1
|
Xiang YT, Ma J, Wu JJ, Xue X, Gao X, Hua XY, Zheng MX, Xu JG. Brain-thyroid crosstalk: 18F-FDG-PET/MRI evidence in patients with follicular thyroid adenomas. Brain Res Bull 2025; 224:111324. [PMID: 40157550 DOI: 10.1016/j.brainresbull.2025.111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE The hypothalamic-pituitary-thyroid axis has been well-known. However, whether follicular thyroid adenoma (FTA) could affect brain glucose metabolism is still unknown. Therefore, we explored the brain glucose metabolic characteristics of FTA with Fluorodeoxyglucose F18 positron emission tomography/magnetic resonance imaging. METHODS Totally 30 FTA patients without clinical symptoms (FTA group), and 60 age- and sex-matched healthy controls (HC group) were included and randomly divided into cohort A and B in 2:1 ratio. Cohort A was analyzed with scaled sub-profile model/principal component analysis (SSM/PCA) for pattern identification. Cohort B was calculated the individual scores to validate expression of the pattern. Then we calculated the metabolic connectivity based on characteristics of the pattern to investigate the underlying mechanism. Finally, we constructed metabolic brain networks and analyzed the topological properties to further explore the brain metabolic model. RESULTS In SSM/PCA, FTA group showed an almost global, left-right symmetrical pattern. In metabolic connectivity, FTA group showed increased metabolic connectivity in brain regions of the sensorimotor network, ventral default mode network (DMN), posterior salient network, right executive control network (ECN), visuospatial network and language network when compared to HC group, and showed decreased connectivity in dorsal DMN and left ECN. In topological properties of brain network, FTA group showed an increased betweenness centrality (BC) in left rolandic operculum, a decreased BC in superior temporal gyrus, increased BC and Degree in right precentral gyrus, increased D in right parahippocampal gyrus and left hippocampus, and decreased D and efficiency in right orbital part of middle frontal gyrus (FDR correction for multiple comparisons, P < 0.05). CONCLUSION Although FTA patients are not yet symptomatic, their brain metabolic characteristics include extensive brain alterations, disrupted internal connectivity, not only involving brain regions associated with endocrine activity, but also brain networks and regions associated with motor, emotion and cognition.
Collapse
Affiliation(s)
- Yun-Ting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China
| | - Jie Ma
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xue
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Gao
- Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Traumatology and Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Traumatology and Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, China; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Biondi M, Marino M, Mantini D, Spironelli C. Brain Structural Alterations Underlying Mood-Related Deficits in Schizophrenia. Biomedicines 2025; 13:736. [PMID: 40149712 PMCID: PMC11939877 DOI: 10.3390/biomedicines13030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Schizophrenia (SZ) is a complex psychiatric disorder characterized by neurodegenerative processes, but the structural brain alterations associated with its progression remain poorly understood. This study investigated structural brain changes in SZ, particularly in the fronto-temporal and limbic regions, and explored their relationship with symptom severity, with a focus on mood- and emotion-related symptoms. Methods: We analyzed structural MRI data from 74 SZ patients and 91 healthy controls (HCs) using voxel-based morphometry (VBM) to compare whole-brain grey matter volumes (GMVs). The analysis focused on the fronto-temporal and limbic regions, and correlations between GMV and symptom severity were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Generalized Psychopathology (GP) scale. Results: SZ patients exhibited significant reductions in GMV in the fronto-temporal and limbic regions, including the dorsolateral prefrontal cortex (dlPFC) and the temporal pole, compared to HCs. Notably, a significant positive association was found between GMV in the right inferior temporal gyrus (ITG) and the severity of generalized psychopathology, as well as with anxiety, depression, mannerisms, and unusual thought content. Further post hoc analysis identified a specific cluster of mood-related symptoms contributing to the GP scale, which correlated with GMV changes in the right ITG. Conclusions: Our findings provide new evidence of structural brain alterations in SZ, particularly in the fronto-temporal and limbic regions, suggesting a progressive neurodegenerative pattern. The role of the right ITG in mood- and emotion-related symptoms requires further exploration, as it could offer insights into SZ pathophysiology and aid in distinguishing SZ from other mood-related disorders.
Collapse
Affiliation(s)
- Margherita Biondi
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy;
| | - Marco Marino
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Chiara Spironelli
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy;
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
3
|
Gao J, Tang H, Wang Z, Li Y, Luo N, Song M, Xie S, Shi W, Yan H, Lu L, Yan J, Li P, Song Y, Chen J, Chen Y, Wang H, Liu W, Li Z, Guo H, Wan P, Lv L, Yang Y, Wang H, Zhang H, Wu H, Ning Y, Zhang D, Jiang T. Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression. Neurosci Bull 2025:10.1007/s12264-025-01385-5. [PMID: 40100543 DOI: 10.1007/s12264-025-01385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/05/2024] [Indexed: 03/20/2025] Open
Abstract
Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Heping Tang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, China
| | - Na Luo
- Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ming Song
- Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weiyang Shi
- Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yuqing Song
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhigang Li
- Zhumadian Psychiatric Hospital, Zhumadian, 463000, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian, 463000, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian, 463000, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453003, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453003, China
- Department of Psychology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Tianzi Jiang
- Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China.
| |
Collapse
|
4
|
Carril Pardo C, Oyarce Merino K, Vera-Montecinos A. Neuroinflammatory Loop in Schizophrenia, Is There a Relationship with Symptoms or Cognition Decline? Int J Mol Sci 2025; 26:310. [PMID: 39796167 PMCID: PMC11720417 DOI: 10.3390/ijms26010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Schizophrenia (SZ), a complex psychiatric disorder of neurodevelopment, is characterised by a range of symptoms, including hallucinations, delusions, social isolation and cognitive deterioration. One of the hypotheses that underlie SZ is related to inflammatory events which could be partly responsible for symptoms. However, it is unknown how inflammatory molecules can contribute to cognitive decline in SZ. This review summarises and exposes the possible contribution of the imbalance between pro-inflammatory and anti-inflammatory interleukins like IL-1beta, IL-4 and TNFalfa among others on cognitive impairment. We discuss how this inflammatory imbalance affects microglia and astrocytes inducing the disruption of the blood-brain barrier (BBB) in SZ, which could impact the prefrontal cortex or associative areas involved in executive functions such as planning and working tasks. We also highlight that inflammatory molecules generated by intestinal microbiota alterations, due to dysfunctional microbial colonisers or the use of some anti-psychotics, could impact the central nervous system. Finally, the question arises as to whether it is possible to modulate or correct the inflammatory imbalance that characterises SZ, and if an immunomodulatory strategy can be incorporated into conventional clinical treatments, either alone or in complement, to be applied in specific phases, such as prodromal or in the first-episode psychosis.
Collapse
Affiliation(s)
- Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas, Concepción 4080871, Chile; (C.C.P.)
| | - Karina Oyarce Merino
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas, Concepción 4080871, Chile; (C.C.P.)
| | - América Vera-Montecinos
- Departamento de Ciencias Biológicas y Químicas, Facultad De Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile
| |
Collapse
|
5
|
Zeltser A, Ochneva A, Riabinina D, Zakurazhnaya V, Tsurina A, Golubeva E, Berdalin A, Andreyuk D, Leonteva E, Kostyuk G, Morozova A. EEG Techniques with Brain Activity Localization, Specifically LORETA, and Its Applicability in Monitoring Schizophrenia. J Clin Med 2024; 13:5108. [PMID: 39274319 PMCID: PMC11395834 DOI: 10.3390/jcm13175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia. The study's novelty lies in the comprehensive survey of EEG methods and detailed exploration of LORETA in schizophrenia research. This evaluation aligns with clinical objectives and has been performed for the first time. Methods: The study is split into two sections. Part I examines different EEG methodologies and adjuncts to detail brain activity in deep layers in articles published between 2018 and 2023 in PubMed. Part II focuses on the role of LORETA in investigating structural and functional changes in schizophrenia in studies published between 1999 and 2024 in PubMed. Results: Combining imaging techniques and EEG provides opportunities for mapping brain activity. Using LORETA, studies of schizophrenia have identified hemispheric asymmetry, especially increased activity in the left hemisphere. Cognitive deficits were associated with decreased activity in the dorsolateral prefrontal cortex and other areas. Comparison of the first episode of schizophrenia and a chronic one may help to classify structural change as a cause or as a consequence of the disorder. Antipsychotic drugs such as olanzapine or clozapine showed a change in P300 source density and increased activity in the delta and theta bands. Conclusions: Given the relatively low spatial resolution of LORETA, the method offers benefits such as accessibility, high temporal resolution, and the ability to map depth layers, emphasizing the potential of LORETA in monitoring the progression and treatment response in schizophrenia.
Collapse
Affiliation(s)
- Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeria Zakurazhnaya
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Marketing, Faculty of Economics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Leonteva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education "Russian Biotechnological University (ROSBIOTECH)", Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
6
|
Zhou Y, Zhu H, Hu W, Song Y, Zhang S, Peng Y, Yang G, Shi H, Yang Y, Li W, Lv L, Zhang Y. Abnormal regional homogeneity as a potential imaging indicator for identifying adolescent-onset schizophrenia: Insights from resting-state functional magnetic resonance imaging. Asian J Psychiatr 2024; 98:104106. [PMID: 38865883 DOI: 10.1016/j.ajp.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND In patients with schizophrenia, there is abnormal regional functional synchrony. However, whether it also in patients with adolescent-onset schizophrenia (AOS) remains unclear. The goal of this study was to analyze the regional homogeneity (ReHo) of resting functional magnetic resonance imaging to explore the functional abnormalities of the brain in patients with AOS. METHODS The study included 107 drug-naive first-episode AOS patients and 67 healthy, age, sex, and education-matched controls using resting-state functional magnetic resonance imaging scans. The ReHo method was used to analyze the imaging dataset. RESULTS Compared with the control group, the ReHo values of the right inferior frontal gyrus orbital part, right middle frontal gyrus (MFG.R), left inferior parietal, but supramarginal and angular gyri, and left precentral gyrus (PreCG.L) were significantly increased and the ReHo value of the left posterior cingulate cortex/anterior cuneiform lobe was significantly decreased in schizophrenia patients. ROC analysis showed that the ReHo values of the MFG.R and PreCG.L might be regarded as potential markers in helping to identify patients. Furthermore, the PANSS scores in the patient group and the ReHo values showed a positive correlation between MFG.R ReHo values and general scores. CONCLUSIONS Our results suggested that AOS patients had ReHo abnormalities. The ReHo values of these abnormal regions may serve as potential imaging biomarkers for the identification of AOS patients.
