1
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2025; 70:223-242. [PMID: 38692429 PMCID: PMC11976432 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Longwill O. Exploring the Role of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Kynurenine Pathway Dysregulation in Migraine Pathophysiology Among Women With Polycystic Ovary Syndrome (PCOS). Cureus 2024; 16:e71199. [PMID: 39525239 PMCID: PMC11549845 DOI: 10.7759/cureus.71199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
A narrative review was undertaken to explore the current understanding of the relationship between polycystic ovary syndrome and migraine headaches, with a focus on the potential roles of pituitary adenylate cyclase-activating polypeptide and the kynurenine pathway in the shared pathophysiology of these conditions. Emerging evidence suggests that pituitary adenylate cyclase-activating polypeptide may be a key player in the development of migraine headaches, with potential implications for the higher incidence of migraine observed in women with polycystic ovary syndrome. Additionally, dysregulation of the kynurenine pathway and altered levels of kynurenine metabolites have been linked to both migraine and polycystic ovary syndrome, indicating a complex interplay between hormonal, metabolic, and neurological factors in the comorbid presentation of these disorders. Further research is needed to elucidate the specific mechanisms underlying these associations and to develop targeted therapeutic approaches for managing migraine in the context of polycystic ovary syndrome.
Collapse
|
3
|
Lombardi LA, Mattos LS, Espindula AP, Simões RS, Sasso GRDS, Simões MDJ, Soares-Jr JM, Florencio-Silva R. Effects of melatonin and metformin on the ovaries of rats with polycystic ovary syndrome. F&S SCIENCE 2024; 5:204-211. [PMID: 38484797 DOI: 10.1016/j.xfss.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE To study the combined and isolated effects of melatonin and metformin in the ovarian tissue of rats with PCOS. DESIGN Experimental study using a rat model of PCOS induced by continuous light exposure. INTERVENTION(S) Forty adult female rats were divided into 5 groups: physiological estrus phase (Sham); permanente estrus with PCOS induced by continuous lighting exposure for 60 consecutive days (control); with PCOS treated with melatonin; with PCOS treated with metformin; with PCOS treated with melatonin + metformin. After 60 days of treatments, all rats were killed, and ovaries were collected and processed for paraffin-embedding. Formalin-fixed paraffin-embedded sections were stained with hematoxylin and eosin or subjected to immunohistochemistry for proliferation (Ki-67) and apoptosis (cleaved caspase 3) detection markers. SETTING Federal University of São Paulo, Brazil. ANIMALS Forty adult female Wistar rats (Rattus norvegicus albinus). MAIN OUTCOME MEASURE(S) Number of corpus luteum and ovarian cysts, number of ovarian follicles (primary and antral follicles), number of interstitial cells, percentage of ovarian follicles (primary and antral follicles), and of interstitial cells immunostained to cleaved caspase-3 and Ki-67. RESULTS Absence of corpus luteum, a higher number of cysts, and increased nuclear volume and area of interstitial cells, along with a decrease in primary and antral follicle numbers, were noticed in the control group compared with the Sham group. Melatonin and metformin treatments attenuated these effects, although the combined treatment did not mitigate the increased number of cysts and ovaries induced by PCOS. An increase in theca interna cell apoptosis was observed in the control group, whereas melatonina and metformin treatments reduced it significantly. A higher percentage of caspase-3-immunostained granulosa cells was noted in the Sham and all treated groups compared with the control group; no aditive effects on ovarian cell apoptosis were observed in the combined treatment. The percentage of Ki-67- immunostained granulosa cells was significantly higher in the control group compared with the Sham group. However, the combined treatment, not melatonin and metformin alone, mitigated this effect. A higher percentage of Ki-67-immunostained interstitial cells was observed in all treated groups compared with the Sham and control groups, whereas no additive effects in that immunoreactivity were observed in the combined treatment. CONCLUSIONS Melatonin and metformin may improve ovarian function in rats with PCOS. The combined melatonin and metformin treatment is more effective in attenuating excessive granulosa cell proliferation, but it is not more effective in improving ovarian function than these drugs applied alone in rats with PCOS.
Collapse
Affiliation(s)
- Leonardo Augusto Lombardi
- Disciplina de Anatomia Humana, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brasil
| | | | - Ana Paula Espindula
- Disciplina de Anatomia Humana, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brasil
| | - Ricardo Santos Simões
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Gisela Rodrigues da Silva Sasso
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Universidade Federal de São Paulo/Escola Paulista de Medicina - UNIFESP/EPM, São Paulo, Brasil
| | - Manuel de Jesus Simões
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil; Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Universidade Federal de São Paulo/Escola Paulista de Medicina - UNIFESP/EPM, São Paulo, Brasil
| | - José Maria Soares-Jr
- Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Rinaldo Florencio-Silva
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Universidade Federal de São Paulo/Escola Paulista de Medicina - UNIFESP/EPM, São Paulo, Brasil.
| |
Collapse
|
4
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhao Y, Zhao X, Jiang T, Xi H, Jiang Y, Feng X. A Retrospective Review on Dysregulated Autophagy in Polycystic Ovary Syndrome: From Pathogenesis to Therapeutic Strategies. Horm Metab Res 2024. [PMID: 38565184 DOI: 10.1055/a-2280-7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The main purpose of this article is to explore the relationship between autophagy and the pathological mechanism of PCOS, and to find potential therapeutic methods that can alleviate the pathological mechanism of PCOS by targeting autophagy. Relevant literatures were searched in the following databases, including: PubMed, MEDLINE, Web of Science, Scopus. The search terms were "autophagy", "PCOS", "polycystic ovary syndrome", "ovulation", "hyperandrogenemia", "insulin resistance", "inflammatory state", "circadian rhythm" and "treatment", which were combined according to the retrieval methods of different databases. Through analysis, we uncovered that abnormal levels of autophagy were closely related to abnormal ovulation, insulin resistance, hyperandrogenemia, and low-grade inflammation in patients with PCOS. Lifestyle intervention, melatonin, vitamin D, and probiotics, etc. were able to improve the pathological mechanism of PCOS via targeting autophagy. In conclusion, autophagy disorder is a key pathological mechanism in PCOS and is also a potential target for drug development and design.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyue Jiang
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyan Xi
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
de Araújo Silva EF, da Silva Gomes JA, Figueira de Oliveira ML, Furtado de Carvalho Noya AGA, Peixoto Magalhães C, da Silva JV, da Silva LH, Tenorio BM, Moraes Valença M, Mendes Tenorio FDCA. Protective effect of exogenous melatonin on testicular histopathology and histomorphometry of adult rats with domperidone-induced hyperprolactinemia. Reprod Biol 2023; 23:100791. [PMID: 37517145 DOI: 10.1016/j.repbio.2023.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/01/2023]
Abstract
Hyperprolactinemia is a pathological condition resulting from increased prolactin that directly affects reproduction, as this condition inhibits the release of LH, FSH and gonadal steroidogenesis, bringing several negative clinical associations in reproduction. In contrast, melatonin (MEL) plays an important role in the regulation of steroidogenesis and modulates damages to the process of spermatogenesis. The objective was to analyze the protective effects of exogenous melatonin on the testis of hyperprolactinemic adult rats. Forty-eight male rats were used, divided into two treatment periods: 30 and 60 days, each treatment was subdivided into three groups: Control, Hyper (hyperprolactinemia), and Hyper+MEL (hyperprolactinemia and melatonin). Treatment with melatonin was 200 μg/100 g, subcutaneously. Induction of hyperprolactinemia was obtained with a dose of 4 mg/kg of domperidone, subcutaneously. The results of the histopathology demonstrated that the animals in the Hyper group presented degeneration of germ cells when compared to the control. In addition, the degenerations were presented in smaller quantities in the Hyper+MEL, in both treatment periods, evidencing the benefits of the melatonin in gonadal regeneration. The Hyper group of both treatment periods showed a decrease in tubular diameter, epithelium height, and tubular area, in addition to a decrease in Sertoli cells, when compared to the control and the Hyper+MEL group. In conclusion, the hyperprolactinemia can affect the germinal epithelium and testicular microstructure; the exogenous melatonin has a protective effect against hyperprolactinemia, reducing testicular damage.
