1
|
Torihata Y, Asanuma K, Iijima K, Mikami T, Hamada S, Asano N, Koike T, Imatani A, Masamune A, Shimosegawa T. Estrogen-Dependent Nrf2 Expression Protects Against Reflux-Induced Esophagitis. Dig Dis Sci 2018; 63:345-355. [PMID: 29282639 DOI: 10.1007/s10620-017-4885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gastroesophageal reflux disease is more common in males than in females. The enhanced antioxidative capacity of estrogen in females might account for the gender difference. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in the host defense mechanism against oxidative stress. AIMS This study aimed to clarify the role of Nrf2 in reflux-induced esophageal inflammation, focusing on the gender difference and nitric oxide. METHODS Gastroesophageal reflux was surgically induced in male and female rats. Nitrite and ascorbic acid were administered for 1 week to provoke nitric oxide in the esophageal lumen. Male rats with gastroesophageal reflux were supplemented with 17β-estradiol or tert-butylhydroquinone, an Nrf2-inducing reagent. Esophageal squamous cell carcinoma KYSE30 cells were treated with 17β-estradiol. Nrf2 expression was examined by Western blotting and quantitative real-time PCR. Antioxidant gene expression profiles were examined by a PCR array. RESULTS In the presence of nitric oxide, reflux-induced esophageal damage was less evident, whereas esophageal expression of Nrf2 and its target genes such as Nqo1 was more evident in female or male rats supplemented with 17β-estradiol than in male rats. 17β-Estradiol increased nuclear Nrf2 expression in KYSE30 cells. tert-Butylhydroquinone increased tissue Nqo1 mRNA expression, leading to a reduction in reflux-induced esophageal damage. CONCLUSIONS Estrogen-dependent Nrf2 expression might contribute to protection against the development of gastroesophageal reflux disease in females.
Collapse
Affiliation(s)
- Yudai Torihata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tetsuhiko Mikami
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
2
|
Chang M, Xue J, Sharma V, Habtezion A. Protective role of hemeoxygenase-1 in gastrointestinal diseases. Cell Mol Life Sci 2015; 72:1161-73. [PMID: 25428780 PMCID: PMC4342274 DOI: 10.1007/s00018-014-1790-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 12/22/2022]
Abstract
Disorders and diseases of the gastrointestinal system encompass a wide array of pathogenic mechanisms as a result of genetic, infectious, neoplastic, and inflammatory conditions. Inflammatory diseases in general are rising in incidence and are emerging clinical problems in gastroenterology and hepatology. Hemeoxygenase-1 (HO-1) is a stress-inducible enzyme that has been shown to confer protection in various organ-system models. Its downstream effectors, carbon monoxide and biliverdin have also been shown to offer these beneficial effects. Many studies suggest that induction of HO-1 expression in gastrointestinal tissues and cells plays a critical role in cytoprotection and resolving inflammation as well as tissue injury. In this review, we examine the protective role of HO-1 and its downstream effectors in modulating inflammatory diseases of the upper (esophagus and stomach) and lower (small and large intestine) gastrointestinal tract, the liver, and the pancreas. Cytoprotective, anti-inflammatory, anti-proliferative, antioxidant, and anti-apoptotic activities of HO-1 make it a promising if not ideal therapeutic target for inflammatory diseases of the gastrointestinal system.