Collapse
Affiliation(s)
- Youqi Zhou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Hanyu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Wenyan Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Yichen Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Yue Peng
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China.
| |
Collapse
|
7
|
Jia Y, Li M, Hu S, Leng H, Yang X, Xue Q, Zhang M, Wang H, Huang Z, Wang H, Ye J, Liu A, Wang Y. Psychiatric features in NMDAR and LGI1 antibody-associated autoimmune encephalitis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1051-1061. [PMID: 37029805 DOI: 10.1007/s00406-023-01606-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Patients with autoimmune encephalitis (AE) often developed psychiatric features during the disease course. Many studies focused on the psychiatric characteristic in anti-NMDAR encephalitis (NMDAR-E), but anti-LGI1 encephalitis (LGI1-E) had received less attention regarding the analysis of psychiatric features, and no study compared psychiatric characteristic between these two groups. The clinical data of AE patients (62 NMDAR-E and 20 LGI1-E) who developed psychiatric symptoms were analyzed in this study. In NMDAR-E, the most common higher-level feature was "behavior changes" (60/62, 96.8%) and the lower-level feature "incoherent speech" was observed in 33 patients (33/62, 53.2%), followed by "agitation" (29/62, 46.8%) and "incongruent laughter/crying" (20/62, 32.3%). Similar to NMDAR-E, "behavior changes" was most common in LGI1-E (17/20, 85.0%), but the features of suicidality, eating, and obsessive-compulsive were not reported. The top three lower-level features were visual hallucinations (9/20, 45.0%), incoherent speech (8/20, 40.0%), and mood instability (7/20, 35.0%). The comparative study found that "incongruent laughter/crying", in lower-level features, was more frequently observed in NMDAR-E (32.3% vs. 0%, p = 0.002). Moreover, the Bush Francis Catatonia Rating Scale (BFCRS) assessing the catatonic symptoms in NMDAR-E were higher than LGI1-E, but the 18 item-Brief Psychiatric Rating Scale (BPRS-18) showed no difference in the two groups. In summary, both NMDAR-E and LGI1-E often developed psychiatric symptoms. In contrast with LGI1-E, the psychiatric feature "incongruent laughter/crying" was more frequently associated with NMDAR-E, and catatonic symptoms were more severe in NMDAR-E.
Collapse
Affiliation(s)
- Yu Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Mingyu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Haixia Leng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Xiaotong Yang
- Department of Neurology, Youanmen Hospital, Fengtai, Beijing, China
| | - Qing Xue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Mengyao Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Huifang Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
- Beijing Key Laboratory of Neuromodulation, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
- Institute of Sleep and Consciousness Disorders, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
| | - Jing Ye
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
- Beijing Key Laboratory of Neuromodulation, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| | - Aihua Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China
- Beijing Key Laboratory of Neuromodulation, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 ChangChun Street, XiCheng District, Beijing, 100053, China.
- Beijing Key Laboratory of Neuromodulation, Capital Medical University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China.
- Institute of Sleep and Consciousness Disorders, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Ji J, Chao H, Chen H, Liao J, Shi W, Ye Y, Wang T, You Y, Liu N, Ji J, Petretto E. Decoding frontotemporal and cell-type-specific vulnerabilities to neuropsychiatric disorders and psychoactive drugs. Open Biol 2024; 14:240063. [PMID: 38864245 DOI: 10.1098/rsob.240063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Frontotemporal lobe abnormalities are linked to neuropsychiatric disorders and cognition, but the role of cellular heterogeneity between temporal lobe (TL) and frontal lobe (FL) in the vulnerability to genetic risk factors remains to be elucidated. We integrated single-nucleus transcriptome analysis in 'fresh' human FL and TL with genetic susceptibility, gene dysregulation in neuropsychiatric disease and psychoactive drug response data. We show how intrinsic differences between TL and FL contribute to the vulnerability of specific cell types to both genetic risk factors and psychoactive drugs. Neuronal populations, specifically PVALB neurons, were most highly vulnerable to genetic risk factors for psychiatric disease. These psychiatric disease-associated genes were mostly upregulated in the TL, and dysregulated in the brain of patients with obsessive-compulsive disorder, bipolar disorder and schizophrenia. Among these genes, GRIN2A and SLC12A5, implicated in schizophrenia and bipolar disorder, were significantly upregulated in TL PVALB neurons and in psychiatric disease patients' brain. PVALB neurons from the TL were twofold more vulnerable to psychoactive drugs than to genetic risk factors, showing the influence and specificity of frontotemporal lobe differences on cell vulnerabilities. These studies provide a cell type resolved map of the impact of brain regional differences on cell type vulnerabilities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiatong Ji
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Huimei Chen
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jun Liao
- High Performance Computing Center, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Wenqian Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yangfan Ye
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Tian Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
- Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Xinjiang, Artux 845350, People's Republic of China
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Enrico Petretto
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
9
|
Hou Y, Xia H, He T, Zhang B, Qiu G, Chen A. N2 Responses in Youths With Psychosis Risk Syndrome and Their Association With Clinical Outcomes: A Cohort Follow-Up Study Based on the Three-Stimulus Visual Oddball Paradigm. Am J Psychiatry 2024; 181:330-341. [PMID: 38419496 DOI: 10.1176/appi.ajp.20221013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Schizophrenia often occurs during youth, and psychosis risk syndrome occurs before the onset of psychosis. The aim of this study was to determine whether the visual event-related potential responses in youths with psychosis risk syndrome were defective in the presence of interference stimuli and associated with their clinical outcomes. METHODS A total of 223 participants, including 122 patients with psychosis risk syndrome, 50 patients with emotional disorders, and 51 healthy control subjects, were assessed. Baseline EEG was recorded during the three-stimulus visual oddball task. The event-related potentials induced by square pictures with different colors were measured. Almost all patients with psychosis risk syndrome were followed up for 12 months and were reclassified into three subgroups: conversion, symptomatic, and remission. The differences in baseline event-related potential responses were compared among the clinical outcome subgroups. RESULTS The average N2 amplitude of the psychosis risk syndrome group was significantly less negative than that in the healthy control group (d=0.53). The baseline average N2 amplitude in the conversion subgroup was significantly less negative than that in the symptomatic (d=0.58) and remission (d=0.50) subgroups and in the healthy control group (d=0.97). The average N2 amplitude did not differ significantly between the symptomatic and remission subgroups (d=0.02). However, it was significantly less negative in the symptomatic and remission subgroups than in the healthy control group (d=0.46 and d=0.38). No statistically significant results were found in the P3 response. CONCLUSIONS Youths with psychosis risk syndrome had significant N2 amplitude defects in attention processing with interference stimuli. N2 amplitude shows potential as a prognostic biomarker of clinical outcome in the psychosis risk syndrome.
Collapse
Affiliation(s)
- Yongqing Hou
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Haishuo Xia
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Tianbao He
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Bohua Zhang
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Guiping Qiu
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Antao Chen
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| |
Collapse
|
10
|
Hartmann SM, Heider J, Wüst R, Fallgatter AJ, Volkmer H. Microglia-neuron interactions in schizophrenia. Front Cell Neurosci 2024; 18:1345349. [PMID: 38510107 PMCID: PMC10950997 DOI: 10.3389/fncel.2024.1345349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple lines of evidence implicate increased neuroinflammation mediated by glial cells to play a key role in neurodevelopmental disorders such as schizophrenia. Microglia, which are the primary innate immune cells of the brain, are crucial for the refinement of the synaptic circuitry during early brain development by synaptic pruning and the regulation of synaptic plasticity during adulthood. Schizophrenia risk factors as genetics or environmental influences may further be linked to increased activation of microglia, an increase of pro-inflammatory cytokine levels and activation of the inflammasome resulting in an overall elevated neuroinflammatory state in patients. Synaptic loss, one of the central pathological hallmarks of schizophrenia, is believed to be due to excess removal of synapses by activated microglia, primarily affecting glutamatergic neurons. Therefore, it is crucial to investigate microglia-neuron interactions, which has been done by multiple studies focusing on post-mortem brain tissues, brain imaging, animal models and patient iPSC-derived 2D culture systems. In this review, we summarize the major findings in patients and in vivo and in vitro models in the context of neuron-microglia interactions in schizophrenia and secondly discuss the potential of anti-inflammatory treatments for the alleviation of positive, negative, and cognitive symptoms.
Collapse
Affiliation(s)
- Sophia-Marie Hartmann
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Johanna Heider
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Hansjürgen Volkmer
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
11
|
Molnár H, Marosi C, Becske M, Békési E, Farkas K, Stefanics G, Czigler I, Csukly G. A comparison of visual and acoustic mismatch negativity as potential biomarkers in schizophrenia. Sci Rep 2024; 14:992. [PMID: 38200103 PMCID: PMC10782025 DOI: 10.1038/s41598-023-49983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Mismatch negativity (MMN) is an event-related potential (ERP) component generated when an unexpected deviant stimulus occurs in a pattern of standard stimuli. Several studies showed that the MMN response to both auditory and visual stimuli is attenuated in schizophrenia. While previous studies investigated auditory and visual MMN in different cohorts, here we examined the potential clinical utility of MMN responses to auditory and visual stimuli within the same group of patients. Altogether 39 patients with schizophrenia and 39 healthy controls matched in age, gender, and education were enrolled. We recorded EEG using 64 channels in eight experimental blocks where we presented auditory and visual stimulus sequences. Mismatch responses were obtained by subtracting responses to standard from the physically identical deviant stimuli. We found a significant MMN response to the acoustic stimuli in the control group, whereas no significant mismatch response was observed in the patient group. The group difference was significant for the acoustic stimuli. The 12 vane windmill pattern evoked a significant MMN response in the early time window in the control group but not in the patient group. The 6 vane windmill pattern evoked MMN only in the patient group. However, we found no significant difference between the groups. Furthermore, we found no correlation between the clinical variables and the MMN amplitudes. Our results suggest that predictive processes underlying mismatch generation in patients with schizophrenia may be more affected in the acoustic compared to the visual domain. Acoustic MMN tends to be a more promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Emese Békési
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Stefanics
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, RCNS, HU-RES, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Chan YLE, Tsai SJ, Chern Y, Yang AC. Exploring the role of hub and network dysfunction in brain connectomes of schizophrenia using functional magnetic resonance imaging. Front Psychiatry 2024; 14:1305359. [PMID: 38260783 PMCID: PMC10800602 DOI: 10.3389/fpsyt.2023.1305359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Pathophysiological etiology of schizophrenia remains unclear due to the heterogeneous nature of its biological and clinical manifestations. Dysfunctional communication among large-scale brain networks and hub nodes have been reported. In this study, an exploratory approach was adopted to evaluate the dysfunctional connectome of brain in schizophrenia. Methods Two hundred adult individuals with schizophrenia and 200 healthy controls were recruited from Taipei Veterans General Hospital. All subjects received functional magnetic resonance imaging (fMRI) scanning. Functional connectivity (FC) between parcellated brain regions were obtained. Pair-wise brain regions with significantly different functional connectivity among the two groups were identified and further analyzed for their concurrent ratio of connectomic differences with another solitary brain region (single-FC dysfunction) or dynamically interconnected brain network (network-FC dysfunction). Results The right thalamus had the highest number of significantly different pair-wise functional connectivity between schizophrenia and control groups, followed by the left thalamus and the right middle frontal gyrus. For individual brain regions, dysfunctional single-FCs and network-FCs could be found concurrently. Dysfunctional single-FCs distributed extensively in the whole brain of schizophrenia patients, but overlapped in similar groups of brain nodes. A dysfunctional module could be formed, with thalamus being the key dysfunctional hub. Discussion The thalamus can be a critical hub in the brain that its dysfunctional connectome with other brain regions is significant in schizophrenia patients. Interconnections between dysfunctional FCs for individual brain regions may provide future guide to identify critical brain pathology associated with schizophrenia.
