1
|
Marzano-Miranda A, Pereira Cardoso-Oliveira G, Carla de Oliveira I, Carvalho Mourão L, Reis Cussat L, Gomes Fraga V, Delfin Chávez Olórtegui C, Jesus Fernandes Fontes C, Castanheira Bartholomeu D, Braga EM. Identification and serological responses to a novel Plasmodium vivax merozoite surface protein 1 ( PvMSP-1) derived synthetic peptide: a putative biomarker for malaria exposure. PeerJ 2024; 12:e17632. [PMID: 38948214 PMCID: PMC11212635 DOI: 10.7717/peerj.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.
Collapse
Affiliation(s)
- Aline Marzano-Miranda
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Luiza Carvalho Mourão
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Letícia Reis Cussat
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa Gomes Fraga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Erika M. Braga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
de Assis GMP, de Alvarenga DAM, Souza LBE, Sánchez-Arcila JC, Silva EFE, de Pina-Costa A, Gonçalves GHP, Souza JCDJ, Nunes AJD, Pissinatti A, Moreira SB, Torres LDM, Costa HL, Tinoco HDP, Pereira VDS, Soares IDS, de Sousa TN, Ntumngia FB, Adams JH, Kano FS, Hirano ZMB, Pratt-Riccio LR, Daniel-Ribeiro CT, Ferreira JO, Carvalho LH, Alves de Brito CF. IgM antibody responses against Plasmodium antigens in neotropical primates in the Brazilian Atlantic Forest. Front Cell Infect Microbiol 2023; 13:1169552. [PMID: 37829607 PMCID: PMC10565664 DOI: 10.3389/fcimb.2023.1169552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/11/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Zoonotic transmission is a challenge for the control and elimination of malaria. It has been recorded in the Atlantic Forest, outside the Amazon which is the endemic region in Brazil. However, only very few studies have assessed the antibody response, especially of IgM antibodies, in Neotropical primates (NP). Therefore, in order to contribute to a better understanding of the immune response in different hosts and facilitate the identification of potential reservoirs, in this study, naturally acquired IgM antibody responses against Plasmodium antigens were evaluated, for the first time, in NP from the Atlantic Forest. Methods The study was carried out using 154 NP samples from three different areas of the Atlantic Forest. IgM antibodies against peptides of the circumsporozoite protein (CSP) from different Plasmodium species and different erythrocytic stage antigens were detected by ELISA. Results Fifty-nine percent of NP had IgM antibodies against at least one CSP peptide and 87% against at least one Plasmodium vivax erythrocytic stage antigen. Levels of antibodies against PvAMA-1 were the highest compared to the other antigens. All families of NP showed IgM antibodies against CSP peptides, and, most strikingly, against erythrocytic stage antigens. Generalized linear models demonstrated that IgM positivity against PvCSP and PvAMA-1 was associated with PCR-detectable blood-stage malaria infection and the host being free-living. Interestingly, animals with IgM against both PvCSP and PvAMA-1 were 4.7 times more likely to be PCR positive than animals that did not have IgM for these two antigens simultaneously. Discussion IgM antibodies against different Plasmodium spp. antigens are present in NP from the Atlantic Forest. High seroprevalence and antibody levels against blood-stage antigens were observed, which had a significant association with molecular evidence of infection. IgM antibodies against CSP and AMA-1 may be used as a potential marker for the identification of NP infected with Plasmodium, which are reservoirs of malaria in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Gabriela Maíra Pereira de Assis
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | | - Luisa Braga e Souza
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Juan Camilo Sánchez-Arcila
- School of Natural Sciences, Molecular and Cell Biology Department, University of California, Merced, Merced, CA, United States
| | | | - Anielle de Pina-Costa
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
- Escola de Enfermagem Aurora de Afonso Costa, Departamento de Doenças infecciosas e Parasitárias, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | - Ana Julia Dutra Nunes
- Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Programa de conservação do Bugio Ruivo, Perini Business Park, Joinville, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, Brazil
- Centro Universitário Serra dos Órgãos (Unifeso), Teresópolis, Brazil
| | - Silvia Bahadian Moreira
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, Brazil
| | - Leticia de Menezes Torres
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Helena Lott Costa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | | | | - Irene da Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Taís Nóbrega de Sousa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Francis Babila Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Zelinda Maria Braga Hirano
- Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Programa de conservação do Bugio Ruivo, Perini Business Park, Joinville, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Joseli Oliveira Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Luzia Helena Carvalho
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | |
Collapse
|
3
|
Kartal L, Mueller I, Longley RJ. Using Serological Markers for the Surveillance of Plasmodium vivax Malaria: A Scoping Review. Pathogens 2023; 12:791. [PMID: 37375481 PMCID: PMC10302697 DOI: 10.3390/pathogens12060791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The utilisation of serological surveillance methods for malaria has the potential to identify individuals exposed to Plasmodium vivax, including asymptomatic carriers. However, the application of serosurveillance varies globally, including variations in methodology and transmission context. No systematic review exists describing the advantages and disadvantages of utilising serosurveillance in various settings. Collation and comparison of these results is a necessary first step to standardise and validate the use of serology for the surveillance of P. vivax in specific transmission contexts. A scoping review was performed of P. vivax serosurveillance applications globally. Ninety-four studies were found that met predefined inclusion and exclusion criteria. These studies were examined to determine the advantages and disadvantages of serosurveillance experienced in each study. If studies reported seroprevalence results, this information was also captured. Measurement of antibodies serves as a proxy by which individuals exposed to P. vivax may be indirectly identified, including those with asymptomatic infections, which may be missed by other technologies. Other thematic advantages identified included the ease and simplicity of serological assays compared to both microscopy and molecular diagnostics. Seroprevalence rates varied widely from 0-93%. Methodologies must be validated across various transmission contexts to ensure the applicability and comparability of results. Other thematic disadvantages identified included challenges with species cross-reactivity and determining changes in transmission patterns in both the short- and long-term. Serosurveillance requires further refinement to be fully realised as an actionable tool. Some work has begun in this area, but more is required.
