1
|
Abdelaziz HM, Abdelmageed ME, Suddek GM. Trimetazidine improves dexamethasone-induced insulin resistance and associated hepatic abnormalities in rats. Life Sci 2025; 375:123747. [PMID: 40404121 DOI: 10.1016/j.lfs.2025.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
INTRODUCTION Glucocorticoids (GC) are a widely prescribed anti-inflammatory and immunosuppressive medicine in clinics. The side effects GC of mostly insulin resistance (IR), dysregulated lipid metabolism and fatty liver, remain the major concern in patients. Understanding the mechanism of GC-induced hepatic steatosis is expected to provide an intervention target to avoid this side effect. AIM The present study aims to explore the beneficial effects of trimetazidine (TMZ) to combat DEXA-induced steatohepatitis and metabolic abnormalities. METHODS An in vivo IR model was established using male Wistar rats, which were administered TMZ at doses of 10 and 20 mg/kg for a duration of 14 days. Subsequently, from day 7 to day 14 of the study, the rats received DEXA (1 mg/kg, intraperitoneal (i.p.) injection). There were 5 groups, with each group consisting of 6 animals, as outlined: control group, TMZ control group, DEXA group, TMZ 10 + DEXA group, TMZ 20 + DEXA group. On the 14th day of the experiment, serum and hepatic samples were collected. RESULTS The findings indicate a marked reduction in OGTT results, fasting serum glucose and insulin levels, ALT and AST levels following treatment with TMZ. TMZ treatment also attenuated oxidative stress markers and improved the lipid profile. Additionally, the hepatic concentrations of high-mobility group box1 (HMGB1), phosphorylated Janus kinase 1 (p-JAK1), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and levels of NF-κB-p65 and interleukin-6 (IL-6) were significantly diminished by TMZ when compared with the DEXA-treated group. Furthermore, TMZ lowered B cell/lymphoma 2 (BCL-2) and caspase-3 levels and attenuated liver histopathological changes. CONCLUSION This study demonstrated that TMZ significantly improved DEXA-induced hepatic alterations by modulating the HMGB1/p-JAK1/p-STAT3/NF-κB pathway in liver. Our findings provide new evidence supporting the application of TMZ for treating DEXA-induced IR and hepatic steatosis.
Collapse
Affiliation(s)
- Howida M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - G M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
2
|
Abdelaziz HM, Abdelmageed ME, Suddek GM. Molsidomine ameliorates DEXA-induced insulin resistance: Involvement of HMGB1/JAK1/STAT3 signaling pathway. Eur J Pharmacol 2025:177832. [PMID: 40490173 DOI: 10.1016/j.ejphar.2025.177832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 06/01/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Insulin resistance (IR) is a serious clinical syndrome that establishes the basis for illnesses like type 2 diabetes (T2D). In this study, the effectiveness of molsidomine (MOLS) which is a nitric oxide (NO) doner, on dexamethasone (DEXA)- induced IR in rats was examined. Male Wistar rats were managed with MOLS (5 and 10 mg/kg) orally once daily for 7 days before DEXA injection (1 mg/kg, intraperitoneally (i.p.)) and 7 days concurrent with DEXA injection. The findings showed that MOLS reduced low-density lipoprotein cholesterol (LDL-C), fasting serum glucose and insulin, homeostatic model assessment of insulin resistance (HOMA-IR), alanine transaminase (ALT), aspartate transaminase (AST), oral glucose tolerance test (OGTT), and triglycerides (TGs). These findings revealed that MOLS was successful in reducing DEXA-induced IR. Moreover, MOLS was associated with a large increase in reduced glutathione (GSH) and superoxide dismutase (SOD) activity as well as a significant decrease in the levels of malondialdehyde (MDA) in hepatic and