Collapse
Affiliation(s)
- Yee-Lam E. Chan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C. Yang
- Institute of Brain Science/Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Janz P, Knoflach F, Bleicher K, Belli S, Biemans B, Schnider P, Ebeling M, Grundschober C, Benekareddy M. Selective oxytocin receptor activation prevents prefrontal circuit dysfunction and social behavioral alterations in response to chronic prefrontal cortex activation in male rats. Front Cell Neurosci 2023; 17:1286552. [PMID: 38145283 PMCID: PMC10745491 DOI: 10.3389/fncel.2023.1286552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Social behavioral changes are a hallmark of several neurodevelopmental and neuropsychiatric conditions, nevertheless the underlying neural substrates of such dysfunction remain poorly understood. Building evidence points to the prefrontal cortex (PFC) as one of the key brain regions that orchestrates social behavior. We used this concept with the aim to develop a translational rat model of social-circuit dysfunction, the chronic PFC activation model (CPA). Methods Chemogenetic designer receptor hM3Dq was used to induce chronic activation of the PFC over 10 days, and the behavioral and electrophysiological signatures of prolonged PFC hyperactivity were evaluated. To test the sensitivity of this model to pharmacological interventions on longer timescales, and validate its translational potential, the rats were treated with our novel highly selective oxytocin receptor (OXTR) agonist RO6958375, which is not activating the related vasopressin V1a receptor. Results CPA rats showed reduced sociability in the three-chamber sociability test, and a concomitant decrease in neuronal excitability and synaptic transmission within the PFC as measured by electrophysiological recordings in acute slice preparation. Sub-chronic treatment with a low dose of the novel OXTR agonist following CPA interferes with the emergence of PFC circuit dysfunction, abnormal social behavior and specific transcriptomic changes. Discussion These results demonstrate that sustained PFC hyperactivity modifies circuit characteristics and social behaviors in ways that can be modulated by selective OXTR activation and that this model may be used to understand the circuit recruitment of prosocial therapies in drug discovery.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Frederic Knoflach
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Konrad Bleicher
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Sara Belli
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Barbara Biemans
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Patrick Schnider
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Christophe Grundschober
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Madhurima Benekareddy
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
- Calico Life Sciences, South San Francisco, CA, United States
| |
Collapse
|
14
|
Townsend L, Pillinger T, Selvaggi P, Veronese M, Turkheimer F, Howes O. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol Med 2023; 53:4880-4897. [PMID: 35730361 PMCID: PMC10476075 DOI: 10.1017/s003329172200174x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/16/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Impaired brain metabolism may be central to schizophrenia pathophysiology, but the magnitude and consistency of metabolic dysfunction is unknown. METHODS We searched MEDLINE, PsychINFO and EMBASE between 01/01/1980 and 13/05/2021 for studies comparing regional brain glucose metabolism using 18FDG-PET, in schizophrenia/first-episode psychosis v. controls. Effect sizes (Hedges g) were pooled using a random-effects model. Primary measures were regional absolute and relative CMRGlu in frontal, temporal, parietal and occipital lobes, basal ganglia and thalamus. RESULTS Thirty-six studies (1335 subjects) were included. Frontal absolute glucose metabolism (Hedge's g = -0.74 ± 0.54, p = 0.01; I2 = 67%) and metabolism relative to whole brain (g = -0.44 ± 0.34, p = 0.01; I2 = 55%) were lower in schizophrenia v. controls with moderate heterogeneity. Absolute frontal metabolism was lower in chronic (g = -1.18 ± 0.73) v. first-episode patients (g = -0.09 ± 0.88) and controls. Medicated patients showed frontal hypometabolism relative to controls (-1.04 ± 0.26) while metabolism in drug-free patients did not differ significantly from controls. There were no differences in parietal, temporal or occipital lobe or thalamic metabolism in schizophrenia v. controls. Excluding outliers, absolute basal ganglia metabolism was lower in schizophrenia v. controls (-0.25 ± 0.24, p = 0.049; I2 = 5%). Studies identified reporting voxel-based morphometry measures of absolute 18FDG uptake (eight studies) were also analysed using signed differential mapping analysis, finding lower 18FDG uptake in the left anterior cingulate gyrus (Z = -4.143; p = 0.007) and the left inferior orbital frontal gyrus (Z = -4.239; p = 0.02) in schizophrenia. CONCLUSIONS We report evidence for hypometabolism with large effect sizes in the frontal cortex in schizophrenia without consistent evidence for alterations in other brain regions. Our findings support the hypothesis of hypofrontality in schizophrenia.
Collapse
Affiliation(s)
- Leigh Townsend
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
15
|
Kai J, Mackinley M, Khan AR, Palaniyappan L. Aberrant frontal lobe "U"-shaped association fibers in first-episode schizophrenia: A 7-Tesla Diffusion Imaging Study. Neuroimage Clin 2023; 38:103367. [PMID: 36913907 PMCID: PMC10011060 DOI: 10.1016/j.nicl.2023.103367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Schizophrenia is believed to be a developmental disorder with one hypothesis suggesting that symptoms arise due to abnormal interactions (or disconnectivity) between different brain regions. While some major deep white matter pathways have been extensively studied (e.g. arcuate fasciculus), studies of short-ranged, "U"-shaped tracts have been limited in patients with schizophrenia, in part due to the sheer abundance of tracts present and due to the spatial variations across individuals that defy probabilistic characterization in the absence of reliable templates. In this study, we use diffusion magnetic resonance imaging (dMRI) to investigate frontal lobe superficial white matter that are present in the majority of study participants, comparing healthy controls and minimally treated patients with first-episode schizophrenia (<3 median days of lifetime treatment). Through group comparisons, 3 out of 63 frontal lobe "U"-shaped tracts were found to demonstrate localized aberrations affecting the microstructural tissue properties (via diffusion tensor metrics) in this early stage of disease. No associations were found in patients between aberrant segments of affected tracts and clinical or cognitive variables. Aberrations in the frontal lobe "U"-shaped tracts in early untreated stages of psychosis occur irrespective of symptom burden, and are distributed across critical functional networks associated with executive function and salience processing. While we limited the investigation to the frontal lobe, a framework has been developed to study such connections in other brain regions, enabling further extensive investigations jointly with the major deep white matter pathways.
Collapse
Affiliation(s)
- Jason Kai
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Michael Mackinley
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
de O Toutain TGL, Miranda JGV, do Rosário RS, de Sena EP. Brain instability in dynamic functional connectivity in schizophrenia. J Neural Transm (Vienna) 2023; 130:171-180. [PMID: 36572767 DOI: 10.1007/s00702-022-02579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a severe psychiatric disorder associated with altered connectivity of brain functional networks (BFNs). Researchers have observed a profound disruption in prefrontal-temporal interactions, damage to hub regions in brain networks and modified topological organization of BFNs in schizophrenia (SCZ) individuals. Assessment of BFNs with dynamic approaches allow the characterization of new functional structures, such as topological stability patterns and temporal connectivity, which are not accessible through static methods. In this perspective, the present study investigated the physiological processes of brain connectivity in SCZ. A resting-state EEG dataset of 14 SCZ individuals and 14 healthy controls (HC) was obtained at a sampling rate of 250 Hz. Dynamic BFNs were constructed using time-varying graphs combined with the motifs' synchronization method and the indexes were evaluated in different scales: global averages, by hemispheres, by regions, and by electrodes for both groups. The SCZ group exhibited lower temporal connectivity, lesser hub probability, and fewer number of edges in right and left temporal lobes over time, besides increased temporal connectivity in the central-parietal region. Neither differences for the full synchronization time of BFNs were observed, nor for intra- and inter-hemispheric connections between groups. These results indicate that SCZ BFNs exhibit a dynamic fluctuation pattern with abrupt increases in connectivity over time for the regions studied. This elucidates an attempted interaction of the temporal area with other regions (frontal, central-parietal, and occipital) that is not sufficient to maintain a connectivity pattern in schizophrenia individuals similar to that of healthy subjects. Our results suggest that changes in interaction of dynamic BFNs connections in SCZ can be better approached by dynamic analyses that enable a thorough glance at brain changes over time.
Collapse
Affiliation(s)
- Thaise Graziele L de O Toutain
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
- Laboratory of Biosystems, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Eduardo Pondé de Sena
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.
- Department of Bioregulation, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Vale do Canela, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
17
|
Burton SMI, Sallis HM, Hatoum AS, Munafò MR, Reed ZE. Is there a causal relationship between executive function and liability to mental health and substance use? A Mendelian randomization approach. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220631. [PMID: 36533203 PMCID: PMC9748493 DOI: 10.1098/rsos.220631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Poorer performance in tasks testing executive function (EF) is associated with a range of psychopathologies such as schizophrenia, major depressive disorder (MDD) and anxiety, as well as smoking and alcohol consumption. We used two-sample bidirectional Mendelian randomization to examine whether these may reflect causal relationships and the direction of causation. We used genome-wide association study summary data (N = 17 310 to 848 460) for a common EF factor score (cEF), schizophrenia, MDD, anxiety, smoking initiation, alcohol consumption, alcohol dependence and cannabis use disorder (CUD). We found evidence of increased cEF on reduced schizophrenia liability (OR = 0.10; CI: 0.05 to 0.19; p-value = 3.43 × 10-12), MDD liability (OR = 0.52; CI: 0.38 to 0.72; p-value = 5.23 × 10-05), drinks per week (β = -0.06; CI: -0.10 to -0.02; p-value = 0.003) and CUD liability (OR = 0.27; CI: 0.12 to 0.61; p-value = 1.58 × 10-03). We also found evidence of increased schizophrenia liability (β = -0.04; CI: -0.04 to -0.03; p-value = 3.25 × 10-27) and smoking initiation on decreased cEF (β = -0.06; CI: -0.09 to -0.03; p-value = 6.11 × 10-05). Our results indicate potential causal relationships between cEF and mental health and substance use. Further studies are required to improve our understanding of the underlying mechanisms of these effects, but our results suggest that EF may be a promising intervention target for mental health and substance use.