Collapse
Affiliation(s)
- Lejla Kartal
- School of Population and Global Health, The University of Melbourne, Parkville 3010, Australia;
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia;
| | - Ivo Mueller
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rhea J. Longley
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
4
|
Hietanen J, Chim-Ong A, Sattabongkot J, Nguitragool W. Naturally induced humoral response against Plasmodium vivax reticulocyte binding protein 2P1. Malar J 2021; 20:246. [PMID: 34082763 PMCID: PMC8173506 DOI: 10.1186/s12936-021-03784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Plasmodium vivax is the most prevalent malaria parasite in many countries. A better understanding of human immunity to this parasite can provide new insights for vaccine development. Plasmodium vivax Reticulocyte Binding Proteins (RBPs) are key parasite proteins that interact with human proteins during erythrocyte invasion and are targets of the human immune response. The aim of this study is to characterize the human antibody response to RBP2P1, the most recently described member of the RBP family. Methods The levels of total IgG and IgM against RBP2P1 were measured using plasmas from 68 P. vivax malaria patients and 525 villagers in a malarious village of western Thailand. The latter group comprises asymptomatic carriers and healthy uninfected individuals. Subsets of plasma samples were evaluated for anti-RBP2P1 IgG subtypes and complement-fixing activity. Results As age increased, it was found that the level of anti-RBP2P1 IgG increased while the level of IgM decreased. The main anti-RBP2P1 IgG subtypes were IgG1 and IgG3. The IgG3-seropositive rate was higher in asymptomatic carriers than in patients. The higher level of IgG3 was correlated with higher in vitro RBP2P1-mediated complement fixing activity. Conclusions In natural infection, the primary IgG response to RBP2P1 was IgG1 and IgG3. The predominance of these cytophilic subtypes and the elevated level of IgG3 correlating with complement fixing activity, suggest a possible role of anti-RBP2P1 antibodies in immunity against P. vivax.
Collapse
Affiliation(s)
- Jenni Hietanen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Anongruk Chim-Ong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand.
| |
Collapse
|
5
|
Prat JGI, Morais P, Claret M, Badia P, Fialho RR, Albajar-Vinas P, Villegas L, Ascaso C. Community-based approaches for malaria case management in remote communities in the Brazilian Amazon. Rev Soc Bras Med Trop 2020; 53:e20200048. [PMID: 32997048 PMCID: PMC7514773 DOI: 10.1590/0037-8682-0048-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Malaria case management is a pivotal intervention in malaria elimination. However, many remote areas in Brazil still lack access to basic health services. This study describes a community-based approach (CBA) for malaria case management in the large remote area of the Jaú National Park (JNP), Amazonas, Brazil. METHODS In 2001, a general health CBA was initiated with a motor group (MG); a participative community health diagnosis (PCHD) was subsequently implemented between 2001 and 2005. In 2006, a CBA for malaria case management started with an expanded MG including all sectors with a stake in malaria control, from the local residents to the federal government. In 2008, community microscopists were selected and trained to diagnose hemoparasites. A full malaria strategy was implemented in 2009 with subsequent quality control follow-up. RESULTS Two educational materials were co-created with local communities. The MG identified malaria as a major health problem and the malaria MG planned the control activities. Ten communities selected a resident to become malaria microscopists, and ten solar-operated health centers were built. The number of slide readings increased from 923 in 2006 to 1,900 in 2009, while malaria infections decreased from 354 cases in 2005 to 20 cases in 2015. The excess time (≥ 48 hours) between first symptoms and diagnosis/treatment decreased from 68.9% of cases in 2005 to 14.3% in 2010. CONCLUSIONS While many factors were likely involved in the reduction of malaria transmission in the JNP, the CBA played an important role in the sustained success of the initiative.