Collapse
Affiliation(s)
| | - José Anderson da Silva Gomes
- Department of Histology and Embryology, Bioscience Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | | | | | | | - João Vitor da Silva
- Anatomy Laboratory of the Academic Center of Vitória, Vitória de Santo Antão, Pernambuco, Brazil
| | - Luiz Henrique da Silva
- Anatomy Laboratory of the Academic Center of Vitória, Vitória de Santo Antão, Pernambuco, Brazil
| | - Bruno Mendes Tenorio
- Department of Histology and Embryology, Bioscience Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Moraes Valença
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
7
|
Paulino Silva KM, de Sousa FL, Alves ACB, Rocha PA, da Costa HNAF, Ferreira WR, Reis TS, de Oliveira TKB, Cabral Batista SR, Lapa Neto CJC, Oliveira AG, de Lemos Jordão AJJM. Chondroprotective effect of melatonin and strontium ranelate in animal model of osteoarthritis. Heliyon 2021; 7:e06760. [PMID: 33912721 PMCID: PMC8066349 DOI: 10.1016/j.heliyon.2021.e06760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To analyze the action of strontium ranelate (SR) and melatonin in isolation or in association in knees, liver and kidneys of rats Wistar with induced osteoarthritis (OA). METHODS Thirty male rats were induced to OA through an anterior cruciate ligament transection (ACLT), and treated with melatonin and SR in isolation or in association. Morphological, histopathological, histochemical and morphometric analysis were realized of the structure of the articular capsule, as well as histopathological analysis of liver and kidneys from the animals. RESULTS The experimental model was successful. The association of the drugs presented chondroprotective pharmacodynamics. However, more successful results were identified from analysis of animals in which received melatonin in isolation, regarding biochemical parameters of glutamic oxalacetic transaminase. The prepared slide samples of liver and kidneys from groups submitted to the isolated use of SR and melatonin or the association of these drugs presented no differences, when compared to the control group. DISCUSSION The administration of the drugs presented chondroprotective effect and prevented from the aggravation of articulate damages, and was not capable of modifying the histology of liver or kidneys. This finding suggests a safe association for the treatment of OA, however it requires further investigation in order to expand therapeutic perspectives regarding improvements of the quality of life of individuals in our society.
Collapse
|
8
|
Abstract
The pathogenesis of polycystic ovarian syndrome (PCOS) in women is poorly understood. With its varied endocrine and metabolic effects, it is unlikely a single genetic mutation or biological insult is the cause of the disease. Animals have been the proposed model for further studying the pathogenesis of PCOS and many modalities can be used to induce PCOS-like phenotypes in animals, most often with rodents. While there is not yet an animal model that perfectly recapitulates the classic PCOS phenotype in human women, many models allow for a better understanding of the complex disease process as well as possible treatments.
Collapse
|
9
|
Adeniyi M, Agoreyo F, Olorunnisola O, Olaniyan O, Seriki S, Ozolua P, Odetola A. Photo-pollution disrupts reproductive homeostasis in female rats: The duration-dependent role of selenium administrations. CHINESE J PHYSIOL 2020; 63:235-243. [DOI: 10.4103/cjp.cjp_52_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Mojaverrostami S, Asghari N, Khamisabadi M, Heidari Khoei H. The role of melatonin in polycystic ovary syndrome: A review. Int J Reprod Biomed 2019; 17:865-882. [PMID: 31970309 PMCID: PMC6943797 DOI: 10.18502/ijrm.v17i12.5789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/16/2019] [Accepted: 07/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a widespread endocrine disorder, affecting approximately 20% of women within reproductive age. It is associated with hyperandrogenism, obesity, menstrual irregularity, and anovulatory infertility. Melatonin is the main pineal gland hormone involved in the regulation of the circadian rhythm. In recent years, it has been observed that a reduction in melatonin levels of follicular fluid exists in PCOS patients. Melatonin receptors in the ovary and intra-follicular fluid adjust sex steroid secretion at different phases of ovarian follicular maturation. Moreover, melatonin is a strong antioxidant and an effective free radical scavenger, which protects ovarian follicles during follicular maturation. Objective In this paper, we conducted a literature review and the summary of the current research on the role of melatonin in PCOS. Materials and Methods Electronic databases including PubMed/MEDLINE, Web of Science, Scopus, and Reaxys were searched from their inception to October 2018 using the keywords “Melatonin” AND “Polycystic ovary syndrome” OR “PCOS.” Results Based on the data included in our review, it was found that the administration of melatonin can improve the oocyte and embryo quality in PCOS patients. It may also have beneficial effects in correcting the hormonal alterations in PCOS patients. Conclusion Since metabolic dysfunction is the major finding contributing to the initiation of PCOS, melatonin can hinder this process via its improving effects on metabolic functions.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Asghari
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Heidar Heidari Khoei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Melatonin Reduces Androgen Production and Upregulates Heme Oxygenase-1 Expression in Granulosa Cells from PCOS Patients with Hypoestrogenia and Hyperandrogenia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8218650. [PMID: 31772710 PMCID: PMC6854986 DOI: 10.1155/2019/8218650] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/07/2019] [Accepted: 08/24/2019] [Indexed: 12/20/2022]
Abstract
Background/Aims Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by abnormal hormone levels in peripheral blood and poor-quality oocytes. PCOS is a pathophysiological syndrome caused by chronic inflammation and oxidative stress. The aim of this study was to investigate the mechanism of melatonin regulation on androgen production and antioxidative damage in granulosa cells from PCOS patients with hypoestrogenia and hyperandrogenia. Methods Cumulus-oocyte complexes were collected from PCOS patients who had low levels of estrogen in follicular fluids. Results Melatonin triggered upregulation of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) expression via the extracellular signal-regulated kinase pathway in luteinized granulosa cells. As a result, conversion of androgen to 17β-estradiol was accelerated. We also found that melatonin significantly reduced the levels of inducible nitric oxide (NO) synthetase and NO in luteinized granulosa cells. Levels of transcripts encoding NF-E2-related factor-2 and its downstream target heme oxygenase-1 were also increased, leading to anti-inflammatory and antioxidant effects. We also found that melatonin could improve oocyte development potential. Conclusion Our preliminary results showed that melatonin had a positive impact on oocyte quality in PCOS patients with hypoestrogenia and hyperandrogenia.