Collapse
Affiliation(s)
- Marisol Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Jing Xue
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Vishal Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305 USA
| |
Collapse
|
3
|
Chen H, Hu Y, Fang Y, Djukic Z, Yamamoto M, Shaheen NJ, Orlando RC, Chen X. Nrf2 deficiency impairs the barrier function of mouse oesophageal epithelium. Gut 2014; 63:711-719. [PMID: 23676441 PMCID: PMC3883925 DOI: 10.1136/gutjnl-2012-303731] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE As a major cellular defence mechanism, the Nrf2/Keap1 pathway regulates expression of genes involved in detoxification and stress response. Here we hypothesise that Nrf2 is involved in oesophageal barrier function and plays a protective role against gastro-oesophageal reflux disease (GERD). DESIGN Human oesophageal biopsy samples, mouse surgical models and Nrf2(-/-) mice were used to assess the role of the Nrf2/Keap1 pathway in oesophageal barrier function. Trans-epithelial electrical resistance (TEER) was measured with mini-Ussing chambers. HE staining and transmission electron microscopy were used to examine tissue morphology, while gene microarray, immunohistochemistry, western blotting and chromatin immunoprecipitation (ChIP) analysis were used to assess gene expression. RESULTS Nrf2 was expressed in normal oesophageal epithelium and activated in GERD of both humans and mice. Nrf2 deficiency and gastro-oesophageal reflux in mice, alone or in combination, reduced TEER and increased intercellular space in oesophageal epithelium. Nrf2 target genes and gene sets associated with oxidoreductase activity, mitochondrial biogenesis and energy production were downregulated in the oesophageal epithelium of Nrf2(-/-) mice. Consistent with the antioxidative function of Nrf2, a DNA oxidative damage marker (8OHdG) dramatically increased in oesophageal epithelial cells of Nrf2(-/-) mice compared with those of wild-type mice. Interestingly, ATP biogenesis, Cox IV (a mitochondrial protein) and Claudin 4 (Cldn4) expression were downregulated in the oesophageal epithelium of Nrf2(-/-) mice, suggesting that energy-dependent tight junction integrity was subject to Nrf2 regulation. ChIP analysis confirmed the binding of Nrf2 to Cldn4 promoter. CONCLUSIONS Nrf2 deficiency impairs oesophageal barrier function through disrupting energy-dependent tight junction.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yuhui Hu
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yu Fang
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
- Department of Cardiovascular and Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zorka Djukic
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan 980-8575
| | - Nicholas J. Shaheen
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Roy C. Orlando
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
- Division of Gastroenterology and Hepatology, Center for Esophageal Diseases and Swallowing, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Sengupta D, Chowdhury KD, Sarkar A, Paul S, Sadhukhan GC. Berberine and S allyl cysteine mediated amelioration of DEN+CCl4 induced hepatocarcinoma. Biochim Biophys Acta Gen Subj 2014; 1840:219-44. [DOI: 10.1016/j.bbagen.2013.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023]
|
5
|
Hu JL, Xiao L, Li ZY, Wang Q, Chang Y, Jin Y. Upregulation of HO-1 is accompanied by activation of p38MAPK and mTOR in human oesophageal squamous carcinoma cells. Cell Biol Int 2013; 37:584-92. [PMID: 23412940 DOI: 10.1002/cbin.10075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Jian-Li Hu
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Lan Xiao
- Department of Obstetrics and Gynecology; First Affiliated Hospital, An Hui Medical College; 218 Jixi Road, Hefei; AnHui; 230022; PR China
| | - Zhen-Yun Li
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Qiong Wang
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Yu Chang
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Yi Jin
- Laboratory Department; Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| |
Collapse
|
6
|
Yin Y, Liu Q, Wang B, Chen G, Xu L, Zhou H. Expression and function of heme oxygenase-1 in human gastric cancer. Exp Biol Med (Maywood) 2012; 237:362-371. [PMID: 22490514 DOI: 10.1258/ebm.2011.011193] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase-1 (HO-1) potently influences tumor growth and metastasis. To date, no study has been performed on HO-1 expression pattern and its clinicopathological significance in human gastric cancer (GC) cases. In this study, the expression of HO-1 in human GC tissues (n = 74) and matched non-tumoral adjacent parenchyma (n = 46) was investigated by immunohistochemistry. The correlation of HO-1 with the clinicopathological characteristics was analyzed. Results showed that HO-1 was expressed in 62 GC tissues from 74 cases (83.8%), which is significantly higher than non-tumoral adjacent parenchyma (20/46, 43.8%, P < 0.05). A high HO-1 expression rate showed a close association with well/moderate histological differentiation and negative lymph node metastasis (P < 0.05). The expression of matrix metallopeptidase 9 (MMP9) and vascular endothelial growth factor A (VEGF-A) as well as chemosensitivity to cisplatin of MKN-45 cell lines with genetically altered HO-1 status were then determined by realtime polymerase chain reaction and 3-(4,5 dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), respectively. Whether the induction or inhibition of HO-1 by cobalt-protoporphyrin-IX (CoPP) or zinc-protoporphyrin-IX (ZnPP) could affect the sensitivity of MKN-45 cells to cisplatin was also studied. Results showed that the expression of MMP9 and VEGF-A were up-regulated in MKN-45 cells overexpressing HO-1, and down-regulated in HO-1 interfered cells. HO-1 overexpression could lead to an increased resistance to cisplatin, whereas down-regulation of HO-1 expression by siRNA or chemical inhibition of HO-1 could lead to increased chemosensitivity to cisplatin in MKN-45 cells. HO-1 may have multiple effects on protection against carcinogenesis and progression in GC.
Collapse
Affiliation(s)
- Yujing Yin
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | | | | | | | | | | |
Collapse
|