Collapse
Affiliation(s)
- Jordi Gómez I Prat
- Drassanes-Vall d'Hebron International Health Unit, International Health Programme of the Catalonian Institute of Health (PROSICS), Catalonia, Barcelona, Spain
| | | | - Mercè Claret
- Project Manager Probitas Foundation, Barcelona, Spain
| | - Pere Badia
- Site supervisor EE.RR. IDOM, Barcelona, Spain
| | - Romeo R Fialho
- Fundação de Vigilância em Saúde do Amazonas, Departamento de Vigilância Ambiental, Manaus, AM, Brasil
| | - Pedro Albajar-Vinas
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | | | - Carlos Ascaso
- Department of Public Health, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Costa EMF, Amador ECC, Silva ES, Alvarenga CO, Pereira PE, Póvoa MM, Cunha MG. Malaria transmission and individual variability of the naturally acquired IgG antibody against the Plasmodium vivax blood-stage antigen in an endemic area in Brazil. Acta Trop 2020; 209:105537. [PMID: 32454033 DOI: 10.1016/j.actatropica.2020.105537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
Plasmodium vivax remains an important cause of malaria in South America and Asia, and analyses of the antibody immune response are being used to identify biomarker of parasite exposure. The IgG antibody naturally acquired predominantly occurs against targets on blood-stage parasites, including C-terminal of the merozoite surface protein 1 (MSP1-19). Epidemiological and immunological evidence has been showed that antibodies to malaria parasite antigens are lost in the absence of ongoing exposure. We describe the IgG antibody response in individuals living in an unstable malaria transmission area in Pará state, Amazon region, Brazil, where an epidemic of P. vivax malaria was recorded and monitored over time. As indicated by epidemiological data, the number of P. vivax-caused malaria cases decreased by approximately 90% after three years and the prevalence of IgG positive to PvMSP1-19 decreased significantly over time, in 2010 (93.4%), 2012 (78.3%), and 2013 (85.1%). Acquisition and decay of the IgG antibody against P. vivax MSP1-19 showed variability among individuals living in areas with recent circulating parasites, where the malaria epidemic was being monitored until transmission had been completely controlled. We also found that previous malaria episodes were associated with an increased in the IgG positivity . Our results showed epidemiological, spatial, temporal and individual variability. The understanding on dynamics of antibodies may have implications for the design of serosurveillance tools for monitoring parasite circulation, especially in a context with spatial and temporal changes in P. vivax malaria transmission.
Collapse
Affiliation(s)
- Edna Maria F Costa
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | | | - Eliane S Silva
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Cassiana O Alvarenga
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | - Pedro Elias Pereira
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Marinete M Póvoa
- Instituto Evandro Chagas, CEP: 66087-082, Ananindeua, Pará, Brazil
| | - Maristela G Cunha
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
7
|
Longley RJ, White MT, Takashima E, Brewster J, Morita M, Harbers M, Obadia T, Robinson LJ, Matsuura F, Liu ZSJ, Li-Wai-Suen CSN, Tham WH, Healer J, Huon C, Chitnis CE, Nguitragool W, Monteiro W, Proietti C, Doolan DL, Siqueira AM, Ding XC, Gonzalez IJ, Kazura J, Lacerda M, Sattabongkot J, Tsuboi T, Mueller I. Development and validation of serological markers for detecting recent Plasmodium vivax infection. Nat Med 2020; 26:741-749. [PMID: 32405064 DOI: 10.1038/s41591-020-0841-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/18/2020] [Indexed: 11/09/2022]
Abstract
A major gap in the Plasmodium vivax elimination toolkit is the identification of individuals carrying clinically silent and undetectable liver-stage parasites, called hypnozoites. This study developed a panel of serological exposure markers capable of classifying individuals with recent P. vivax infections who have a high likelihood of harboring hypnozoites. We measured IgG antibody responses to 342 P. vivax proteins in longitudinal clinical cohorts conducted in Thailand and Brazil and identified candidate serological markers of exposure. Candidate markers were validated using samples from year-long observational cohorts conducted in Thailand, Brazil and the Solomon Islands and antibody responses to eight P. vivax proteins classified P. vivax infections in the previous 9 months with 80% sensitivity and specificity. Mathematical models demonstrate that a serological testing and treatment strategy could reduce P. vivax prevalence by 59-69%. These eight antibody responses can serve as a biomarker, identifying individuals who should be targeted with anti-hypnozoite therapy.