aortic tissues. When compared to rats treated with DEXA, MOLS significantly decreased the levels of pro-inflammatory cytokine interlukin-6 (IL-6), high mobility group box 1 (HMGB1), phosphorylated Janus kinase1/phosphorylated signal transducer and activator of transcription 3 (p-JAK1/p-STAT3), and nuclear factor kappa-B-p65 subunit (NF-κB-p65) in hepatic tissues. Additionally, MOLS reduced inflammation and necrosis and increased B cell/lymphoma 2 (BCL-2) and lowered caspase-3 levels and attenuated liver histopathological changes. Moreover, aortic expression levels of NF-κB-p65 and IL-6 were reduced upon MOLS treatment. All these findings show that MOLS protects rats from DEXA-induced IR by inhibiting HMGB1/JAK1/STAT3 signaling, regulating oxidative stress and inflammatory pathways, and having an antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Howida M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
3
|
Gowdru Srinivasa M, B C R, Prabhu A, Rani V, Ghate SD, Kumar B R P. Development of novel thiazolidine-2,4-dione derivatives as PPAR-γ agonists through design, synthesis, computational docking, MD simulation, and comprehensive in vitro and in vivo evaluation. RSC Med Chem 2023; 14:2401-2416. [PMID: 37974963 PMCID: PMC10650958 DOI: 10.1039/d3md00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
The present study was conducted to develop new novel 2,4-thiazolidinedione derivatives (3h-3j) as peroxisome proliferator-activated receptor-γ (PPAR-γ) modulators for antidiabetic activity. The objective was to overcome the adverse effects of existing thiazolidinediones while maintaining their pharmacological benefits. The synthesized compounds were elucidated based on FT-IR, 1H-NMR, 13C-NMR, and MS techniques. Molecular docking was utilized to investigate the interaction binding modes, binding free energy, and amino acids engaged in the compounds' interactions with the target protein. Subsequently, molecular dynamics modelling was used to assess the stability of the top-docked complexes and an assay was utilized to assess the cytotoxicity of the compounds to C2C12 myoblasts. Compounds 3h-3j exhibited PPAR-γ modulatory activity and demonstrated significant hypoglycaemic effects when compared to the reference drug pioglitazone. The new compounds were evaluated for their in vivo blood glucose-lowering potential by using a dexamethasone-induced diabetic rat model. All the compounds showed a hypoglycaemic effect of 108.04 ± 4.39, 112.55 ± 6.10, and 117.48 ± 43.93, respectively, along with pioglitazone (153.93 ± 4.61) compared to the diabetic control. Additionally, all the compounds significantly reduced AST and ALT levels and did not cause liver damage.
Collapse
Affiliation(s)
- Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Revanasiddappa B C
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Sudeep D Ghate
- Center for Bioinformatics, Nitte (Deemed to be University) Deralakatte Mangalore Karnataka - 575 018 India
| | - Prashantha Kumar B R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru-570015 Karnataka India
| |
Collapse
|
4
|
Kumar P, Ram H, Kala C, Kashyap P, Singh G, Agnihotri C, Singh BP, Kumar A, Panwar A. DPP-4 inhibition mediated antidiabetic potential of phytoconstituents of an aqueous fruit extract of Withania coagulans (Stocks) Dunal: in-silico, in-vitro and in-vivo assessments. J Biomol Struct Dyn 2023; 41:6145-6167. [PMID: 35930363 DOI: 10.1080/07391102.2022.2103029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