Collapse
|
12
|
Ryu Y, Kim SW, Kim YY, Ku SY. Animal Models for Human Polycystic Ovary Syndrome (PCOS) Focused on the Use of Indirect Hormonal Perturbations: A Review of the Literature. Int J Mol Sci 2019; 20:2720. [PMID: 31163591 PMCID: PMC6600358 DOI: 10.3390/ijms20112720] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hormonal disturbances, such as hyperandrogenism, are considered important for developing polycystic ovary syndrome (PCOS) in humans. Accordingly, directly hormone-regulated animal models are widely used for studying PCOS, as they replicate several key PCOS features. However, the pathogenesis and treatment of PCOS are still unclear. In this review, we aimed to investigate animal PCOS models and PCOS-like phenotypes in animal experiments without direct hormonal interventions and determine the underlying mechanisms for a better understanding of PCOS. We summarized animal PCOS models that used indirect hormonal interventions and suggested or discussed pathogenesis of PCOS-like features in animals and PCOS-like phenotypes generated in other animals. We presented integrated physiological insights and shared cellular pathways underlying the pathogenesis of PCOS in reviewed animal models. Our review indicates that the hormonal and metabolic changes could be due to molecular dysregulations, such as upregulated PI3K-Akt and extracellular signal-regulated kinase (ERK) signalling, that potentially cause PCOS-like phenotypes in the animal models. This review will be helpful for considering alternative animal PCOS models to determine the cellular/molecular mechanisms underlying PCOS symptoms. The efforts to determine the specific cellular mechanisms of PCOS will contribute to novel treatments and control methods for this complex syndrome.
Collapse
Affiliation(s)
- Youngjae Ryu
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Yoon Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Seung-Yup Ku
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
13
|
Wang H, Pu Y, Luo L, Li Y, Zhang Y, Cao Z. Membrane receptor-independent inhibitory effect of melatonin on androgen production in porcine theca cells. Theriogenology 2018; 118:63-71. [PMID: 29885642 DOI: 10.1016/j.theriogenology.2018.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023]
Abstract
Excessive secretion of androgens including androstenedione and testosterone in theca cells frequently causes female infertility in mammals. Melatonin is a potent inhibitor of androgen production in gonadal cells of several species in a membrane receptor-dependent manner. However, the function of melatonin in steroidogenesis of porcine theca cells remains unclear. Here we report that melatonin inhibits androgen biosynthesis independently of its membrane receptors in pigs. Using flow cytometry, immunofluorescence and RT-PCR we showed that the vast majority of cells isolated from the theca layer of antral follicles are indeed theca cells. Furthermore, we demonstrated that of the two of melatonin membrane receptors encoded in the porcine genome, theca cells exclusively express melatonin receptor 1B. Cell counting analysis indicated that different concentrations of melatonin did not alter the normal viability and proliferation of theca cells. Additionally, hormone radioimmunoassay and qPCR respectively showed that a high concentration of melatonin significantly repressed both androgen production and expression of steroidogenic genes involving StAR, CYP11A1, HSD3β and SET (P < 0.05), but did not impair progesterone production. Interestingly, these effects were not reversed by N-acetyl-2-benzyltryptamin, a melatonin membrane receptor antagonist. Overall, these results demonstrate that melatonin inhibits androgen production in porcine theca cells independently of its membrane receptor.
Collapse
Affiliation(s)
- Heng Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Pu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Luo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
14
|
Talpur HS, Chandio IB, Brohi RD, Worku T, Rehman Z, Bhattarai D, Ullah F, JiaJia L, Yang L. Research progress on the role of melatonin and its receptors in animal reproduction: A comprehensive review. Reprod Domest Anim 2018; 53:831-849. [PMID: 29663591 DOI: 10.1111/rda.13188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/03/2018] [Indexed: 12/15/2022]
Abstract
Melatonin and its receptors play a crucial role in the regulation of the animal reproductive process, primarily in follicular development. However, the role that melatonin performs in regulating hormones related with reproduction remains unclear. Melatonin and its receptors are present both in female and male animals' organs, such as ovaries, heart, brain and liver. Melatonin regulates ovarian actions and is a key mediator of reproductive actions. Melatonin has numerous effects on animal reproduction, such as protection of gametes and embryos, response to clock genes, immune-neuroendocrine, reconciliation of seasonal variations in immune function, and silence or blockage of genes. The growth ratio of reproductive illnesses in animals has raised a remarkable concern for the government, animal caretakers and farm managers. In order to resolve this challenging issue, it is very necessary to conduct state-of-the-art research on melatonin and its receptors because melatonin has considerable physiognomies. This review article presents a current contemporary research conducted by numerous researchers from the entire world on the role of melatonin and its receptors in animal reproduction, from the year 1985 to the year 2017. Furthermore, this review shows scientific research challenges related to melatonin receptors and their explanations based on the findings of 172 numerous research articles, and also represents significant proficiencies of melatonin in order to show enthusiastic study direction for animal reproduction researchers.
Collapse
Affiliation(s)
- H S Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - I B Chandio
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - R D Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - T Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - Z Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - D Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - F Ullah
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - L JiaJia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - L Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Yang HL, Zhou WJ, Gu CJ, Meng YH, Shao J, Li DJ, Li MQ. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am J Reprod Immunol 2018; 80:e12839. [PMID: 29493042 DOI: 10.1111/aji.12839] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Melatonin is a neurohormone synthesized from the aromatic amino acid tryptophan mainly by the pineal gland of mammals. Melatonin acts as a broad-spectrum antioxidant, powerful free radical scavenger, anti-inflammatory agent, anticarcinogenic factor, sleep inducer and regulator of the circadian rhythm, and potential immunoregulator. Melatonin and reproductive system are interrelated under both physiological and pathological conditions. Oxidative stress, inflammation, and immune dysregulation are associated with the pathogenesis of the female reproductive system which causes endometriosis (EMS), recurrent spontaneous abortion (RSA), and polycystic ovary syndrome (PCOS). Accumulating studies have indicated that melatonin plays pleiotropic and essential roles in these obstetrical and gynecological disorders and would be a candidate therapeutic drug to regulate inflammation and immune function and protect special cells or organs. Here, we systematically review the pleiotropic roles of melatonin in EMS, RSA, and PCOS to explore its pathological implications and treatment potential.