Collapse
Affiliation(s)
- Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Michael T White
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Jessica Brewster
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan
- RIKEN Center for Integrated Medical Sciences (IMS), Yokohama, Japan
| | - Thomas Obadia
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | | | - Zoe S J Liu
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Connie S N Li-Wai-Suen
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Julie Healer
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Christele Huon
- Malaria Parasite Biology and Vaccines, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wuelton Monteiro
- Fundacão de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Universidade do Estado do Amazonas, Manaus, Brazil
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andre M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil
| | - Xavier C Ding
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | | | - James Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Marcus Lacerda
- Fundacão de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane (Fiocruz), Manaus, Brazil
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.
| |
Collapse
|
8
|
Rosas-Aguirre A, Patra KP, Calderón M, Torres K, Gamboa D, Arocutipa E, Málaga E, Garro K, Fernández C, Trompeter G, Alnasser Y, Llanos-Cuentas A, Gilman RH, Vinetz JM. Anti-MSP-10 IgG indicates recent exposure to Plasmodium vivax infection in the Peruvian Amazon. JCI Insight 2020; 5:130769. [PMID: 31770108 DOI: 10.1172/jci.insight.130769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDSerological tools for the accurate detection of recent malaria exposure are needed to guide and monitor malaria control efforts. IgG responses against Plasmodium vivax and P. falciparum merozoite surface protein-10 (MSP10) were measured as a potential way to identify recent malaria exposure in the Peruvian Amazon.METHODSA field-based study included 470 participants in a longitudinal cohort who completed a comprehensive evaluation: light microscopy and PCR on enrollment, at least 1 monthly follow-up by light microscopy, a second PCR, and serum and dried blood spots for serological analysis at the end of the follow-up. IgG titers against novel mammalian cell-produced recombinant PvMSP10 and PfMSP10 were determined by ELISA.RESULTSDuring the follow-up period, 205 participants were infected, including 171 with P. vivax, 26 with P. falciparum, 6 with infections by both species but at different times, and 2 with mixed infections. Exposure to P. vivax was more accurately identified when serological responses to PvMSP10 were obtained from serum (sensitivity, 58.1%; specificity, 81.8%; AUC: 0.76) than from dried blood spots (sensitivity, 35.2; specificity, 83.5%; AUC: 0.64) (PAUC < 0.001). Sensitivity was highest (serum, 82.9%; dried blood spot, 45.7%) with confirmed P. vivax infections occurring 7-30 days before sample collection; sensitivity decreased significantly in relation to time since last documented infection. PvMSP10 serological data did not show evidence of interspecies cross-reactivity. Anti-PfMSP10 responses poorly discriminated between P. falciparum-exposed and nonexposed individuals (AUC = 0.59; P > 0.05).CONCLUSIONAnti-PvMSP10 IgG indicates recent exposure to P. vivax at the population level in the Amazon region. Serum, not dried blood spots, should be used for such serological tests.FUNDINGCooperative agreement U19AI089681 from the United States Public Health Service, NIH/National Institute of Allergy and Infectious Diseases, as the Amazonian International Center of Excellence in Malaria Research.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Fund for Scientific Research FNRS, Brussels, Belgium.,Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium.,Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Maritza Calderón
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and
| | - Katherine Torres
- Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edith Arocutipa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edith Málaga
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Garro
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Fernández
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Grace Trompeter
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yossef Alnasser
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
9
|
Influence of polymorphisms in toll-like receptors (TLRs) on malaria susceptibility in low-endemic area of the Atlantic Forest, São Paulo, Brazil. Acta Trop 2018; 182:309-316. [PMID: 29551393 DOI: 10.1016/j.actatropica.2018.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 12/17/2022]
Abstract
In low-endemic areas for malaria transmission, asymptomatic individuals play an important role as reservoirs for malarial infection. Understanding the dynamics of asymptomatic malaria is crucial for its efficient control in these regions. Genetic host factors such as Toll-like receptor (TLR) polymorphisms may play a role in the maintenance or elimination of infection. In this study, the effect of TLR polymorphisms on the susceptibility to malaria was investigated among individuals living in the Atlantic Forest of São Paulo, Southern Brazil. A hundred and ninety-five Brazilian individuals were enrolled and actively followed up for malaria for three years. Twenty-four polymorphisms in five toll-like receptor (TLR) genes were genotyped by RFLP, direct sequencing or fragment analysis. The genotypes were analyzed for the risk of malaria. Ongoing Plasmodium vivax or P. malariae infection, was identified by the positive results in PCR tests and previous P. vivax malaria, was assumed when antiplasmodial antibodies against PvMSP119 were detected by ELISA. An evaluation of genomic ancestry was conducted using biallelic ancestry informative markers and the results were used as correction in the statistical analysis. Nine SNPs and one microsatellite were found polymorphic and three variant alleles in TLR genes were associated to malaria susceptibility. The regression coefficient estimated for SNP TLR9.-1237.T/C indicated that the presence of at least one allele C increased, on average, 2.3 times the malaria odds, compared to individuals with no allele C in this SNP. However, for individuals with the same sex, age and household, the presence of at least one allele C in SNP TLR9.-1486.T/C reduced, on average, 1.9 times the malaria odds, compared to individuals with no allele C. Moreover, this allele C plus an S allele in TLR6.P249S in individuals with same sex, age and ancestry, reduced, on average, 4.4 times the malaria odds. Our findings indicate a significant association of TLR9.-1237.T/C gene polymorphism with malarial infection and contribute to a better knowledge of the role of TLRs in malaria susceptibility in an epidemiological setting different from other settings.