The DPP-4 inhibition is an interesting target for the development of antidiabetic agents which promotes the longevity of GPL-1(Glucagon-like peptide 1). The current study was intended to assess DPP-4(Dipeptidyl Peptidase-4) inhibition mediated antidiabetic effect of phytocompounds of an aqueous fruit extract of Withania coagulans (Stocks) Dunal by in-vitro, in-silico and in-vivo approaches. The phytoconstituents screening was executed by LCMS (Liquid Chromatography with tandem mass spectrometry). The in-vitro and in-vivo, DPP-4 assays were performed by using available kits. The in-vitro DPP-4 activity was inhibited up to 68.3% by the test extract. Accordingly, in-silico determinations of molecular docking, molecular dynamics and pharmacokinetics were performed between the target enzyme DPP-4 and leading phytocompounds. The molecular dynamics authenticated the molecular docking data by crucial parameters of cytosolic milieu by the potential energy, RSMD (Root Mean Square Deviation), RSMF (Root Mean Square Fluctuation), system density, NVT (Number of particles at fixed volume, ensemble) and NPT (Number of particles at fixed pressure, ensemble). Accordingly, ADMET predictions assessed the druggability profile. Subsequently, the course of the test extract and the sitagliptin (positive control), instigated significant (p ≤ 0.001) ameliorations in HOMA indices and the equal of antioxidants in nicotinamide-streptozotocin induced type 2 diabetic animal model. Compassionately, the histopathology represented increased pancreatic cellular mass which caused in restoration of histoarchitectures. It has been concluded that phytoconstituents in W. coagulans aqueous fruit extract can regulate DPP-4, resulting in improved glucose homeostasis and enhanced endocrinal pancreatic cellular mass.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Chandra Kala
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| | - Priya Kashyap
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Garima Singh
- Department of Botany, Pachhunga University College (PUC), Aizawl, India
| | - Charu Agnihotri
- Department of Agriculture & Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, India
| | - Ashok Kumar
- Centre for System Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Anil Panwar
- Centre for System Biology and Bioinformatics, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Modulation of Dyslipidemia Markers Apo B/Apo A and Triglycerides/HDL-Cholesterol Ratios by Low-Carbohydrate High-Fat Diet in a Rat Model of Metabolic Syndrome. Nutrients 2022; 14:nu14091903. [PMID: 35565871 PMCID: PMC9102123 DOI: 10.3390/nu14091903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome (MetS) risks cardiovascular diseases due to its associated Dyslipidemia. It is proposed that a low-carbohydrate, high-fat (LCHF) diet positively ameliorates the MetS and reverses insulin resistance. Therefore, we aimed to investigate the protecting effect of the LCHF diet on MetS-associated Dyslipidemia in an experimental animal model. Forty male Sprague-Dawley rats were divided into four groups (10/group): the control group, dexamethasone-induced MetS (DEX) (250 µg/kg/day), LCHF-fed MetS group (DEX + LCHF), and High-Carbohydrate-Low-Fat-fed MetS group (DEX + HCLF). At the end of the four-week experiment, fasting glucose, insulin, lipid profile (LDL-C, HDL-C, Triglyceride), oxidized-LDL, and small dense-LDL using the ELISA technique were estimated. HOMA-IR, Apo B/Apo A1 ratio, and TG/HDL were calculated. Moreover, histological examination of the liver by H & E and Sudan III stain was carried out. In the DEX group, rats showed a significant (p < 0.05) increase in the HOMA-IR, atherogenic parameters, such as s-LDL, OX-LDL, Apo B/Apo A1 ratio, and TG/HDL. The LCHF diet significantly improved the parameters of Dyslipidemia (p < 0.05) by decreasing the Apo B/Apo A1 and TG/HDL-C ratios. Decreased steatosis in LCHF-fed rats compared to HCLF was also revealed. In conclusion, the LCHF diet ameliorates MetS-associated Dyslipidemia, as noted from biochemical results and histological examination.