Collapse
Affiliation(s)
| | - Hannah M. Sallis
- School of Psychological Science, University of Bristol, Bristol BS8 1TH, UK
- Centre for Academic Mental Health, Population Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
| | - Alexander S. Hatoum
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Marcus R. Munafò
- School of Psychological Science, University of Bristol, Bristol BS8 1TH, UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol BS28 2BN, UK
| | - Zoe E. Reed
- School of Psychological Science, University of Bristol, Bristol BS8 1TH, UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
18
|
Jia X, Wang J, Jiang W, Kong Z, Deng H, Lai W, Ye C, Guan F, Li P, Zhao M, Yang M. Common gray matter loss in the frontal cortex in patients with methamphetamine-associated psychosis and schizophrenia. Neuroimage Clin 2022; 36:103259. [PMID: 36510408 PMCID: PMC9668661 DOI: 10.1016/j.nicl.2022.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND HYPOTHESIS Methamphetamine (MA)-associated psychosis has become a public concern. However, its mechanism is not clear. Investigating similarities and differences between MA-associated psychosis and schizophrenia in brain alterations would be informative for neuropathology. STUDY DESIGN This study compared gray matter volumes of the brain across four participant groups: healthy controls (HC, n = 53), MA users without psychosis (MA, n = 22), patients with MA-associated psychosis (MAP, n = 34) and patients with schizophrenia (SCZ, n = 33). Clinical predictors of brain alterations, as well as association of brain alterations with psychotic symptoms and attention impairment were further investigated. STUDY RESULTS Compared with the HC, the MAP and the SCZ showed similar gray matter reductions in the frontal cortex, particularly in prefrontal areas. Moreover, a stepwise extension of gray matter reductions was exhibited across the MA - MAP - SCZ. Duration of abstinence was associated with regional volumetric recovery in the MAP, while this amendment in brain morphometry was not accompanied with symptom's remission. Illness duration of psychosis was among the predictive factors of regional gray matter reductions in both psychotic groups. Volume reductions were found to be associated with attention impairment in the SCZ, while this association was reversed in the MAP in frontal cortex. CONCLUSIONS This study suggested MA-associated psychosis and schizophrenia had common neuropathology in cognitive-related frontal cortices. A continuum of neuropathology between MA use and schizophrenia was tentatively implicated. Illness progressions and glial repairments could both play roles in neuropathological changes in MA-associated psychosis.
Collapse
Affiliation(s)
- Xiaojian Jia
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China
| | - Jianhong Wang
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China
| | - Wentao Jiang
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China
| | - Zhi Kong
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China
| | - Huan Deng
- School of International Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wentao Lai
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China
| | - Caihong Ye
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China
| | - Fen Guan
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Mei Yang
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen 518020, China.
| |
Collapse
|
19
|
Zovetti N, Bellani M, Chowdury A, Alessandrini F, Zoccatelli G, Perlini C, Ricciardi GK, Marzi CA, Diwadkar VA, Brambilla P. Inefficient white matter activity in Schizophrenia evoked during intra and inter-hemispheric communication. Transl Psychiatry 2022; 12:449. [PMID: 36244980 PMCID: PMC9573867 DOI: 10.1038/s41398-022-02200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Intensive cognitive tasks induce inefficient regional and network responses in schizophrenia (SCZ). fMRI-based studies have naturally focused on gray matter, but appropriately titrated visuo-motor integration tasks reliably activate inter- and intra-hemispheric white matter pathways. Such tasks can assess network inefficiency without demanding intensive cognitive effort. Here, we provide the first application of this framework to the study of white matter functional responses in SCZ. Event-related fMRI data were acquired from 28 patients (nine females, mean age 43.3, ±11.7) and 28 age- and gender-comparable controls (nine females, mean age 42.1 ± 10.1), using the Poffenberger paradigm, a rapid visual detection task used to induce intra- (ipsi-lateral visual and motor cortex) or inter-hemispheric (contra-lateral visual and motor cortex) transfer. fMRI data were pre- and post-processed to reliably isolate activations in white matter, using probabilistic tractography-based white matter tracts. For intra- and inter-hemispheric transfer conditions, SCZ evinced hyper-activations in longitudinal and transverse white matter tracts, with hyper-activation in sub-regions of the corpus callosum primarily observed during inter-hemispheric transfer. Evidence for the functional inefficiency of white matter was observed in conjunction with small (~50 ms) but significant increases in response times. Functional inefficiencies in SCZ are (1) observable in white matter, with the degree of inefficiency contextually related to task-conditions, and (2) are evoked by simple detection tasks without intense cognitive processing. These cumulative results while expanding our understanding of this dys-connection syndrome, also extend the search of biomarkers beyond the traditional realm of fMRI studies of gray matter.
Collapse
Affiliation(s)
- Niccolò Zovetti
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy.
| | - Asadur Chowdury
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Franco Alessandrini
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giada Zoccatelli
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Cinzia Perlini
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Giuseppe K. Ricciardi
- Pathology and Diagnostics, Section of Neuroradiology, Hospital Trust Verona, Verona, Italy
| | - Carlo A. Marzi
- grid.5611.30000 0004 1763 1124Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy ,National Institute of Neuroscience, Verona, Italy
| | - Vaibhav A. Diwadkar
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
20
|
Yeh TC, Huang CCY, Chung YA, Im JJ, Lin YY, Ma CC, Tzeng NS, Chang CC, Chang HA. High-Frequency Transcranial Random Noise Stimulation over the Left Prefrontal Cortex Increases Resting-State EEG Frontal Alpha Asymmetry in Patients with Schizophrenia. J Pers Med 2022; 12:1667. [PMID: 36294806 PMCID: PMC9604798 DOI: 10.3390/jpm12101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Reduced left-lateralized electroencephalographic (EEG) frontal alpha asymmetry (FAA), a biomarker for the imbalance of interhemispheric frontal activity and motivational disturbances, represents a neuropathological attribute of negative symptoms of schizophrenia. Unidirectional high-frequency transcranial random noise stimulation (hf-tRNS) can increase the excitability of the cortex beneath the stimulating electrode. Yet, it is unclear if hf-tRNS can modulate electroencephalographic FAA in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast hf-tRNS and sham stimulation for treating negative symptoms in 35 schizophrenia patients. We used electroencephalography to investigate if 10 sessions of hf-tRNS delivered twice-a-day for five consecutive weekdays would modulate electroencephalographic FAA in schizophrenia. EEG data were collected and FAA was expressed as the differences between common-log-transformed absolute power values of frontal right and left hemisphere electrodes in the alpha frequency range (8-12.5 Hz). We found that hf-tRNS significantly increased FAA during the first session of stimulation (p = 0.009) and at the 1-week follow-up (p = 0.004) relative to sham stimulation. However, FAA failed to predict and surrogate the improvement in the severity of negative symptoms with hf-tRNS intervention. Together, our findings suggest that modulating electroencephalographic frontal alpha asymmetry by using unidirectional hf-tRNS may play a key role in reducing negative symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
| | - Cathy Chia-Yu Huang
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul 21431, Korea
| | - Jooyeon Jamie Im
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul 21431, Korea
| | - Yen-Yue Lin
- Department of Life Sciences, National Central University, Taoyuan 320317, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325208, Taiwan
| | - Chin-Chao Ma
- Department of Psychiatry, Tri-Service General Hospital Beitou Branch, National Defense Medical Center, Taipei 112003, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
| |
Collapse
|
21
|
Qiu X, Zhang R, Wen L, Jiang F, Mao H, Yan W, Xie S, Pan X. Alterations in Spontaneous Brain Activity in Drug-Naïve First-Episode Schizophrenia: An Anatomical/Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig 2022; 19:606-613. [PMID: 36059049 PMCID: PMC9441467 DOI: 10.30773/pi.2022.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The etiology of schizophrenia is unknown and is associated with abnormal spontaneous brain activity. There are no consistent results regarding the change in spontaneous brain activity of people with schizophrenia. In this study, we determined the specific changes in the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity (ReHo) in patients with drug-naïve first-episode schizophrenia (Dn-FES). METHODS A comprehensive search of databases such as PubMed, Web of Science, and Embase was conducted to find articles on resting-state functional magnetic resonance imaging using ALFF/fALFF and ReHo in schizophrenia patients compared to healthy controls (HCs) and then, anatomical/activation likelihood estimation was performed. RESULTS Eighteen eligible studies were included in this meta-analysis. Compared to the spontaneous brain activity of HCs, we found changes in spontaneous brain activity in Dn-FES based on these two methods, mainly including the frontal lobe, putamen, lateral globus pallidus, insula, cerebellum, and posterior cingulate cortex. CONCLUSION We found that widespread abnormalities of spontaneous brain activity occur in the early stages of the onset of schizophrenia and may provide a reference for the early intervention of schizophrenia.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wen
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Fuli Jiang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Mao
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Wei Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinming Pan
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| |
Collapse
|
22
|
Sun H, Zhang W, Cao H, Sun H, Dai J, Li S, Zeng J, Wei X, Tang B, Gong Q, Lui S. Linked brain connectivity patterns with psychopathological and cognitive phenotypes in drug-naïve first-episode schizophrenia. PSYCHORADIOLOGY 2022; 2:43-51. [PMID: 38665967 PMCID: PMC10994520 DOI: 10.1093/psyrad/kkac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023]
Abstract
Background Schizophrenia is considered to be a disorder of dysconnectivity characterized by abnormal functional integration between distinct brain regions. Different brain connection abnormalities were found to be correlated with various clinical manifestations, but whether a common deficit in functional connectivity (FC) in relation to both clinical symptoms and cognitive impairments could present in first-episode patients who have never received any medication remains elusive. Objective To find a core deficit in the brain connectome that is related to both psychopathological and cognitive manifestations. Methods A total of 75 patients with first-episode schizophrenia and 51 healthy control participants underwent scanning of the brain and clinical ratings of behaviors. A principal component analysis was performed on the clinical ratings of symptom and cognition. Partial correlation analyses were conducted between the main psychopathological components and resting-state FC that were found abnormal in schizophrenia patients. Results Using the principal component analysis, the first principal component (PC1) explained 37% of the total variance of seven clinical features. The ratings of GAF and BACS contributed negatively to PC1, while those of PANSS, HAMD, and HAMA contributed positively. The FCs positively correlated with PC1 mainly included connections related to the insula, precuneus gyrus, and some frontal brain regions. FCs negatively correlated with PC1 mainly included connections between the left middle cingulate cortex and superior and middle occipital regions. Conclusion In conclusion, we found a linked pattern of FC associated with both psychopathological and cognitive manifestations in drug-naïve first-episode schizophrenia characterized as the dysconnection related to the frontal and visual cortex, which may represent a core deficit of brain FC in patients with schizophrenia.