Collapse
|
10
|
Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km 2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep 2018; 8:7077. [PMID: 29728637 PMCID: PMC5935754 DOI: 10.1038/s41598-018-25344-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
The precise role that deforestation for agricultural settlements and commercial forest products plays in promoting or inhibiting malaria incidence in Amazonian Brazil is controversial. Using publically available databases, we analyzed temporal malaria incidence (2009–2015) in municipalities of nine Amazonian states in relation to ecologically defined variables: (i) deforestation (rate of forest clearing over time); (ii) degraded forest (degree of human disturbance and openness of forest canopy for logging) and (iii) impacted forest (sum of deforested and degraded forest patches). We found that areas affected by one kilometer square of deforestation produced 27 new malaria cases (r² = 0.78; F1,10 = 35.81; P < 0.001). Unexpectedly, we found both a highly significant positive correlation between number of impacted forest patches less than 5 km2 and malaria cases, and that these patch sizes accounted for greater than ~95% of all patches in the study area. There was a significantly negative correlation between extraction forestry economic indices and malaria cases. Our results emphasize not only that deforestation promotes malaria incidence, but also that it directly or indirectly results in a low Human Development Index, and favors environmental conditions that promote malaria vector proliferation.
Collapse
Affiliation(s)
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Longley RJ, França CT, White MT, Kumpitak C, Sa-Angchai P, Gruszczyk J, Hostetler JB, Yadava A, King CL, Fairhurst RM, Rayner JC, Tham WH, Nguitragool W, Sattabongkot J, Mueller I. Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malar J 2017; 16:178. [PMID: 28454546 PMCID: PMC5410030 DOI: 10.1186/s12936-017-1826-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/19/2017] [Indexed: 11/11/2022] Open
Abstract
Background Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. Methods Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. Results Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. Conclusions Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1826-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rhea J Longley
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Camila T França
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Michael T White
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Imperial College, London, UK
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patiwat Sa-Angchai
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jakub Gruszczyk
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jessica B Hostetler
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anjali Yadava
- Malaria Vaccine Branch, United States Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, Australia. .,ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, 08036, Barcelona, Spain. .,Institut Pasteur, Paris, France.
| |
Collapse
|
12
|
Folegatti PM, Siqueira AM, Monteiro WM, Lacerda MVG, Drakeley CJ, Braga ÉM. A systematic review on malaria sero-epidemiology studies in the Brazilian Amazon: insights into immunological markers for exposure and protection. Malar J 2017; 16:107. [PMID: 28270152 PMCID: PMC5341168 DOI: 10.1186/s12936-017-1762-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023] Open
Abstract
Background Considerable success in reducing malaria incidence and mortality has been achieved in Brazil, leading to discussions over the possibility of moving towards elimination. However, more than reporting and counting clinical cases, elimination will require the use of efficient tools and strategies for measuring transmission dynamics and detecting the infectious reservoir as the primary indicators of interest for surveillance and evaluation. Because acquisition and maintenance of anti-malarial antibodies depend on parasite exposure, seroprevalence rates could be used as a reliable tool for assessing malaria endemicity and an adjunct measure for monitoring transmission in a rapid and cost-effective manner. Methods This systematic review synthesizes the existing literature on seroprevalence of malaria in the Brazilian Amazon Basin. Different study designs (cross-sectional surveys and longitudinal studies) with reported serological results in well-defined Brazilian populations were considered. Medline (via PubMed), EMBASE and LILACS databases were screened and the articles were included per established selection criteria. Data extraction was performed by two authors and a modified critical appraisal tool was applied to assess the quality and completeness of cross-sectional studies regarding defined variables of interest. Results From 220 single records identified, 23 studies were included in this systematic review for the qualitative synthesis. Five studies reported serology results on Plasmodium falciparum, 14 papers assessed Plasmodium vivax and four articles reported results on both Plasmodium species. Considerable heterogeneity among the evaluated malarial antigens, including sporozoite and blood stage antigens, was observed. The majority of recent studies analysed IgG responses against P. vivax antigens reflecting the species distribution pattern in Brazil over the last decades. Most of the published papers were cross-sectional surveys (73.9%) and only six cohort studies were included in this review. Three studies pointed to an association between antibodies against circumsporozoite protein of both P. falciparum and P. vivax and malaria exposure. Furthermore, five out 13 cross-sectional studies evidenced a positive association between IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein 1 of P. vivax (PvMSP119) and malaria exposure. Conclusions This systematic review identifies potential biomarkers of P. falciparum and P. vivax exposure in areas with variable and unstable malaria transmission in Brazil. However, this study highlights the need for standardization of further studies to provide an ideal monitoring tool to evaluate trends in malaria transmission and the effectiveness of malaria intervention programmes in Brazil. Moreover, the score-based weighted tool developed and used in this study still requires further validation.