Collapse
Affiliation(s)
- Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Han Meng
- Reproductive Medical Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
16
|
Bohlen TM, Silveira MA, Buonfiglio DDC, Ferreira-Neto HC, Cipolla-Neto J, Donato J, Frazao R. A Short-Day Photoperiod Delays the Timing of Puberty in Female Mice via Changes in the Kisspeptin System. Front Endocrinol (Lausanne) 2018; 9:44. [PMID: 29515520 PMCID: PMC5826198 DOI: 10.3389/fendo.2018.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The reproduction of seasonal breeders is modulated by exposure to light in an interval of 24 h defined as photoperiod. The interruption of reproductive functions in seasonally breeding rodents is accompanied by the suppression of the Kiss1 gene expression, which is known to be essential for reproduction. In non-seasonal male rodents, such as rats and mice, short-day photoperiod (SP) conditions or exogenous melatonin treatment also have anti-gonadotropic effects; however, whether photoperiod is able to modulate the puberty onset or Kiss1 gene expression in mice is unknown. In the present study, we investigated whether photoperiodism influences the sexual maturation of female mice via changes in the kisspeptin system. We observed that SP condition delayed the timing of puberty in female mice, decreased the hypothalamic expression of genes related to the reproductive axis and reduced the number of Kiss1-expressing neurons in the rostral hypothalamus. However, SP also reduced the body weight gain during development and affected the expression of neuropeptides involved in the energy balance regulation. When body weight was recovered via a reduction in litter size, the timing of puberty in mice born and raised in SP was advanced and the effects in hypothalamic mRNA expression were reverted. These results suggest that the SP delays the timing of puberty in female mice via changes in the kisspeptin system, although the effects on hypothalamic-pituitary-gonadal axis are likely secondary to changes in body weight gain.
Collapse
Affiliation(s)
- Tabata Mariz Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Augusto Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniella do Carmo Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Renata Frazao,
| |
Collapse
|
17
|
Spinedi E, Cardinali DP. The Polycystic Ovary Syndrome and the Metabolic Syndrome: A Possible Chronobiotic-Cytoprotective Adjuvant Therapy. Int J Endocrinol 2018; 2018:1349868. [PMID: 30147722 PMCID: PMC6083563 DOI: 10.1155/2018/1349868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome is a highly frequent reproductive-endocrine disorder affecting up to 8-10% of women worldwide at reproductive age. Although its etiology is not fully understood, evidence suggests that insulin resistance, with or without compensatory hyperinsulinemia, and hyperandrogenism are very common features of the polycystic ovary syndrome phenotype. Dysfunctional white adipose tissue has been identified as a major contributing factor for insulin resistance in polycystic ovary syndrome. Environmental (e.g., chronodisruption) and genetic/epigenetic factors may also play relevant roles in syndrome development. Overweight and/or obesity are very common in women with polycystic ovary syndrome, thus suggesting that some polycystic ovary syndrome and metabolic syndrome female phenotypes share common characteristics. Sleep disturbances have been reported to double in women with PCOS and obstructive sleep apnea is a common feature in polycystic ovary syndrome patients. Maturation of the luteinizing hormone-releasing hormone secretion pattern in girls in puberty is closely related to changes in the sleep-wake cycle and could have relevance in the pathogenesis of polycystic ovary syndrome. This review article focuses on two main issues in the polycystic ovary syndrome-metabolic syndrome phenotype development: (a) the impact of androgen excess on white adipose tissue function and (b) the possible efficacy of adjuvant melatonin therapy to improve the chronobiologic profile in polycystic ovary syndrome-metabolic syndrome individuals. Genetic variants in melatonin receptor have been linked to increased risk of developing polycystic ovary syndrome, to impairments in insulin secretion, and to increased fasting glucose levels. Melatonin therapy may protect against several metabolic syndrome comorbidities in polycystic ovary syndrome and could be applied from the initial phases of patients' treatment.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centre for Experimental and Applied Endocrinology (CENEXA, UNLP-CONICET-FCM), CEAS-CICPBA, La Plata Medical School, La Plata, Argentina
| | - Daniel P. Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
18
|
Yaghmaei P, Dehestani B, Ghorbani S, Abbasi F, Ebrahim-Habibi A. Indole-based derivatives effect on rats with polycystic ovary syndrome. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Tagliaferri V, Romualdi D, Scarinci E, Cicco SD, Florio CD, Immediata V, Tropea A, Santarsiero CM, Lanzone A, Apa R. Melatonin Treatment May Be Able to Restore Menstrual Cyclicity in Women With PCOS: A Pilot Study. Reprod Sci 2017; 25:269-275. [PMID: 28558523 DOI: 10.1177/1933719117711262] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of the study was to investigate the effects of 6 months of melatonin administration on clinical, endocrine, and metabolic features of women affected by polycystic ovary syndrome (PCOS). This is a prospective cohort study including 40 normal-weight women with PCOS between January and September 2016, enrolled in an academic research environment. Ultrasonographic pelvic examinations, hirsutism score evaluation, hormonal profile assays, oral glucose tolerance test, and lipid profile at baseline and after 6 months of melatonin administration were performed. Melatonin treatment significantly decreased androgens levels (free androgen index: P < .05; testosterone: P < .01; 17 hydroxyprogesterone: P < .01). Follicle-stimulating hormone levels significantly raised ( P < .01), and anti-Mullerian hormone serum levels significantly dropped after 6 months of melatonin treatment ( P < .01). No significant changes occurred in glucoinsulinemic and lipid parameters after treatment except a significant decrease of low-density lipoprotein cholesterol. Almost 95% of participants experienced an amelioration of menstrual cycles. Until now, only few data have been published about the role of melatonin in women with PCOS. This is the first study focused on the effects of exogenous oral melatonin administration on the clinical, endocrine, and metabolic characteristics of patients with PCOS. After 6 months of treatment, melatonin seems to improve menstrual irregularities and biochemical hyperandrogenism in women with PCOS through a direct, insulin-independent effect on the ovary. Based on our results, melatonin could be considered a potential future therapeutic agent for women affected by PCOS.