Collapse
|
6
|
Shittu STT, Lasisi TJ, Shittu SAS, Adeyemi A, Adeoye TJ, Alada AA. Ocimum gratissimum enhances insulin sensitivity in male Wistar rats with dexamethasone-induced insulin resistance. J Diabetes Metab Disord 2021; 20:1257-1267. [PMID: 34900777 DOI: 10.1007/s40200-021-00850-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
Purpose The antidiabetic activities of Ocimum gratissimum (OG) leaf extract are well documented in experimental diabetes induced by beta cell destruction resulting in hypoinsulinemia. There is however paucity of data on its effect in conditions characterized by hyperinsulinemia. This study therefore investigated the effect of OG on insulin resistance induced by dexamethasone in male Wistar rats. Method Twenty male Wistar rats grouped as control, normal + OG, Dex and Dex + OG were used. Control and normal + OG received normal saline while Dex and Dex + OG received dexamethasone (1 mg/kg, i.p) followed by distilled water or OG (400 mg/kg) for 10 days. Levels of fasting blood glucose (FBG), insulin, HOMA-IR, liver and muscle glycogen, hexokinase activities, hepatic HMG CoA reductase activity were obtained. Histopathology of pancreas and liver tissues was carried out using standard procedures. Results Body weight reduced significantly in the Dex and Dex + OG groups compared with the control. FBG (147.8 ± 9.93 mg/dL), insulin (2.98 ± 0.49 µIU/ml) and HOMA-IR (1.11 ± 0.22) of Dex animals were higher than the control (FBG = 89.22 ± 6.53 mg/dL; insulin = 1.70 ± 0.49 µIU/ml; HOMA-IR = 0.37 ± 0.04). These were significantly reduced in the Dex + OG (FBG = 115.31 ± 5.93 mg/dL; insulin = 1.85 ± 0.11µIU/ml; HOMA-IR = 0.53 ± 0.08) compared with Dex. Glycogen content and hexokinase activities were increased in the Dex + OG. Increased pancreatic islet size, hepatic steatosis and HMG Co A reductase activity were observed in the Dex but reduced in Dex + OG. Conclusion OG promotes cellular glucose utilization and reduces hepatic fat accumulation in Wistar rats with insulin resistance induced by dexamethasone. Further study to identify the involved signal transduction will throw more light on the observed effects.
Collapse
Affiliation(s)
| | - Taye Jemilat Lasisi
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Adeyinka Adeyemi
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tolulope James Adeoye
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
7
|
Elseady WS, Abd Ellatif RA, Estfanous RS, Emam MN, Keshk WA. New insight on the role of liraglutide in alleviating dexamethasone-induced pancreatic cytotoxicity via improving redox status, autophagy flux, and PI3K/Akt/Nrf2 signaling. Can J Physiol Pharmacol 2021; 99:1217-1225. [PMID: 34197718 DOI: 10.1139/cjpp-2021-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic glucocorticoids therapy is commonly complicated by steroid diabetes, although the underlying mechanisms are still elusive. Liraglutide, a glucagon-like peptide-1, was initially found to induce glycemic control and recently it was found to have many pleotropic effects; however, its role in pancreas remains unknown. The present study aims to estimate the protective role of liraglutide on dexamethasone-induced pancreatic cytotoxicity and hyperglycemia, highlighting the possible underlying biochemical, molecular, and cellular mechanisms. Twenty-eight male Wistar rats were involved in this study and were randomly divided into four groups. Group III and IV were treated with 1 mg/kg dexamethasone daily for 10 days. Group II and IV were treated with liraglutide in a dose of 0.8 mg/kg per day for 2 weeks. Pancreatic caspase-9, nuclear factor erythroid 2-related factor 2 (Nrf2), phospho-protein kinase-B (pAkt), and sequestrome 1 (p62) levels were assessed by immunoassay. Moreover, phosphoinositide 3-kinase (PI3K) expression by real-time PCR, microtubule-associated protein light chain 3 (LC3B) expression by immunohistochemistry, glycemic status, β-cell function by homoeostasis model assessment (HOMA) β index, and pancreatic redox status were assessed. Liraglutide improved blood glucose level, β-cell function, pancreatic caspase-9 level, redox status, and autophagy. Additionally, it increased pancreatic PI3K, pAkt, and Nrf2 levels. Moreover, preservation of pancreatic histological and the ultrastructural morphological features of β- and α-cells were observed. In conclusion, liraglutide protected against dexamethasone-induced pancreatic injury and hyperglycemia and decelerated the progression towards steroid diabetes via activating PI3K/Akt/Nrf2 signaling and autophagy flux pathways.