Collapse
Affiliation(s)
- Pedro M Folegatti
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcus Vinícius G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto de Pesquisas Leônidas e Maria Deane, Manaus, Amazonas, Brazil
| | - Chris J Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Érika M Braga
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK. .,Departamento de Parasitologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
13
|
Rodrigues-da-Silva RN, Soares IF, Lopez-Camacho C, Martins da Silva JH, Perce-da-Silva DDS, Têva A, Ramos Franco AM, Pinheiro FG, Chaves LB, Pratt-Riccio LR, Reyes-Sandoval A, Banic DM, Lima-Junior JDC. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. Front Immunol 2017; 8:77. [PMID: 28223984 PMCID: PMC5293784 DOI: 10.3389/fimmu.2017.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/17/2017] [Indexed: 11/15/2022] Open
Abstract
The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved antigen involved in sporozoite motility, plays an important role in the traversal of host cells during the preerythrocytic stage of Plasmodium species. Recently, it has been considered an alternative target when designing novel antimalarial vaccines against Plasmodium falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is yet to be explored. This study evaluated the naturally acquired immune response against a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide assays to associate the breadth of antibody responses of those individuals with exposition and/or protection correlates. We show that PvCelTOS is naturally immunogenic in Amazon inhabitants with 94 individuals (17.8%) showing specific IgG antibodies against the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; r = −0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses (p < 0.0001) was observed. B-cell epitope mapping revealed five immunogenic regions in PvCelTOS, but no associations between the specific IgG response to peptides and exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS were also responders to this peptide sequence. This study describes for the first time the natural immunogenicity of PvCelTOS in Amazon individuals and identifies immunogenic regions in a full-length protein. The IgG magnitude was mainly composed of cytophilic antibodies (IgG1) and associated with recent malaria episodes. The data presented in this paper add further evidence to consider PvCelTOS as a vaccine candidate.
Collapse
Affiliation(s)
| | | | - Cesar Lopez-Camacho
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | | | | | - Antônio Têva
- Laboratory of Immunodiagnostics, Department of Biological Sciences, National School of Public Health, Fiocruz , Rio de Janeiro , Brazil
| | - Antônia Maria Ramos Franco
- Laboratory of Leishmaniasis and Chagas Disease, National Institute of Amazonian Research , Manaus , Brazil
| | - Francimeire Gomes Pinheiro
- Laboratory of Leishmaniasis and Chagas Disease, National Institute of Amazonian Research , Manaus , Brazil
| | - Lana Bitencourt Chaves
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | | | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | - Dalma Maria Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | | |
Collapse
|
14
|
Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, Yang Z, Wang Y, Yan G, Shang H, Cao Y, Fan Q, Cui L. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS One 2016; 11:e0151900. [PMID: 26999435 PMCID: PMC4801383 DOI: 10.1371/journal.pone.0151900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a marker of recent exposure to P. vivax in epidemiological studies.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/immunology
- Antibody Formation/immunology
- Asia, Southeastern/epidemiology
- Child
- Child, Preschool
- Demography
- Follow-Up Studies
- Humans
- Immunoglobulin G/immunology
- Infant
- Logistic Models
- Malaria, Falciparum/blood
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/blood
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Merozoite Surface Protein 1/chemistry
- Merozoite Surface Protein 1/immunology
- Molecular Weight
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protein Structure, Tertiary
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Xuexing Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Min Zhu
- School of Humanities and Social Science, China Medical University, Shenyang, Liaoning, China
| | - Peipei Li
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Ying Wang
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, United States of America
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, United States of America
- * E-mail: (YC); (QF); (LC)
| |
Collapse
|
15
|
Abstract
SUMMARYPlasmodium vivaxis the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared withPlasmodium falciparum.In this article we review what is known about naturally acquired immunity toP. vivax, and importantly, how this differs to that acquired againstP. falciparum.Immunity to clinicalP. vivaxinfection is acquired more quickly than toP. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successfulP. vivaxvaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity toP. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.