Collapse
Affiliation(s)
- Hui Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Hengyi Cao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, 11030 Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, 11004 Glen Oaks, NY, USA
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Jing Dai
- Department of Psychoradiology, Chengdu Mental Health Center, 610031 Chengdu, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Xia Wei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041 Chengdu, China
| |
Collapse
|
23
|
Eken A, Akaslan DS, Baskak B, Münir K. Diagnostic Classification of Schizophrenia and Bipolar Disorder by Using Dynamic Functional Connectivity: an fNIRS Study. J Neurosci Methods 2022; 376:109596. [DOI: 10.1016/j.jneumeth.2022.109596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
|
24
|
Waszczuk K, Tyburski E, Rek-Owodziń K, Plichta P, Rudkowski K, Podwalski P, Bielecki M, Mak M, Bober A, Misiak B, Sagan L, Michalczyk A, Kucharska-Mazur J, Samochowiec J. Relationship between White Matter Alterations and Pathophysiological Symptoms in Patients with Ultra-High Risk of Psychosis, First-Episode, and Chronic Schizophrenia. Brain Sci 2022; 12:brainsci12030354. [PMID: 35326310 PMCID: PMC8946295 DOI: 10.3390/brainsci12030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
Some symptoms of schizophrenia might be present before full-blown psychosis, so white matter changes must be studied both in individuals with emerging psychosis and chronic schizophrenia. A total of 86 patients—12 ultra-high risk of psychosis (UHR), 20 first episode psychosis (FEP), 54 chronic schizophrenia (CS), and 33 healthy controls (HC)—underwent psychiatric examination and diffusion tensor imaging (DTI) in a 3-Tesla MRI scanner. We assessed fractional anisotropy (FA) and mean diffusivity (MD) of the superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILS). We found that CS patients had lower FA than FEP patients (p = 0.025) and HC (p = 0.088), and higher MD than HC (p = 0.037) in the right SLF. In the CS group, we found positive correlations of MD in both right ILF (rho = 0.39, p < 0.05) and SLF (rho = 0.43, p < 0.01) with disorganization symptoms, as well as negative correlation of FA in the right ILF with disorganization symptoms (rho = −0.43, p < 0.05). Among UHR individuals, we found significant negative correlations between MD in the left ILF and negative (r = −0.74, p < 0.05) and general symptoms (r = −0.77, p < 0.05). However promising, these findings should be treated as preliminary, and further research must verify whether they can be treated as potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Adrianna Bober
- Institute of Psychology, University of Szczecin, Krakowska 69 Street, 71-017 Szczecin, Poland
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 Street, 71-252 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| |
Collapse
|
25
|
Karpov D, Golimbet V. Cellular and supracellular models in the study of molecular mechanisms associated with schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:46-50. [DOI: 10.17116/jnevro202212211146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Malashenkova I, Ushakov V, Zakharova N, Krynskiy S, Ogurtsov D, Hailov N, Chekulaeva E, Ratushnyy A, Kartashov S, Kostyuk G, Didkovsky N. Neuro-Immune Aspects of Schizophrenia with Severe Negative Symptoms: New Diagnostic Markers of Disease Phenotype. Sovrem Tekhnologii Med 2021; 13:24-33. [PMID: 35265356 PMCID: PMC8858398 DOI: 10.17691/stm2021.13.6.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to analyze the immune-inflammatory profile of patients with paranoid schizophrenia and relate it to the severity of negative symptoms and the MRI data in order to identify biomarkers of schizophrenia severity, search for new approaches to therapy, and control its effectiveness. Materials and Methods The main group included 51 patients with paranoid schizophrenia, the control group - 30 healthy subjects. Patients underwent MRI scans and immunological studies, which included an assessment of natural and adaptive immunity, the systemic level of key pro-inflammatory and anti-inflammatory cytokines, and other markers of inflammation. Results Disorders of immunity and immunoinflammatory profile in patients with paranoid schizophrenia with severe negative symptoms were revealed for the first time: in the presence of severe negative symptoms (>15 points according to the NSA-4 scale), the levels of humoral immunity factors, cytokines IL-10 and IL-12p40 and neurotrophin NGF were increased as well as the markers of systemic inflammation. Morphometric changes in the brain, typical for patients with schizophrenia, and also specific for patients with severe negative symptoms, were determined. The data analysis revealed correlations between the immune changes with structural changes in some of the brain areas, including the frontal cortex and hippocampus. Associations were found between the levels of anti-inflammatory IL-10, IL-12p40 cytokines and morphometric parameters of the brain, specific only for schizophrenic patients with severe negative symptoms. Conclusion The interdisciplinary approach, combining brain morphometry with in-depth immunological and clinical studies, made it possible to determine neurobiological, immune, and neurocognitive markers of paranoid schizophrenia with severe negative symptoms. The results are important for further deciphering the pathogenesis of schizophrenia and its subtypes, as well as for the search for new approaches to the treatment of severe forms of the disease.
Collapse
Affiliation(s)
- I.K. Malashenkova
- Head of the Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia; Leading Researcher, Laboratory of Clinical Immunology; Federal Research and Clinical Center of Physical-Chemical Medicine
| | - V.L. Ushakov
- Associate Professor, Senior Researcher; National Research Nuclear University MEPhI, 31 Kashirskoe Shosse, Moscow, 115409, Russia; Department Head; Alekseev Psychiatric Clinical Hospital No.1, Moscow Department of Health, 2 Zagorodnoe Shosse, Moscow, 117152, Russia; Leading Researcher, Institute for Advanced Brain Research; Lomonosov Moscow State University, 27/1 Lomonosov Avenue, Moscow, 119192, Russia
| | - N.V. Zakharova
- Head of the Laboratory for Fundamental Research Methods; Alekseev Psychiatric Clinical Hospital No.1, Moscow Department of Health, 2 Zagorodnoe Shosse, Moscow, 117152, Russia
| | - S.A. Krynskiy
- Researcher, Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - D.P. Ogurtsov
- Researcher, Laboratory of Molecular Immunology and Virology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia; Researcher, Laboratory of Clinical Immunology; Federal Research and Clinical Center of Physical-Chemical Medicine
| | - N.A. Hailov
- Senior Researcher, Resource Center for Molecular and Cellular Biology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - E.I. Chekulaeva
- Junior Researcher, Resource Center for Molecular and Cellular Biology; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - A.Y. Ratushnyy
- Researcher, Laboratory of Cell Physiology; Russian Federation State Research Center Institute of Biomedical Problems of the Russian Academy of Sciences, 76A Khoroshevskoe Shosse, Moscow, 123007, Russia
| | - S.I. Kartashov
- Laboratory Deputy Head; National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova Square, Moscow, 123182, Russia
| | - G.P. Kostyuk
- Professor, Chief Physician; Alekseev Psychiatric Clinical Hospital No.1, Moscow Department of Health, 2 Zagorodnoe Shosse, Moscow, 117152, Russia
| | - N.A. Didkovsky
- Professor, Head of the Laboratory of Clinical Immunology; Federal Research and Clinical Center of Physical-Chemical Medicine
| |
Collapse
|
27
|
Shen L, Liu D, Huang Y. Hypothesis of subcortical visual pathway impairment in schizophrenia. Med Hypotheses 2021; 156:110686. [PMID: 34583308 DOI: 10.1016/j.mehy.2021.110686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a severe mental disease involving both neurological and psychiatric abnormalities. Previous studies mainly focus on damage to high-order cognitive dysfunction, which is related to high-level cortical regions such as the prefrontal and temporal lobes. Recent research reveals that impairment of low-level sensory processing occurs in the early stage of schizophrenia, which may be due to impairment of the subcortical magnocellular visual pathway. Moreover, the structure and function of some important nuclei in a subcortical visual pathway are reported to be abnormal in patients with schizophrenia. Inspired by the above evidence, we propose a hypothesis that impairment of the Superior Colliculus-Pulvinar-Amygdala subcortical visual pathway may be involved in the pathological mechanisms of early stages of schizophrenia. And we propose a possible method to detect dysfunction of this subcortical pathway through examining topological processing, which may help early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Lin Shen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Zhou M, Zhuo L, Ji R, Gao Y, Yao H, Feng R, Zhang L, Huang G, Huang X. Alterations in functional network centrality in first-episode drug-naïve adolescent-onset schizophrenia. Brain Imaging Behav 2021; 16:316-323. [PMID: 34410608 DOI: 10.1007/s11682-021-00505-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a disorder resulting from aberrant brain networks and circuits. In the current study, we aimed to investigate specific network alterations in adolescent-onset schizophrenia (AOS) and to help identify the neurophysiological mechanisms of this adolescent disorder. We recruited forty-one subjects, including 20 AOS patients and 21 matched healthy controls (HCs), and we acquired brain images to examine the specific changes in functional network patterns using degree centrality (DC), which quantifies the strength of the local functional connectivity hubs. Whole-brain correlation analysis was applied to assess the relationships between clinical characteristics and DC measurements. The AOS group exhibited increased DC in the right inferior frontal lobe, right fusiform gyrus and right thalamus (p < 0.05, AlphaSim correction). Whole-brain correlation analysis found that the DC value in the right parahippocampus was positively correlated with PANSS-positive symptom scores (r = 0.80); DC in the right superior parietal lobe (SPL) was positively correlated with PANSS-negative symptom scores (r = 0.79); DC in the left precuneus was positively correlated with self-certainty (SC) scores (r = 0.70); and DC in the left medial frontal gyrus (MFG) was negatively correlated with self-reflectiveness (SR) scores (r = 0.69). We conclude that frontoparietal network and cortico-thalamo-cortical pathway disruptions could play key roles in the neurophysiological mechanisms underlying AOS. In AOS patients, the right parahippocampus and SPL are important structures associated with positive and negative symptoms, respectively, and the left precuneus and MFG contribute to deficits in cognitive insights.