Collapse
Affiliation(s)
- Walaa S Elseady
- Department of Anatomy, Faculty of Medicine, Tanta University, Egypt
| | | | | | - Marwa N Emam
- Department of Physiology, Faculty of Medicine, Tanta University, Egypt
| | - Walaa A Keshk
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
8
|
Imai M, Kawakami F, Kubo M, Kanzaki M, Maruyama H, Kawashima R, Maekawa T, Kurosaki Y, Kojima F, Ichikawa T. LRRK2 Inhibition Ameliorates Dexamethasone-Induced Glucose Intolerance via Prevents Impairment in GLUT4 Membrane Translocation in Adipocytes. Biol Pharm Bull 2021; 43:1660-1668. [PMID: 33132310 DOI: 10.1248/bpb.b20-00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson's disease. LRRK2 is a large protein with multiple functional domains, including a guanosine 5'-triphosphate (GTP)-binding domain and a protein kinase domain. Recent studies indicated that the members of the Rab GTPase family, Rab8a and Rab10, which are involved in the membrane transport of the glucose transporter type 4 (GLUT4) during insulin-dependent glucose uptake, are phosphorylated by LRRK2. However, the physiological role of LRRK2 in the regulation of glucose metabolism is largely unknown. In the present study, we investigated the role of LRRK2 using dexamethasone (DEX)-induced glucose intolerance in mice. LRRK2 knockout (KO) mice exhibited suppressed glucose intolerance, even after treatment with DEX. The phosphorylation of LRRK2, Rab8a and Rab10 was increased in the adipose tissues of DEX-treated wild-type mice. In addition, inhibition of the LRRK2 kinase activity prevented the DEX-induced inhibition of GLUT4 membrane translocation and glucose uptake in cultured 3T3-L1 adipocytes. These results suggest that LRRK2 plays an important role in glucose metabolism in adipose tissues.
Collapse
Affiliation(s)
- Motoki Imai
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| | - Makoto Kubo
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Division of Clinical Immunology, Graduate School of Medical Sciences, Kitasato University
| | - Makoto Kanzaki
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University
| | - Hiroko Maruyama
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Department of Cytopathology, Graduate School of Medical Sciences, Kitasato University
| | - Rei Kawashima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| | - Tatsunori Maekawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| | - Yoshifumi Kurosaki
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences
| | - Fumiaki Kojima
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Department of Pharmacology, Kitasato University School of Allied Health Sciences
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| |
Collapse
|
9
|
Putra AMP, Sari RP, Musiam S. Combination of Bawang Dayak Extract and Acarbose against Male White Rat Glucose Levels. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetes is a chronic metabolic disease with signs of increased blood glucose levels. Type 2 diabetes is common diabetes in adults. Bawang dayak is one of the plants believed to have the efficacy of curing various types of diseases. The purpose of this study was to find out the comparison of hypoglycemic effects between combinations of bawang dayak extract and acarbose with single acarbose. This study was an experimental study using 32 white mice divided into two groups. Group one was given a combination of bawang dayak at a dose of 100 mg/kg BW and acarbose at a dose of 40 mg/100 g BW, while group two was given acarbose at a dose of 40 mg/100 g BW. Treatment is administered after the test animal is induced with dexamethasone at a 1 mg/kg BW dose dissolved in NaCl 0.9% subcutaneously for 12 days. Measurement of glucose levels was carried out using a glucometer. Data retrieval was carried out every three days for 15 days after previously fulfilled for +10 hours. Blood glucose level data were analyzed with the General Linear Model test. The combination of bawang dayak-acarbose onion extract had a greater decrease in blood glucose levels than single acarbose. Average reduction in blood glucose levels for D+3; D+6; D+9; D+12; and D+15 was 187.31; 168.56; 140.81; 119.81; and 102.56 mg/dl, respectively. The General Linear Model test results showed a p <0.05 value that significantly impacted blood glucose levels between groups.