Collapse
Affiliation(s)
- Valeria Tagliaferri
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Daniela Romualdi
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Elisa Scarinci
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Simona De Cicco
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Christian Di Florio
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Valentina Immediata
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Tropea
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Antonio Lanzone
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Rosanna Apa
- 1 Department of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
20
|
Zhukova OV, Obukhova ES, Khizhkin EA, Ilukha VA, Vinogradova IA. Luzindole accelerates the aging of estrous function of female rats. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s2079057016040159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ferreira CS, Carvalho KC, Maganhin CC, Paiotti APR, Oshima CTF, Simões MJ, Baracat EC, Soares JM. Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light? Apoptosis 2016; 21:155-62. [PMID: 26542995 DOI: 10.1007/s10495-015-1195-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melatonin has been described as a protective agent against cell death and oxidative stress in different tissues, including in the reproductive system. However, the information on the action of this hormone in rat uterine apoptosis is low. Our objective was to evaluate the effects of melatonin on mechanisms of cell death in uterus of rats exposed to continuous light stress. Twenty adult Wistar rats were divided into two groups: GContr (vehicle control) and GExp which were treated with melatonin (0.4 mg/mL), both were exposed to continuous light for 90 days. The uterus was removed and processed for quantitative real time PCR (qRT-PCR), using PCR-array plates of the apoptosis pathway; for immunohistochemistry and TUNEL. The results of qRT-PCR of GEXP group showed up-regulation of 13 and 7, pro-apoptotic and anti-apoptotic genes, respectively, compared to GContr group. No difference in pro-apoptotic proteins (Bax, Fas and Faslg) expression was observed by immunohistochemistry, although the number of TUNEL-positive cells was lower in the group treated with melatonin compared to the group not treated with this hormone. Our data suggest that melatonin influences the mechanism and decreases the apoptosis in uterus of rats exposed to continuous light.
Collapse
Affiliation(s)
- Cecília S Ferreira
- Departamento de Ginecologia, Universidade Federal de São Paulo, Avenida Doutor Arnaldo, 455. Sala 2113. Cerqueira César, CEP: 01246-923, São Paulo, Brazil. .,Laboratory of Structural and Molecular Gynecology (LIM-58), Disciplina de Ginecologia - Departmento de Ginecologia e Obstetrícia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Kátia C Carvalho
- Laboratory of Structural and Molecular Gynecology (LIM-58), Disciplina de Ginecologia - Departmento de Ginecologia e Obstetrícia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carla C Maganhin
- Laboratory of Structural and Molecular Gynecology (LIM-58), Disciplina de Ginecologia - Departmento de Ginecologia e Obstetrícia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana P R Paiotti
- Laboratory of Pathology Molecular, Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Celina T F Oshima
- Laboratory of Pathology Molecular, Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Manuel J Simões
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edmund C Baracat
- Laboratory of Structural and Molecular Gynecology (LIM-58), Disciplina de Ginecologia - Departmento de Ginecologia e Obstetrícia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José M Soares
- Laboratory of Structural and Molecular Gynecology (LIM-58), Disciplina de Ginecologia - Departmento de Ginecologia e Obstetrícia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Korenevskii AV, Arutyunyan AV. On the role of biogenic amines and reactive oxygen species in the disruption of the hypothalamic regulation of reproductive function in xenobiotic-induced and experimental hyperhomocysteinemia. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Silva F, Teixeira A, Teixeira V. Efeito da iluminação constante sobre a placenta de ratas: um estudo morfológico, morfométrico e histoquímico. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-4162-7726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A presente pesquisa analisou o efeito da iluminação constante sobre a estrutura placentária de ratas, abordando parâmetros morfológicos, morfométricos e histoquímicos. Vinte ratas albinas foram submetidas aos seguintes tratamentos: 12hL/12hE por 60 dias, e acasaladas em seguida (GI); ausência de luz por 60 dias, e acasaladas em seguida (GII); iluminação constante por 60 dias, e acasaladas em seguida (GIII); iluminação constante por 60 dias, acasaladas em seguida e tratadas com melatonina (GIV). O estímulo luminoso foi em torno de 400 lux. A melatonina foi administrada na água (400mg/mL de etanol). Os resultados mostraram que histologicamente o GII apresentou vacuolização das células do trofospongio. Morfometricamente, o GIII apresentou camada do labirinto com redução no número de trofoblastos sinciciais e maior vascularização materno-fetal, hiperplasia e hipertrofia das células trofoblásticas gigantes, uma maior média da área total do disco placentário; porém, na camada de trofospongio, as células trofoblásticas e trofoblastos sinciciais não diferiram nos grupos experimentais. As placentas do GIV foram semelhantes às do GI. Histoquimicamente não houve alterações nas fibras colágenas, elásticas, reticulares e glicosaminoglicanas ácidas. Em conclusão, a iluminação constante promove alterações morfológicas e morfométricas na placenta de ratas, podendo acarretar redução funcional e restrições ao crescimento fetal. Essas alterações são abolidas pela reposição de melatonina.
Collapse
Affiliation(s)
- F.C.A. Silva
- Universidade Federal Rural de Pernambuco, Brasil
| | | | | |
Collapse
|
24
|
Lima GN, Maganhin CC, Simões RS, Baracat MCP, Sasso GRDS, Fuchs LFP, Simões MDJ, Baracat EC, Soares Júnior JM. Steroidogenesis-related gene expression in the rat ovary exposed to melatonin supplementation. Clinics (Sao Paulo) 2015; 70:144-51. [PMID: 25789524 PMCID: PMC4351306 DOI: 10.6061/clinics/2015(02)12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To analyze steroidogenesis-related gene expression in the rat ovary exposed to melatonin supplementation. METHODS Thirty-two virgin adult female rats were randomized to two groups as follows: the control group GI received vehicle and the experimental group GII received melatonin supplementation (10 µg/night per animal) for 60 consecutive days. After the treatment, animals were anesthetized and the collected ovaries were immediately placed in liquid nitrogen for complementary deoxyribonucleic acid microarray analyses. A GeneChip(®) Kit Rat Genome 230 2.0 Affymetrix Array was used for gene analysis and the experiment was repeated three times for each group. The results were normalized with the GeneChip(®) Operating Software program and confirmed through analysis with the secondary deoxyribonucleic acid-Chip Analyzer (dChip) software. The data were confirmed by real-time reverse transcription polymerase chain reaction analysis. Genes related to ovarian function were further confirmed by immunohistochemistry. RESULTS We found the upregulation of the type 9 adenylate cyclase and inhibin beta B genes and the downregulation of the cyclic adenosine monophosphate response element modulator and cytochrome P450 family 17a1 genes in the ovarian tissue of GII compared to those of the control group. CONCLUSION Our data suggest that melatonin supplementation decreases gene expression of cyclic adenosine monophosphate, which changes ovarian steroidogenesis.