Collapse
Affiliation(s)
- Ming Zhou
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Lihua Zhuo
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Ruofei Ji
- Department of Psychiatry, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongchao Yao
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China
| | - Ruohan Feng
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China.,Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guoping Huang
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China. .,Department of Psychiatry, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China.
| | - Xiaoqi Huang
- Center of Psychoradiology, Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, People's Republic of China. .,Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Dimitriadis SI. Reconfiguration of αmplitude driven dominant coupling modes (DoCM) mediated by α-band in adolescents with schizophrenia spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110073. [PMID: 32805332 DOI: 10.1016/j.pnpbp.2020.110073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
Electroencephalography (EEG) based biomarkers have been shown to correlate with the presence of psychotic disorders. Increased delta and decreased alpha power in psychosis indicate an abnormal arousal state. We investigated brain activity across the basic EEG frequencies and also dynamic functional connectivity of both intra and cross-frequency coupling that could reveal a neurophysiological biomarker linked to an aberrant modulating role of alpha frequency in adolescents with schizophrenia spectrum disorders (SSDs). A dynamic functional connectivity graph (DFCG) has been estimated using the imaginary part of phase lag value (iPLV) and correlation of the envelope (corrEnv). We analyzed DFCG profiles of electroencephalographic resting state (eyes closed) recordings of healthy controls (HC) (n = 39) and SSDs subjects (n = 45) in basic frequency bands {δ,θ,α1,α2,β1,β2,γ}. In our analysis, we incorporated both intra and cross-frequency coupling modes. Adopting our recent Dominant Coupling Mode (DοCM) model leads to the construction of an integrated DFCG (iDFCG) that encapsulates the functional strength and the DοCM of every pair of brain areas. We revealed significantly higher ratios of delta/alpha1,2 power spectrum in SSDs subjects versus HC. The probability distribution (PD) of amplitude driven DoCM mediated by alpha frequency differentiated SSDs from HC with absolute accuracy (100%). The network Flexibility Index (FI) was significantly lower for subjects with SSDs compared to the HC group. Our analysis supports the central role of alpha frequency alterations in the neurophysiological mechanisms of SSDs. Currents findings open up new diagnostic pathways to clinical detection of SSDs and support the design of rational neurofeedback training.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom; Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom; School of Psychology, College of Biomedical and Life Sciences,Cardiff University, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences,Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
30
|
Long Q, Bhinge S, Calhoun VD, Adali T. Relationship between Dynamic Blood-Oxygen-Level-Dependent Activity and Functional Network Connectivity: Characterization of Schizophrenia Subgroups. Brain Connect 2021; 11:430-446. [PMID: 33724055 DOI: 10.1089/brain.2020.0815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim: In this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns. Introduction: Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI) have enabled the identification of unique functional network connectivity (FNC) states and provided new insights into mental disorders. There is evidence showing that both BOLD activity, which is captured by fMRI, and FNC are related to mental and cognitive processes. However, a few studies have evaluated the inter-relationships of these two domains of function. Moreover, the identification of subgroups of schizophrenia has gained significant clinical importance due to a need to study the heterogeneity of schizophrenia. Methods: We design a simulation study to verify the effectiveness of acIVA and apply acIVA to the dynamic study of resting-state fMRI data collected from individuals with schizophrenia and healthy controls (HCs) to investigate the relationship between dBA and dynamic FNC (dFNC). Results: The simulation study demonstrates that acIVA accurately captures the spatial variability and provides an efficient quantification of sdBA. The fMRI analysis yields synchronized sdBA-temporal property of dBA (tdBA) patterns and shows that the dBA and dFNC are significantly correlated in the spatial domain. Using these dynamic features, we identify schizophrenia subgroups with significant differences in terms of their clinical symptoms. Conclusion: We find that brain function is abnormally organized in schizophrenia compared with HCs since there are less synchronized sdBA-tdBA patterns in schizophrenia and schizophrenia prefers a component that merges multiple brain regions. Identification of schizophrenia subgroups using dynamic features inspires the use of neuroimaging in studying the heterogeneity of disorders. Impact statement This work introduces the use of joint blind source separation for the study of brain dynamics to enable efficient quantification of the spatial property of dynamic blood-oxygen-level-dependent (BOLD) activity to provide insight into the relationship of dynamic BOLD activity and dynamic functional network connectivity. The identification of subgroups of schizophrenia using dynamic features allows the study of heterogeneity of schizophrenia, emphasizing the importance of functional magnetic resonance imaging analysis in the study of brain activity and functional connectivity to gain a better understanding of the human brain, especially the brain with a mental disorder.
Collapse
Affiliation(s)
- Qunfang Long
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Suchita Bhinge
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, USA.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Jang KI, Lee C, Lee S, Huh S, Chae JH. Comparison of frontal alpha asymmetry among schizophrenia patients, major depressive disorder patients, and healthy controls. BMC Psychiatry 2020; 20:586. [PMID: 33302919 PMCID: PMC7727195 DOI: 10.1186/s12888-020-02972-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electroencephalography (EEG) frontal alpha asymmetry (FAA) has been observed in several psychiatric disorders. Dominance in left or right frontal alpha activity remains inconsistent in patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls. This study compared FAA among patients with MDD and schizophrenia, and healthy controls. METHODS We recruited 20 patients with MDD, 18 patients with schizophrenia, and 16 healthy individuals. The EEG alpha frequency ranged from 8 Hz to 12 Hz. FAA was expressed as the difference between absolute power values of right and left hemisphere electrodes in the alpha frequency range (common-log-transformed frontal right- and left-hemisphere electrodes: F4-F3, F8-F7, FP2-FP1, AF4-AF3, F6-F5, and F2-F1). Hamilton depression and anxiety rating scales were evaluated in patients with MDD. Positive and negative syndrome scales were evaluated in patients with schizophrenia. RESULTS Patients with schizophrenia showed significantly lower left FAA than healthy controls (F4-F3, schizophrenia vs. healthy controls: - 0.10 ± 0.04 vs. -0.05 ± 0.05). There were no significant differences in FAA between patients with schizophrenia and MDD as well as between patients with MDD and healthy controls. CONCLUSIONS The present study suggests that FAA indicates a relatively lower activation of left frontal electrodes in schizophrenia. The left-lateralized FAA could be a neuropathological attribute in patients with schizophrenia, but a lack of sample size and information such as medication and duration of illness might obscure the interpretation and generalization of our findings. Thus, further studies to verify the findings would be warranted.
Collapse
Affiliation(s)
- Kuk-In Jang
- grid.452628.f0000 0004 5905 0571Cognitive Science Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Chany Lee
- grid.452628.f0000 0004 5905 0571Cognitive Science Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Sangmin Lee
- grid.411947.e0000 0004 0470 4224Department of Psychiatry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701 South Korea
| | - Seung Huh
- grid.411947.e0000 0004 0470 4224Department of Psychiatry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701 South Korea
| | - Jeong-Ho Chae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, South Korea.
| |
Collapse
|
32
|
Goswami S, Beniwal RP, Kumar M, Bhatia T, Gur RE, Gur RC, Khushu S, Deshpande SN. A preliminary study to investigate resting state fMRI as a potential group differentiator for schizophrenia. Asian J Psychiatr 2020; 52:102095. [PMID: 32339919 PMCID: PMC10154078 DOI: 10.1016/j.ajp.2020.102095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 02/03/2023]
Abstract
Schizophrenia (SZ) is found to be associated with dysconnectivity between the various regions of the brain. These aberrant connections in brain networks responsible for various mental processes in schizophrenia. We examined differences in functional connectivity among persons with SZ (n = 30) and an equal number of their unaffected relatives using resting state functional Magnetic Resonance Imaging (rsfMRI). Subjects were interviewed using the Diagnostic Interview for Genetic Studies (DIGS) and Family Interview for Genetic Studies (FIGS). Cognition was assessed using the Computerized Neuropsychological Battery (CNB) and Trail Making Tests A and B. The resting state functional data were acquired using 3.0 T Magnetic Resonance Imaging system and analysed using Statistical Package for the Social Sciences (SPSS) version 21 and FSL version 5.01 (FMRIB's) Software. The persons with SZ performed significantly worse on tasks of cognition and executive functioning. On rsfMRI, a significantly reduced connectivity was noted in the case group in right and left precentral gyri, right post central gyrus, right and left middle temporal gyrus, left paracingulate gyrus, anterior and posterior cingulate, right planum temporale, right pallidum, left cerebellum-6,7b and 8 lobules. Increased connectivity was noted between areas of right temporal pole and left hippocampus, posterior cingulate and the precuneus, right planum polare and right amygdala, right Heschl's gyrus and left posterior supramarginal gyrus, right amygdala with right insular cortex and left cerebellum 6 with bilateral postcentral gyrus in the same group. These differences in connectivity could be utilised as potential group differentiator for schizophrenia.
Collapse
Affiliation(s)
- Seujee Goswami
- Department of Psychiatry, Assam Medical College and Hospital, Dibrugarh, Assam, India.
| | - Ram Pratap Beniwal
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences & Dr RML Hospital, New Delhi, India.
| | - Mukesh Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (I.N.M.A.S), Timarpur, Delhi, India.
| | - Triptish Bhatia
- Indo-US Projects, Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences & Dr RML Hospital, New Delhi, India.
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.
| | - Subhash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (I.N.M.A.S), Timarpur, Delhi, India.
| | - Smita N Deshpande
- Department of Psychiatry, Centre of Excellence in Mental Health, Atal Bihari Vajpayee Institute of Medical Sciences & Dr RML Hospital, New Delhi, India.
| |
Collapse
|
33
|
PENG PENG, JU YONGFENG, ZHANG YIPU, WANG KAIMING, JIANG SUYING, WANG YUPING. Sparse representation and dictionary learning model incorporating group sparsity and incoherence to extract abnormal brain regions associated with schizophrenia. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:104396-104406. [PMID: 33747675 PMCID: PMC7971409 DOI: 10.1109/access.2020.2999513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Schizophrenia is a complex mental illness, the mechanism of which is currently unclear. Using sparse representation and dictionary learning (SDL) model to analyze functional magnetic resonance imaging (fMRI) dataset of schizophrenia is currently a popular method for exploring the mechanism of the disease. The SDL method decomposed the fMRI data into a sparse coding matrix X and a dictionary matrix D. However, these traditional methods overlooked group structure information in X and the coherence between the atoms in D. To address this problem, we propose a new SDL model incorporating group sparsity and incoherence, namely GS2ISDL to detect abnormal brain regions. Specifically, GS2ISDL uses the group structure information that defined by AAL anatomical template from fMRI dataset as priori to achieve inter-group sparsity in X. At the same time, L 1 - norm is enforced on X to achieve intra-group sparsity. In addition, our algorithm also imposes incoherent constraint on the dictionary matrix D to reduce the coherence between the atoms in D, which can ensure the uniqueness of X and the discriminability of the atoms. To validate our proposed model GS2ISDL, we compared it with both IK-SVD and SDL algorithm for analyzing fMRI dataset collected by Mind Clinical Imaging Consortium (MCIC). The results show that the accuracy, sensitivity, recall and MCC values of GS2ISDL are 93.75%, 95.23%, 80.50% and 88.19%, respectively, which outperforms both IK-SVD and SDL. The ROIs extracted by GS2ISDL model (such as Precentral gyrus, Hippocampus and Caudate nucleus, etc.) are further verified by the literature review on schizophrenia studies, which have significant biological significance.