Collapse
|
16
|
Sánchez-Arcila JC, de França MM, Pereira VA, Vasconcelos MPA, Têva A, Perce-da-Silva DDS, Neto JR, Aprígio CJL, Lima-Junior JDC, Rodrigues MM, Soares IS, Banic DM, Oliveira-Ferreira J. The influence of intestinal parasites on Plasmodium vivax-specific antibody responses to MSP-119 and AMA-1 in rural populations of the Brazilian Amazon. Malar J 2015; 14:442. [PMID: 26546161 PMCID: PMC4636833 DOI: 10.1186/s12936-015-0978-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/29/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. METHODS A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. RESULTS The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. CONCLUSIONS The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA-1 and MSP-119. However, IgG response to both AMA1 and MSP1 were lower in individuals with intestinal parasites.
Collapse
Affiliation(s)
- Juan Camilo Sánchez-Arcila
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Marcelle Marcolino de França
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Virginia Araujo Pereira
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | | | - Antonio Têva
- Laboratório de Imunodiagnóstico, Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública/Fiocruz, Rio de Janeiro, Brazil.
| | | | | | | | - Josue da Costa Lima-Junior
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Mauricio Martins Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.
| | - Irene Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdadede Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| | - Dalma Maria Banic
- Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Joseli Oliveira-Ferreira
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Mehrizi AA, Asgharpour S, Salmanian AH, Djadid ND, Zakeri S. IgG subclass antibodies to three variants of Plasmodium falciparum merozoite surface protein-1 (PfMSP-1(19)) in an area with unstable malaria transmission in Iran. Acta Trop 2011; 119:84-90. [PMID: 21609709 DOI: 10.1016/j.actatropica.2011.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum remains globally an important cause of mortality and morbidity and despite decades of research, no effective vaccine is available against this deadly parasite. The 19-kDa C-terminal fragment of P. falciparum merozoite surface protein 1 (PfMSP-1(19)) is a target for protective immunity against malaria and the major concern in development of vaccine based on this antigen is the presence of polymorphisms. This investigation was designed to evaluate naturally acquired antibodies and antigen-binding avidity of IgG antibodies to three variant forms of PfMSP-1(19) antigen (E/TSG/L, E/KNG/F and Q/KNG/L) in malaria individuals who are living in hypoendemic areas in Iran (n=92, 4-75 years old). The three variant forms of PfMSP-1(19) were expressed in Escherichia coli and IgG isotype composition and avidity of naturally acquired antibodies to the 19-kDa antigen were measured by ELISA assay. Results showed that almost 72% of the studied individuals had positive antibody responses to three PfMSP-1(19) variants and the prevalence of responders did not differ significantly (P>0.05). High-avidity IgG (62.7%, 65.7% and 47.76%) and IgG1 (64.2%, 50.75%, and 50.75%) were found in positive sera for E/TSG/L, E/KNG/F and Q/KNG/L variants, respectively. Moreover, the prevalence and titers of IgG1 antibody responses to the three variants increased with age (P<0.05). In summary, individuals in low transmission areas in Iran can develop and maintain equal immune responses with high avidity to the PfMSP-1(19) variants (E/TSG/L, E/KNG/F and Q/KNG/L); however, the precise role of the total IgG and its isotypes in protection requires further investigation. These results could support the design of a universal PfMSP-1(19)-based vaccine.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | |
Collapse
|
18
|
Oliveira-Ferreira J, Lacerda MVG, Brasil P, Ladislau JLB, Tauil PL, Daniel-Ribeiro CT. Malaria in Brazil: an overview. Malar J 2010; 9:115. [PMID: 20433744 PMCID: PMC2891813 DOI: 10.1186/1475-2875-9-115] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 04/30/2010] [Indexed: 12/17/2022] Open
Abstract
Malaria is still a major public health problem in Brazil, with approximately 306,000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi) is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases) restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several malaria vaccine candidates in Brazilian populations have also been providing important information on whether immune responses specific to these antigens are generated in natural infections and their immunogenic potential as vaccine candidates. The present difficulties in reducing economic and social risk factors that determine the incidence of malaria in the Amazon Region render impracticable its elimination in the region. As a result, a malaria-integrated control effort--as a joint action on the part of the government and the population--directed towards the elimination or reduction of the risks of death or illness, is the direction adopted by the Brazilian government in the fight against the disease.