Collapse
Affiliation(s)
- Gisele Negro Lima
- Department of Gynecology, Paulista School of Medicine at Federal University of São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Carla Cristina Maganhin
- Department of Gynecology, Paulista School of Medicine at Federal University of São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Ricardo Santos Simões
- Department of Obstetrics and Gynecology, Faculdade de Medicina da Universidade de São Paulo (FMUSP/USP), São Paulo, SP, Brazil
| | - Maria Cândida Pinheiro Baracat
- Department of Obstetrics and Gynecology, Faculdade de Medicina da Universidade de São Paulo (FMUSP/USP), São Paulo, SP, Brazil
| | - Gisela Rodrigues da Silva Sasso
- Department of Morphology and Genetics, (EPM/UNIFESP), Paulista School of Medicine at Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Fernando Portugal Fuchs
- Department of Obstetrics and Gynecology, Faculdade de Medicina da Universidade de São Paulo (FMUSP/USP), São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Department of Morphology and Genetics, (EPM/UNIFESP), Paulista School of Medicine at Federal University of São Paulo, São Paulo, SP, Brazil
| | - Edmund Chada Baracat
- Department of Obstetrics and Gynecology, Faculdade de Medicina da Universidade de São Paulo (FMUSP/USP), São Paulo, SP, Brazil
| | - José Maria Soares Júnior
- Department of Obstetrics and Gynecology, Faculdade de Medicina da Universidade de São Paulo (FMUSP/USP), São Paulo, SP, Brazil
| |
Collapse
|
25
|
Lemos AJJM, Peixoto CA, Teixeira ÁAC, Luna RLA, Rocha SWS, Santos HMP, Silva AKS, Nunes AKS, Wanderley-Teixeira V. Effect of the combination of metformin hydrochloride and melatonin on oxidative stress before and during pregnancy, and biochemical and histopathological analysis of the livers of rats after treatment for polycystic ovary syndrome. Toxicol Appl Pharmacol 2014; 280:159-68. [DOI: 10.1016/j.taap.2014.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
|
26
|
Pai SA, Majumdar AS. Protective effects of melatonin against metabolic and reproductive disturbances in polycystic ovary syndrome in rats. ACTA ACUST UNITED AC 2014; 66:1710-21. [PMID: 25176048 DOI: 10.1111/jphp.12297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/29/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study was undertaken to study the effects of melatonin on metabolic and reproductive aspects of polycystic ovary syndrome (PCOS) in rats. METHODS PCOS was induced by daily subcutaneous administration of testosterone (20 mg/kg) to 21-day-old female rats for 35 days. Rats were given metformin (500 mg/kg), melatonin (1 mg/kg) or melatonin (2 mg/kg) along with testosterone. One group served as vehicle control. On the 36th day, the animals were euthanised, and anthropometrical, biochemical (glucose, insulin, lipids, testosterone, C reactive protein (CRP)), oral glucose tolerance test, and histopathological evaluation of ovaries, uterus and intraabdominal fat (IAF), were carried out. Daily colpocytological examination was carried out from 14(th) day of study until termination. KEY FINDINGS Both the doses of melatonin significantly reduced body weight, body mass index, IAF, insulin and CRP. A favourable lipid profile, normal glucose tolerance and a decrease in the percentage of estrus smears were observed. Histopathological examination of ovary, uterus and IAF revealed a decrease in the number of cystic follicles, decrease in neoplastic endometrial glands, and decrease in adipocyte hypertrophy, respectively. The effects observed with melatonin were comparable to that with metformin. CONCLUSION The study provides evidence of the potential beneficial effects of melatonin in PCOS.
Collapse
Affiliation(s)
- Sarayu A Pai
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai, India
| | | |
Collapse
|
27
|
Jain P, Jain M, Haldar C, Singh TB, Jain S. Melatonin and its correlation with testosterone in polycystic ovarian syndrome. J Hum Reprod Sci 2014; 6:253-8. [PMID: 24672165 PMCID: PMC3963309 DOI: 10.4103/0974-1208.126295] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/27/2013] [Accepted: 12/31/2013] [Indexed: 11/04/2022] Open
Abstract
CONTEXT Polycystic ovarian syndrome (PCOS) is considered to be the most common endocrine disorder affecting women. Melatonin, a small lipophilic indoleamine, and reproductive hormones may be interrelated. Melatonin influences sex steroid production at different stages of ovarian follicular maturation as melatonin receptors have been demonstrated at multiple sites in ovary and in intrafollicular fluid. It plays role as an antioxidant and free radical scavanger which protects follicles from oxidative stress, rescuing them from atresia, leading to complete follicular maturation and ovulation. AIMS To study the role of melatonin in PCOS and to investigate its correlation with testosterone in patients suffering from PCOS. SETTINGS AND DESIGN A total of 50 women with PCOS (Rotterdam criteria, 2003) and 50 age and weight matched healthy controls were selected and serum melatonin estimation was done in both the groups and correlated with serum total testosterone levels. MATERIALS AND METHODS In a case-control study, detailed history, clinical examination and hormonal evaluation [basal levels of leutinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone, prolactin, insulin, total testosterone, progesterone and melatonin] were carried out in all the participants including both cases and controls. For melatonin estimation, blood samples were collected between 12:00 am and 04:00 am on day 2(nd) of menstrual cycle and analyzed by using commercially available enzyme-linked immunosorbent assay kit. STATISTICAL ANALYSIS Student's t-test was used to compare the significant difference in mean values between cases and control groups. Chi-square test was used to test the significant association between the qualitative variables. Linear correlation coefficient and regression analysis were done to see the amount and direction of relationship between quantitative variables. RESULTS The mean melatonin level was observed to be significantly increased in patients (63.27 ± 10.97 pg/mL) than in controls (32.51 ± 7.55 pg/mL). Melatonin was found to be raised in all the cases of PCOS (above cut-off value of ≥45 pg/mL, P < 0.001). Total testosterone level was also raised in 72% of patients. Melatonin levels were found to be positively associated with increased testosterone (P < 0.001). In regression analysis using melatonin as dependent variable and testosterone as an independent variable, the value of R2 Χ 100 (percent variation) was found to be 72.1%. CONCLUSIONS Women with PCOS have significantly raised serum melatonin levels and hyperandrogenemia along with increased number of atretic follicles. Further studies are required to establish a definite role of melatonin in PCOS cases with disturbed hormonal milieu. This could open up the way for therapeutic role of melatonin in treatment of patients suffering from PCOS.