Collapse
Affiliation(s)
- PENG PENG
- The school of Electronics and Control Engineering, Chang’an University, Xi’an, Shaanxi, 710049, China
| | - YONGFENG JU
- The school of Electronics and Control Engineering, Chang’an University, Xi’an, Shaanxi, 710049, China
| | - YIPU ZHANG
- The school of Electronics and Control Engineering, Chang’an University, Xi’an, Shaanxi, 710049, China
| | - KAIMING WANG
- The school of Science, Chang’an University, Xi’an, Shaanxi, 710049, China
| | - SUYING JIANG
- The school of Information Engineering, Chang’an University, Xi’an, Shaanxi, 710049, China
| | - YUPING WANG
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
34
|
Gale SD, Erickson LD, Anderson JE, Brown BL, Hedges DW. Association between exposure to air pollution and prefrontal cortical volume in adults: A cross-sectional study from the UK biobank. ENVIRONMENTAL RESEARCH 2020; 185:109365. [PMID: 32222630 DOI: 10.1016/j.envres.2020.109365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/17/2020] [Accepted: 03/08/2020] [Indexed: 05/18/2023]
Abstract
Associated with numerous cognitive and behavioral functions and with several diseases, the prefrontal cortex is vulnerable to environmental insult. Among other factors, toxins in air pollution have been associated with damage to the prefrontal cortex in children and older adults. We used data from the UK Biobank to assess further associations between an array of toxins in air pollution and gray matter in the prefrontal cortex including the left and right frontal poles, left and right superior frontal gyri, left and right frontal medial cortex, left and right orbitofrontal cortex, and left and right frontal opercula, using multivariate models adjusted for covariates that possibly could confound the association between air pollution and volume of prefrontal gray matter. The results showed inverse associations between PM 2.5, PM 10, and nitrogen oxides and prefrontal volume in models adjusted for age, sex, education, socioeconomic status, race-ethnicity, self-rated overall health, body mass index, total brain volume, smoking status, and alcohol use frequency. Education appeared to moderate the association between air pollution and prefrontal volume. The data in these analyses came from regions whose mean PM 2.5 was near the upper limit and whose mean PM 10 was under those recommended by the World Health Organization. These findings suggest that comparatively low levels of air pollution might be associated with reduced volume of the prefrontal cortex.
Collapse
Affiliation(s)
- Shawn D Gale
- Department of Psychology, Brigham Young University, Provo, UT, USA; The Neuroscience Center, Brigham Young University, Provo, UT, USA.
| | - Lance D Erickson
- Department of Sociology, Brigham Young University, Provo, UT, USA
| | | | - Bruce L Brown
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Dawson W Hedges
- Department of Psychology, Brigham Young University, Provo, UT, USA; The Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
35
|
Nakamura T, Dinh TH, Asai M, Nishimaru H, Matsumoto J, Takamura Y, Hori E, Honda S, Yamada H, Mihara T, Matsumoto M, Nishijo H. Non-invasive electroencephalographical (EEG) recording system in awake monkeys. Heliyon 2020; 6:e04043. [PMID: 32490247 PMCID: PMC7260294 DOI: 10.1016/j.heliyon.2020.e04043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 05/19/2020] [Indexed: 12/03/2022] Open
Abstract
Background Human clinical studies reported that several electroencephalographical (EEG) parameters can be used as biomarkers of psychiatric disorders. EEGs recorded from non-human primates (monkeys) is useful for understanding of human pathologies of psychiatric disorders and development of new therapeutic agents. New methods In this study, we expand a previous non-invasive head holding system with face masks for awake monkeys to be applied to scalp EEG recording. The new design of a head holding system allows to attach scalp EEG electrodes on the positions comparable to human electrode placement and to present auditory stimuli. Results With this system, we could record auditory evoked potentials (AEPs) in auditory sensory gating and oddball paradigms, which are often used as biomarkers of psychiatric disorders in animal models and human patients. The recorded AEPs were comparable to previous human clinical data. Comparison with existing methods Compared with previous non-invasive head holding systems, top, side (cheek and ears), and rear of the head can be open for attachment of EEG electrodes and auditory stimulation in the present system. Conclusions The results suggest that the present system is useful in EEG recording from awake monkeys. Furthermore, this system can be applied to eye-tracking and chronic intra-cerebral recording experiments.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan.,Department of Anatomy, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Trong Ha Dinh
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Makoto Asai
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yusaku Takamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Etsuro Hori
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sokichi Honda
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroshi Yamada
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Mitsuyuki Matsumoto
- Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
36
|
Zhang Y, Shi Q, Li X, Xia C. Fasciculation and Elongation Protein Zeta-1 Expression in Reactive Astrocytes in a Rat Model of Frontal Lobe Injury. J Neuropathol Exp Neurol 2020; 79:194-208. [PMID: 31774489 DOI: 10.1093/jnen/nlz113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/05/2019] [Indexed: 11/12/2022] Open
Abstract
There are reports that depression induced by frontal lobe injury (FLI) has a devastating effect on human mental health. We previously reported that fasciculation and elongation protein zeta-1 (FEZ1) was essential for astrocytic protection of dopamine neurons. Studies of glutamate-glutamine cycle in mental illness have been reported, whereas not from the perspective of astrocytes. This study was designed to investigate the roles of astrocytic FEZ1 and glutamate-glutamine cycle after FLI. A model of FLI was established by inserting a blade into the right frontal lobe of rats. Behavioral tests were used to observe the behavioral changes of FLI rats. Neuropathologic examinations, including immunohistochemistry, were conducted. Behavioral tests showed that FLI decreased exploratory activity. Western blot analysis revealed that the expression of astroglial proteins overall decreased in the initial injury stage, as well as FEZ1. Immunohistochemistry showed a shift of FEZ1 localization from neurons in sham-lesioned rats to astrocytes in FLI rats, and showed the expression profile of glutamate transporter 1 and glutamine synthetase (GS) was consistent with Western blot observation. Our results indicate that astrocytic FEZ1 and glutamate-glutamine cycle dysfunction may be involved in the pathogenesis of depression after FLI.
Collapse
Affiliation(s)
- Ye Zhang
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qing Shi
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiwen Li
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chunlin Xia
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Kang Y, Zhang W, Lv Y, Xu H, Lin Y, Cai S, Wang J, Huang L. Genetic polymorphism in catechol-O-methyltransferase associated with the functional connectivity of frontostriatal circuits in first episode schizophrenia patients. Eur J Neurosci 2019; 51:2134-2142. [PMID: 31876034 DOI: 10.1111/ejn.14659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Negative symptoms in schizophrenia have been associated with functional changes in frontostriatal pathways. Dysregulation of the dopamine signal in frontostriatal pathways leads to the symptomology observed in schizophrenia. Although the catechol-O-methyltransferase (COMT) gene, one of the susceptibility genes for schizophrenia, has been associated with dopamine activities in prefrontal and striatal regions, it is still unclear whether the disease state and COMT val158 met genotype have an interaction effect on the functional connectivity of frontostriatal pathways. In this study, we evaluated the possible interactions between COMT val158 met variations and the disease state on the resting-state functional connectivity (RSFC) of frontostriatal pathways in fifty-one first episode schizophrenia (FES) patients (val/val: 29, met +: 22) with prominent negative symptoms and forty-eight healthy controls (val/val: 31, met +: 17). Regions of interest were defined by the result of a meta-analysis of frontostriatal pathways using the Neurosynth database. We found a significant genotype × disease interaction effect on the RSFC between the bilateral anterior cingulate (ACC) and right caudate, which overlapped with the main effect of the disease state. Behavioural regression analysis suggested that RSFC between the right ACC and right caudate correlated with the severity of SANS avolition-apathy scores in patients who were met carriers but not in patients who were val homozygous. Our findings suggest that the RSFC of frontostriatal pathways may differentially affected by an individual's COMT val158 met genotype.
Collapse
Affiliation(s)
- Yafei Kang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hanxiao Xu
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yanyan Lin
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ. A developmental redox dysregulation leads to spatio-temporal deficit of parvalbumin neuron circuitry in a schizophrenia mouse model. Schizophr Res 2019; 213:96-106. [PMID: 30857872 DOI: 10.1016/j.schres.2019.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/26/2022]
Abstract
The fast-spiking parvalbumin (PV) interneurons play a critical role in neural circuit activity and dysfunction of these cells has been implicated in the cognitive deficits typically observed in schizophrenia patients. Due to the high metabolic demands of PV neurons, they are particularly susceptible to oxidative stress. Given the extant literature exploring the pathological effects of oxidative stress on PV cells in cortical regions linked to schizophrenia, we decided to investigate whether PV neurons in other select brain regions, including sub-cortical structures, may be differentially affected by redox dysregulation induced oxidative stress during neurodevelopment in mice with a genetically compromised glutathione synthesis (Gclm KO mice). Our analyses revealed a spatio-temporal sequence of PV cell deficit in Gclm KO mice, beginning with the thalamic reticular nucleus at postnatal day (P) 20 followed by a PV neuronal deficit in the amygdala at P40, then in the lateral globus pallidus and the ventral hippocampus Cornu Ammonis 3 region at P90 and finally the anterior cingulate cortex at P180. We suggest that PV neurons in different brain regions are developmentally susceptible to oxidative stress and that anomalies in the neurodevelopmental calendar of metabolic regulation can interfere with neural circuit maturation and functional connectivity contributing to the emergence of developmental psychopathology.
Collapse
Affiliation(s)
- Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Rudolf Kraftsik
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland.
| |
Collapse
|
39
|
Abstract
Abstract. Sensory gating allows an individual to filter out irrelevant sensory information from the environment, potentially freeing attentional resources for more complex tasks. Some work has demonstrated a relationship between auditory sensory gating and cognitive skills such as executive function, although the functional significance is not well understood. The relationship between sensory gating and personality dimensions has not been adequately explored. Participants completed a paired-tone sensory gating event-related potential (ERP) paradigm and the Big Five Inventory to assess personality characteristics. Participants with more robust P50 sensory gating reported a significantly greater degree of conscientiousness; conscientiousness (but not the other Big Five factors) predicted sensory gating ability. Longer ERP latencies were associated with participants being more conscientious (P50 component), more agreeable, and less neurotic (N100 component). A better understanding of the behavioral correlates of sensory gating will help elucidate the functional consequences of reduced sensory gating both in typical adults and clinical groups.
