteins may be critical regulators controlling the circadian rhythm and ephemeral properties of daylily flowers. Daylily is a familiar perennial flower. The daylily flower opens at dawn and withers away at night. Flower longevity in almost all daylily varieties from opening to fading is less than 24 h. In the past decades, the physiological changes and genetic responses to senescence in daylily flowers have been reported. However, the main metabolic pathways and biological processes involved in daylily flower senescence and the proteins involved in premature senility of daylily flowers are poorly understood. Herein, we identified differences between the proteomes of four developmental stages (s1-s4) of daylily flowers using iTRAQ-based quantitative proteomic methods. A total of 445 proteins (containing at least two unique peptides) were identified, and differentially expressed proteins (upregulation ≥ 1.5 or downregulation ≤ 0.67, P value ≤ 0.05) were detected between these stages in the following numbers: 58 (s2/s1), 59 (s3/s1), 31 (s3/s2), 64 (s4/s1), 52 (s4/s2), and 29 (s4/s3). Protein functions and classifications were analyzed based on GO, KEGG, and COG, and expressive hierarchical cluster analysis and functional enrichment analysis for differentially expressed proteins were carried out. A comparison of the late stages (s3 and s4) with the early stage (s1) revealed that the sugar (hexose, monosaccharide, and glucose) metabolic process GO category was the most enriched, and sugar (galactose, pentose, starch, and sucrose) metabolism pathways constituted the most enriched KEGG category. Finally, the potential research value of invertase, protease, and ribosomal proteins for revealing the mechanism underlying the circadian rhythm and ephemeral properties of daylily flowers are discussed. These data and analyses provide new insight into the senescence mechanism of daylily flowers.
Collapse
Affiliation(s)
- Guangying Ma
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Xiaohua Shi
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qingcheng Zou
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Danqing Tian
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xia An
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Kaiyuan Zhu
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|