Collapse
Affiliation(s)
- Priyanka Jain
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Madhu Jain
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chandana Haldar
- Department of Zoology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tej Ball Singh
- Department of Community Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shuchi Jain
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
28
|
Chuffa LGA, Fioruci-Fontanelli BA, Mendes LO, Fávaro WJ, Pinheiro PFF, Martinez M, Martinez FE. Characterization of chemically induced ovarian carcinomas in an ethanol-preferring rat model: influence of long-term melatonin treatment. PLoS One 2013; 8:e81676. [PMID: 24367487 PMCID: PMC3867328 DOI: 10.1371/journal.pone.0081676] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
Abstract
Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert co-carcinogenic effects. Because melatonin (mel) has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH), they were surgically injected with 100 µg of 7,12-dimethyl-benz[a]anthracene (DMBA) plus sesame oil directly under the left ovarian bursa. At 260 days old, half of the animals received i.p. injections of 200 µg mel/100 g b.w. for 60 days. Four experimental groups were established: Group C, rats bearing ovarian carcinomas (OC); Group C+EtOH, rats voluntarily consuming 10% (v/v) EtOH and bearing OC; Group C+M, rats bearing OC and receiving mel; and Group C+EtOH+M, rats with OC consuming EtOH and receiving mel. Estrous cycle and nutritional parameters were evaluated, and anatomopathological analyses of the ovarian tumors were conducted. The incidence of ovarian tumors was higher in EtOH drinking animals 120 days post-DMBA administration, and mel efficiently reduced the prevalence of some aggressive tumors. Although mel promoted high EtOH consumption, it was effective in synchronizing the estrous cycle and reducing ovarian tumor mass by 20%. While rats in the C group displayed cysts containing serous fluid, C+EtOH rats showed solid tumor masses. After mel treatment, the ovaries of these rats presented as soft and mobile tissues. EtOH consumption increased the incidence of serous papillary carcinomas and sarcomas but not clear cell carcinomas. In contrast, mel reduced the incidence of sarcomas, endometrioid carcinomas and cystic teratomas. Combination of DMBA with EtOH intake potentiated the incidence of OC with malignant histologic subtypes. We concluded that mel reduces ovarian masses and the incidence of adenocarcinomas in ethanol-deprived rats.
Collapse
Affiliation(s)
- Luiz Gustavo A. Chuffa
- Departamento de Anatomia, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP, Brazil
- * E-mail:
| | - Beatriz A. Fioruci-Fontanelli
- Departamento de Anatomia, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP, Brazil
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, Campinas-SP, Brazil
| | - Leonardo O. Mendes
- Departamento de Anatomia, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP, Brazil
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, Campinas-SP, Brazil
| | - Wagner J. Fávaro
- Departamento de Anatomia, Biologia Celular e Fisiologia e Biofísica, UNICAMP – Universidade de Campinas, Campinas-SP, Brazil
| | | | - Marcelo Martinez
- Departamento de Morfologia e Patologia, UFSCar – Universidade Federal de São Carlos, São Carlos-SP, Brazil
| | - Francisco Eduardo Martinez
- Departamento de Anatomia, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP, Brazil
| |
Collapse
|
29
|
Popovich IG, Zabezhinski MA, Panchenko AV, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Anisimov VN. Exposure to light at night accelerates aging and spontaneous uterine carcinogenesis in female 129/Sv mice. Cell Cycle 2013; 12:1785-90. [PMID: 23656779 DOI: 10.4161/cc.24879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effect of the constant illumination on the development of spontaneous tumors in female 129/Sv mice was investigated. Forty-six female 129/Sv mice starting from the age of 2 mo were kept under standard light/dark regimen [12 h light (70 lx):12 hr dark; LD, control group], and 46 of 129/Sv mice were kept under constant illumination (24 h a day, 2,500 lx, LL) from the age of 5 mo until to natural death. The exposure to the LL regimen significantly accelerated body weight gain, increased body temperature as well as acceleration of age-related disturbances in estrous function, followed by significant acceleration of the development of the spontaneous uterine tumors in female 129/Sv mice. Total tumor incidence as well as a total number of total or malignant tumors was similar in LL and LD group (p > 0.05). The mice from the LL groups survived less than those from the LD group (χ ( 2) = 8.5; p = 0.00351, log-rank test). According to the estimated parameters of the Cox's regression model, constant light regimen increased the relative risk of death in female mice compared with the control (LD) group (p = 0.0041). The data demonstrate in the first time that the exposure to constant illumination was followed by the acceleration of aging and spontaneous uterine tumorigenesis in female 129/Sv mice.
Collapse
Affiliation(s)
- Irina G Popovich
- Laboratory of Carcinogenesis and Aging, N.N. Petrov Research Institute of Oncology, St. Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chuffa LGA, Amorim JPA, Teixeira GR, Mendes LO, Fioruci BA, Pinheiro PFF, Seiva FRF, Novelli ELB, de Mello Júnior W, Martinez M, Almeida-Francia CCD, Martinez FE. Long-term exogenous melatonin treatment modulates overall feed efficiency and protects ovarian tissue against injuries caused by ethanol-induced oxidative stress in adult UChB rats. Alcohol Clin Exp Res 2011; 35:1498-508. [PMID: 21438888 DOI: 10.1111/j.1530-0277.2011.01486.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic ethanol intake leads to reproductive damage including reactive oxygen species formation, which accelerates the oxidative process. Melatonin is known to regulate the reproductive cycle, food/liquid intake, and it may also act as a potent antioxidant indoleamine. The aim of this study was to verify the effects of alcoholism and melatonin treatment on overall feed efficiency and to analyze its protective role against the oxidative stress in the ovarian tissue of UChB rats (submitted to 10% [v/v] voluntary ethanol consumption). METHODS Forty adult female rats (n = 10/group) were finally selected for this study: UChB Co: drinking water only; and UChB EtOH: drinking ethanol at 2 to 6 ml/100 g/d + water, both receiving 0.9% NaCl + 95% ethanol 0.04 ml as vehicle. Concomitantly, UChB Co + M and UChB EtOH + M groups were infused with vehicle + melatonin (100 μg/100 g body weight/d) intraperitoneally over 60 days. All animals were euthanized by decapitation during the morning estrus (4 am). RESULTS Body weight gain was reduced with ethanol plus melatonin after 40 days of treatment. In both melatonin-treated groups, it was observed a reduction in food-derived calories and liquid intake toward the end of treatment. The amount of consumed ethanol dropped during the treatment. Estrous cycle was longer in rats that received both ethanol and melatonin, with prolonged diestrus. Following to oxidative status, lipid hydroperoxide levels were higher in the ovaries of ethanol-preferring rats and decreased after melatonin treatment. Additionally, antioxidant activities of superoxide dismutase, glutathione peroxidase activity, and glutathione reductase activity were increased in melatonin-treated groups. CONCLUSIONS We suggest that melatonin is able to affect feed efficiency and, conversely, it protects the ovaries against the oxidative stress arising from ethanol consumption.