Collapse
Affiliation(s)
- Joseli Oliveira-Ferreira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Leônidas Deane - 5° andar, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ - CEP 21.045-900, RJ - Brazil
- Centro de Pesquisa Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz and Secretaria de Vigilância em Saúde (SVS) - Ministério da Saúde (MS), Brazil
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fiocruz. Pavilhão Leônidas Deane - 4° andar. Av. Brasil 4365. Manguinhos, Rio de Janeiro, RJ - CEP 21.045-900, RJ - Brazil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical do Amazonas, Av. Pedro Teixeira 25, Manaus, Amazonas - CEP 69.040-000, Brazil
| | - Patrícia Brasil
- Centro de Pesquisa Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz and Secretaria de Vigilância em Saúde (SVS) - Ministério da Saúde (MS), Brazil
- Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz, Av. Brasil 4365. Manguinhos, Rio de Janeiro, RJ - CEP 21.045-900, RJ - Brazil
| | - José LB Ladislau
- Programa Nacional de Controle da Malária, SVS-MS, Esplanada dos Ministérios, Bloco G, Sobreloja, sala 151. Brasília - CEP 70.058-900, Brazil
| | - Pedro L Tauil
- Área de Medicina Social, Faculdade de Medicina, Universidade de Brasília, Brasília - CEP 70.910-900, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Pavilhão Leônidas Deane - 5° andar, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ - CEP 21.045-900, RJ - Brazil
- Centro de Pesquisa Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz and Secretaria de Vigilância em Saúde (SVS) - Ministério da Saúde (MS), Brazil
| |
Collapse
|
19
|
Albrecht L, Castiñeiras C, Carvalho BO, Ladeia-Andrade S, Santos da Silva N, Hoffmann EHE, dalla Martha RC, Costa FTM, Wunderlich G. The South American Plasmodium falciparum var gene repertoire is limited, highly shared and possibly lacks several antigenic types. Gene 2010; 453:37-44. [PMID: 20079817 DOI: 10.1016/j.gene.2010.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/16/2022]
Abstract
The Plasmodium falciparum var gene family encodes large variant antigens, which are important virulence factors, and also targets of the humoral host response. The frequently observed mild outcomes of falciparum malaria in many places of the Amazon area prompted us to ask whether a globally restricted variant (var) gene repertoire is present in currently circulating and older isolates of this area. By exhaustive analysis of var gene tags from 89 isolates and clones taken during many years from all over the Brazilian Amazon, we estimate that there are probably no more than 350-430 distinct sequence types, less than for any similar sized area studied so far. Detailed analysis of the var tags from genetically distinct clones obtained from single isolates revealed restricted and redundant repertoires suggesting either a low incidence of infective bites or restricted variant gene diversity in inoculated parasites. Additionally, we found a structuring of var gene repertoires observed as a higher pairwise typing sharing in isolates from the same microregion compared to isolates from different regions. Fine analysis of translated var tags revealed that certain Distinct Sequence Identifiers (DSIDs) were differently represented in Brazilian/South American isolates when compared to datasets from other continents. By global alignment of worldwide var DBLalpha sequences and sorting in groups with more than 76% identity, 125 clusters were formed and more than half of all genes were found in nine clusters with 50 or more sequences. While Brazilian/South American sequences were represented only in 64 groups, African sequences were found in the majority of clusters. DSID type 1 related sequences accumulated almost completely in one single cluster, indicating that limited recombination occurs in these specific var gene types. These data demonstrate the so far highest pairwise type sharing values for the var gene family in isolates from all over an entire subcontinent. The apparent lack of specific sequences types suggests that the P. falciparum transmission dynamics in the whole Amazon are probably different from any other endemic region studied and possibly interfere with the parasite's ability to efficiently diversify its variant gene repertoires.
Collapse
Affiliation(s)
- Letusa Albrecht
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Drakeley C, Cook J. Chapter 5. Potential contribution of sero-epidemiological analysis for monitoring malaria control and elimination: historical and current perspectives. ADVANCES IN PARASITOLOGY 2009; 69:299-352. [PMID: 19622411 DOI: 10.1016/s0065-308x(09)69005-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anti-malarial antibody responses represent an individual's history of exposure to the disease and, as age sero-conversion rates, reflect cumulative malaria exposure in a population. As such these antibody responses are an alternate measure of malaria transmission intensity and have potential in evaluating changes in exposure. This approach was used in the 1970s to evaluate malaria control and eradication attempts in a variety of different ecological settings. These historical studies provided a wealth of information on how serological data might be used to interpret control measures. However they were limited by a lack of standardized antigens and reproducible high-throughput assays. Current techniques using recombinant antigens with a range of immunogenicities, high-throughput enzyme-linked immunosorbent assays (ELISA) and statistical analysis allow a more robust examination of how serological parameters can be used to evaluate factors affecting malaria transmission. Here we present a review of the historical data and use it to assess the serological contribution to monitoring malaria elimination.
Collapse
Affiliation(s)
- Chris Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|