Collapse
Affiliation(s)
- Carly A. Yadon
- Department of Psychology, Missouri State University, Springfield, MO, USA
| | | |
Collapse
|
40
|
El-Mallakh RS, Rhodes TP, Dobbins K. The Case for Case Management in Schizophrenia. Prof Case Manag 2019; 24:273-276. [PMID: 31369493 DOI: 10.1097/ncm.0000000000000385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Rif S El-Mallakh
- Rif S. El-Mallakh, MD, received his MS in biology and his MD degrees from the University of Illinois. He completed a medical internship and 1 year of a neurology residency before completing an adult psychiatry residency at the University of Connecticut. Dr El-Mallakh received his board certification in psychiatry in 1990. He spent 3 years as a clinical research fellow with the late Dr Richard Wyatt's Neuropsychiatry Branch Laboratory at the NIMH. He joined the faculty of the Department of Psychiatry at the University of Louisville in 1992, where he is a Professor and Director of the Mood Disorders Research Program, University of Louisville School of Medicine Department of Psychiatry University of Louisville School of Medicine, Louisville, Kentucky. T. Patrick Rhodes, MSSW, LCSW, earned his master's degree from the University of Louisville Kent School of Social Work. For 30 years Patrick has worked in inpatient settings as a case manager and overseen the operations in a transitional housing program and crisis services for adults with severe mental illness (SMI). Currently, he oversees Wellspring supportive services for adults with SMI. Katharine Dobbins, MSSW, LCSW, received her master's degree in Social Work from the University of Louisville Kent School of Social Work. She has more than 35 years of experience in the development, provision, and management of services to the severely mentally ill. Katharine has worked in community mental health, inpatient services, private practice and for the past decade has served as the CEO of Wellspring, Inc., a nonprofit organization in Louisville, Kentucky, which provides supportive housing, crisis stabilization, and a range of recovery services to approximately 1,000 adults with mental illness annually
| | | | | |
Collapse
|
41
|
Missault S, Anckaerts C, Ahmadoun S, Blockx I, Barbier M, Bielen K, Shah D, Kumar-Singh S, De Vos WH, Van der Linden A, Dedeurwaerdere S, Verhoye M. Hypersynchronicity in the default mode-like network in a neurodevelopmental animal model with relevance for schizophrenia. Behav Brain Res 2019; 364:303-316. [PMID: 30807809 DOI: 10.1016/j.bbr.2019.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Immune activation during pregnancy is an important risk factor for schizophrenia. Brain dysconnectivity and NMDA receptor (NMDAR) hypofunction have been postulated to be central to schizophrenia pathophysiology. The aim of this study was to investigate resting-state functional connectivity (resting-state functional MRI-rsfMRI), microstructure (diffusion tension imaging-DTI) and response to NMDAR antagonist (pharmacological fMRI-phMRI) using multimodal MRI in offspring of pregnant dams exposed to immune challenge (maternal immune activation-MIA model), and determine whether these neuroimaging readouts correlate with schizophrenia-related behaviour. METHODS Pregnant rats were injected with Poly I:C or saline on gestational day 15. The maternal weight response was assessed. Since previous research has shown behavioural deficits can differ between MIA offspring dependent on the maternal response to immune stimulus, offspring were divided into three groups: controls (saline, n = 11), offspring of dams that gained weight (Poly I:C WG, n = 12) and offspring of dams that lost weight post-MIA (Poly I:C WL, n = 16). Male adult offspring were subjected to rsfMRI, DTI, phMRI with NMDAR antagonist, behavioural testing and histological assessment. RESULTS Poly I:C WL offspring exhibited increased functional connectivity in default mode-like network (DMN). Poly I:C WG offspring showed the most pronounced attenuation in NMDAR antagonist response versus controls. DTI revealed no differences in Poly I:C offspring versus controls. Poly I:C offspring exhibited anxiety. CONCLUSIONS MIA offspring displayed a differential pathophysiology depending on the maternal response to immune challenge. While Poly I:C WL offspring displayed hypersynchronicity in the DMN, altered NMDAR antagonist response was most pronounced in Poly I:C WG offspring.
Collapse
Affiliation(s)
- Stephan Missault
- Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Cynthia Anckaerts
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Soumaya Ahmadoun
- Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ines Blockx
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Michaël Barbier
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kenny Bielen
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Disha Shah
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Cell Systems & Imaging, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Gent, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefanie Dedeurwaerdere
- Experimental Laboratory of Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
42
|
Banaj N, Piras F, Piras F, Ciullo V, Iorio M, Battaglia C, Pantoli D, Ducci G, Spalletta G. Cognitive and psychopathology correlates of brain white/grey matter structure in severely psychotic schizophrenic inpatients. Schizophr Res Cogn 2018; 12:29-36. [PMID: 29527507 PMCID: PMC5842307 DOI: 10.1016/j.scog.2018.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
Abstract
The brain structural correlates of cognitive and psychopathological symptoms within the active phase in severely psychotic schizophrenic inpatients have been rarely investigated. Twenty-eight inpatients with a DSM-5 diagnosis of Schizophrenia (SZ), admitted for acute psychotic decompensation, were assessed through a comprehensive neuropsychological and psychopathological battery. All patients underwent a high-resolution T1-weighted magnetic resonance imaging investigation. Increased psychotic severity was related to reduced grey matter volumes in the medial portion of the right superior frontal cortex, the superior orbitofrontal cortex bilaterally and to white matter volume reduction in the medial portion of the left superior frontal area. Immediate verbal memory performance was related to left insula and inferior parietal cortex volume, while long-term visuo-spatial memory was related to grey matter volume of the right middle temporal cortex, and the right (lobule VII, CRUS1) and left (lobule VI) cerebellum. Moreover, psychotic severity correlated with cognitive inflexibility and negative symptom severity was related to visuo-spatial processing and reasoning disturbances. These findings indicate that a disruption of the cortical-subcortical-cerebellar circuit, and distorted memory function contribute to the development and maintenance of psychotic exacerbation.
Collapse
Affiliation(s)
- Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, 00184 Rome, Italy
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Mariangela Iorio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | | | - Donatella Pantoli
- Department of Radiology, S. Filippo Neri Hospital, ASL, Roma, 1, 00135 Rome, Italy
| | - Giuseppe Ducci
- Department of Mental Health, ASL, Roma 1, 00135 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
43
|
Ishii T, Hattori K, Miyakawa T, Watanabe K, Hidese S, Sasayama D, Ota M, Teraishi T, Hori H, Yoshida S, Nunomura A, Nakagome K, Kunugi H. Increased cerebrospinal fluid complement C5 levels in major depressive disorder and schizophrenia. Biochem Biophys Res Commun 2018; 497:683-688. [PMID: 29454970 DOI: 10.1016/j.bbrc.2018.02.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Inflammation has been implicated in a variety of psychiatric disorders. We aimed to determine whether levels of complement C5 protein in the cerebrospinal fluid (CSF), which may reflect activation of the complement system in the brain, are altered in patients with major psychiatric disorders. Additionally, we examined possible associations of CSF C5 levels with clinical variables. Subjects comprised 89 patients with major depressive disorder (MDD), 66 patients with bipolar disorder (BPD), 96 patients with schizophrenia, and 117 healthy controls, matched for age, sex, and ethnicity (Japanese). Diagnosis was made according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, criteria. CSF C5 levels were measured by enzyme-linked immunosorbent assay. CSF C5 levels were significantly increased in the patients with MDD (p < 0.001) and in the patients with schizophrenia (p = 0.001), compared with the healthy controls. The rate of individuals with an "abnormally high C5 level" (i.e., above the 95th percentile value of the control subjects) was significantly increased in all psychiatric groups, relative to the control group (all p < 0.01). Older age, male sex, and greater body mass index tended to associate with higher C5 levels. There was a significantly positive correlation between C5 levels and chlorpromazine-equivalent dose in the patients with schizophrenia. Thus, we found, for the first time, elevated C5 levels in the CSF of patients with major psychiatric disorders. Our results suggest that the activated complement system may contribute to neurological pathogenesis in a portion of patients with major psychiatric disorders.
Collapse
Affiliation(s)
- Takashi Ishii
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropsychiatry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoko Miyakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kentaro Watanabe
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sumiko Yoshida
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan; National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Akihiko Nunomura
- Department of Neuropsychiatry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Kazuyuki Nakagome
- National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
44
|
Staniloiu A, Markowitsch HJ, Kordon A. Psychological causes of autobiographical amnesia: A study of 28 cases. Neuropsychologia 2018; 110:134-147. [DOI: 10.1016/j.neuropsychologia.2017.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 10/15/2017] [Indexed: 12/28/2022]
|
45
|
Stachowiak EK, Benson CA, Narla ST, Dimitri A, Chuye LEB, Dhiman S, Harikrishnan K, Elahi S, Freedman D, Brennand KJ, Sarder P, Stachowiak MK. Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1. Transl Psychiatry 2017; 7:6. [PMID: 30446636 PMCID: PMC5802550 DOI: 10.1038/s41398-017-0054-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/17/2017] [Accepted: 09/23/2017] [Indexed: 12/15/2022] Open
Abstract
Studies of induced pluripotent stem cells (iPSCs) from schizophrenia patients and control individuals revealed that the disorder is programmed at the preneuronal stage, involves a common dysregulated mRNA transcriptome, and identified Integrative Nuclear FGFR1 Signaling a common dysregulated mechanism. We used human embryonic stem cell (hESC) and iPSC-derived cerebral organoids from four controls and three schizophrenia patients to model the first trimester of in utero brain development. The schizophrenia organoids revealed an abnormal scattering of proliferating Ki67+ neural progenitor cells (NPCs) from the ventricular zone (VZ), throughout the intermediate (IZ) and cortical (CZ) zones. TBR1 pioneer neurons and reelin, which guides cortico-petal migration, were restricted from the schizophrenia cortex. The maturing neurons were abundantly developed in the subcortical regions, but were depleted from the schizophrenia cortex. The decreased intracortical connectivity was denoted by changes in the orientation and morphology of calretinin interneurons. In schizophrenia organoids, nuclear (n)FGFR1 was abundantly expressed by developing subcortical cells, but was depleted from the neuronal committed cells (NCCs) of the CZ. Transfection of dominant negative and constitutively active nFGFR1 caused widespread disruption of the neuro-ontogenic gene networks in hESC-derived NPCs and NCCs. The fgfr1 gene was the most prominent FGFR gene expressed in NPCs and NCCs, and blocking with PD173074 reproduced both the loss of nFGFR1 and cortical neuronal maturation in hESC cerebral organoids. We report for the first time, progression of the cortical malformation in schizophrenia and link it to altered FGFR1 signaling. Targeting INFS may offer a preventive treatment of schizophrenia.
Collapse
Affiliation(s)
- E K Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - C A Benson
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - S T Narla
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - A Dimitri
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, USA
| | - L E Bayona Chuye
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - S Dhiman
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - K Harikrishnan
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - S Elahi
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - D Freedman
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - K J Brennand
- Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA
| | - P Sarder
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - M K Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|