Collapse
Affiliation(s)
- Luiz Gustavo A Chuffa
- Structural and Cell Biology Program, Institute of Biology, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of melatonin on histomorphology and on the expression of steroid receptors, VEGF, and PCNA in ovaries of pinealectomized female rats. Fertil Steril 2011; 95:1379-84. [DOI: 10.1016/j.fertnstert.2010.04.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 01/25/2023]
|
32
|
Chuffa LGA, Amorim JPA, Teixeira GR, Mendes LO, Fioruci BA, Pinheiro PFF, Seiva FRF, Novelli ELB, Mello Júnior W, Martinez M, Martinez FE. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat. Braz J Med Biol Res 2011; 44:217-23. [PMID: 21344135 DOI: 10.1590/s0100-879x2011007500018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/27/2011] [Indexed: 01/21/2023] Open
Abstract
Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g), were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight(-1)·day(-1)) both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05). Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day) and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL) towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2%) and estrous cycle remained extensive (26.7%), arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9%) and total antioxidant substances were enhanced within the ovaries (23.9%). Additionally, melatonin increased superoxide dismutase (21.3%), catalase (23.6%) and glutathione-reductase (14.8%) activities and the reducing power (10.2% GSH/GSSG ratio). We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.
Collapse
Affiliation(s)
- L G A Chuffa
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats. Aging (Albany NY) 2010; 2:82-92. [PMID: 20354269 PMCID: PMC2850144 DOI: 10.18632/aging.100120] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 03/02/2010] [Indexed: 11/25/2022]
Abstract
We evaluated
the effect of exposure to constant light started at the age of 1 month and
at the age of 14 months on the survival, life span, tumorigenesis and
age-related dynamics of antioxidant enzymes activity in various organs in
comparison to the rats maintained at the standard (12:12 light/dark)
light/dark regimen. We found that exposure to constant light started at the
age of 1 month accelerated spontaneous tumorigenesis and shortened life
span both in male and female rats as compared to the standard regimen. At
the same time, the exposure to constant light started at the age of 14
months failed to influence survival of male and female rats. While delaying
tumors in males, constant light accelerated tumors in females. We conclude
that circadian disruption induced by light-at-night started at the age of 1
month accelerates aging and promotes tumorigenesis in rats, however failed
affect survival when started at the age of 14 months.
Collapse
|
34
|
Vinogradova IA, Anisimov VN, Bukalev AV, Semenchenko AV, Zabezhinski MA. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging (Albany NY) 2009; 1:855-65. [PMID: 20157558 PMCID: PMC2816394 DOI: 10.18632/aging.100092] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/30/2009] [Indexed: 01/31/2023]
Abstract
We evaluated
the effect of various light/dark regimens on the survival, life span and
tumorigenesis in rats. Two hundred eight male and 203 females LIO rats
were subdivided into 4 groups and kept at various light/dark regimens:
standard 12:12 light/dark (LD); natural lighting of the North-West of Russia (NL); constant light (LL), and constant darkness (DD) since the age of 25 days until
natural death. We found that exposure to NL and LL regimens accelerated
development of metabolic syndrome and spontaneous tumorigenesis, shortened
life span both in male and females rats as compared to the standard LD
regimen. We conclude that circadian disruption induced by light-at-night
accelerates aging and promotes tumorigenesis in rats. This observation
supports the conclusion of the International Agency Research on Cancer that
shift-work that involves circadian disruption is probably carcinogenic to
humans.
Collapse
|
35
|
Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 2009; 92:328-43. [DOI: 10.1016/j.fertnstert.2008.05.016] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
|
36
|
Dair EL, Simoes RS, Simões MJ, Romeu LRG, Oliveira-Filho RM, Haidar MA, Baracat EC, Soares JM. Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertil Steril 2007; 89:1299-305. [PMID: 17561006 DOI: 10.1016/j.fertnstert.2007.03.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/25/2007] [Accepted: 03/02/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the effects of melatonin on rat endometrium morphology and embryo implantation. DESIGN Experimental study. SETTING Federal University of São Paulo, Brazil. ANIMAL(S) Forty female rats. INTERVENTION(S) GI: control, GII: sham-operated, GIII: pinealectomized, and GIV: pinealectomized rats that received melatonin during 3 months. The GI, GII, and GIII groups received the vehicle of melatonin (NaCl + ethanol). At the end of the treatment, the animals were killed during the estrous phase; the uterus was removed for morphometric analysis. Urine was collected for 6-sulfatoxymelatonin. Blood was collected for estrogen (E) and progesterone (P) level determinations. In a second experiment, female rats were used to evaluate the endometrial embryo implantation. MAIN OUTCOME MEASURE(S) Endometrial morphology and embryo implantation. RESULT(S) GIII presented the highest values for endometrial area and thickness index, number of endometrial glands, and eosinophils. The number of vessels of groups I, II, and IV was fewer than that of GIII. The highest number of eosinophils was detected in GIII in comparison to other groups. The implantation rate in GIII was the lowest of all groups. This implantation rate was significantly increased and restored toward normal in GIV. CONCLUSION(S) Our data suggested that, in nonphotoperiodic animals such as rats, melatonin may positively affect the endometrial morphology and improve embryo implantation.
Collapse
|
37
|
Singh KB. Persistent estrus rat models of polycystic ovary disease: an update. Fertil Steril 2005; 84 Suppl 2:1228-34. [PMID: 16210015 DOI: 10.1016/j.fertnstert.2005.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 06/22/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To critically review published articles on polycystic ovary (PCO) disease in rat models, with a focus on delineating its pathophysiology. DESIGN Review of the English-language literature published from 1966 to March 2005 was performed through PubMed search. Keywords or phrases used were persistent estrus, chronic anovulation, polycystic ovary, polycystic ovary disease, and polycystic ovary syndrome. Articles were also located via bibliographies of published literature. SETTING University Health Sciences Center. INTERVENTION(S) Articles on persistent estrus and PCO in rats were selected and reviewed regarding the methods for induction of PCO disease. MAIN OUTCOME MEASURE(S) Changes in the reproductive cycle, ovarian morphology, hormonal parameters, and factors associated with the development of PCO disease in rat models were analyzed. RESULT(S) Principal methods for inducing PCO in the rat include exposure to constant light, anterior hypothalamic and amygdaloidal lesions, and the use of androgens, estrogens, antiprogestin, and mifepristone. CONCLUSION(S) The validated rat PCO models provide useful information on morphologic and hormonal disturbances in the pathogenesis of chronic anovulation in this condition. These studies have aimed to replicate the morphologic and hormonal characteristics observed in the human PCO syndrome. The implications of these studies to human condition are discussed.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
| |
Collapse
|