Collapse
|
10
|
Ram H, Kumar P, Purohit A, Kashyap P, Kumar S, Kumar S, Singh G, Alqarawi AA, Hashem A, Abd-Allah EF, Al-Arjani ABF, Singh BP. Improvements in HOMA indices and pancreatic endocrinal tissues in type 2-diabetic rats by DPP-4 inhibition and antioxidant potential of an ethanol fruit extract of Withania coagulans. Nutr Metab (Lond) 2021; 18:43. [PMID: 33882957 PMCID: PMC8059290 DOI: 10.1186/s12986-021-00547-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/20/2021] [Indexed: 01/12/2023] Open
Abstract
CONTEXT Withania coagulans (Stocks) Dunal fruits are used in the therapeutics of several ailments due to possessing of potent phytoconstituents which is also used traditionally for curing the diabetes. OBJECTIVE The present study was assessing the amelioration potential of the phytochemicals of an ethanol fruit extract of W. coagulans (Stocks) Dunal in the HOMA (Homeostatic model assessment) indices and pancreatic endocrinal tissues by inhibition of DPP-4 and antioxidants activities. MATERIAL AND METHODS The identification of phytoconstituents of the test extract was performed by LCMS. Further, assessments of in-vitro, in-vivo and in-silico were achieved by following standard methods. In-vivo studies were conducted on type-2 diabetic rats. RESULTS The chosen extract inhibited DPP-4 activity by 63.2% in an in vitro assay as well as significantly inhibit serum DPP-4 levels. Accordingly, the administration of the ethanol fruit extract resulted in a significant (P ≤ 0.001) alterations in the lipid profile, antioxidant levels, and HOMA indices. Moreover, pancreatic endocrinal tissues (islet of Langerhans) appeared to have the restoration of normal histoarchitecture as evidenced by increased cellular mass. Molecular docking (Protein-ligands) of identified phytoconstituents with DPP-4 (target enzyme) shown incredibly low binding energy (Kcal/mol) as required for ideal interactions. ADMET analysis of the pharmacokinetics of the identified phytoconstituents indicated an ideal profile as per Lipinski laws. CONCLUSION It can be concluded that the phytoconstituents of an ethanol fruit extract of W. coagulans have the potential to inhibit DPP-4 which result in improved glucose homeostasis and restoration of pancreatic endocrinal tissues in type-2 diabetic rats.
Collapse
Affiliation(s)
- Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001 India
| | - Pramod Kumar
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001 India
| | - Ashok Purohit
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001 India
| | - Priya Kashyap
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, India
| | - Suresh Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, India
| | - Shivani Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, India
| | - Garima Singh
- Department of Botany, Pachhunga University College, Aizawl, Mizoram 796001 India
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451 Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451 Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451 Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511 Egypt
| | - Al-Bandari Fahad Al-Arjani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451 Saudi Arabia
| | - Bhim Pratap Singh
- Department of Agriculture and Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, 131028 Haryana India
| |
Collapse
|
11
|
Zhao Q, Zhou J, Pan Y, Ju H, Zhu L, Liu Y, Zhang Y. The difference between steroid diabetes mellitus and type 2 diabetes mellitus: a whole-body 18F-FDG PET/CT study. Acta Diabetol 2020; 57:1383-1393. [PMID: 32647998 PMCID: PMC7547981 DOI: 10.1007/s00592-020-01566-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
AIMS Steroid diabetes mellitus (SDM) is a metabolic syndrome caused by an increase in glucocorticoids, and its pathogenesis is unclear. 18F-FDG PET/CT can reflect the glucose metabolism of tissues and organs under living conditions. Here, PET/CT imaging of SDM and type 2 diabetes mellitus (T2DM) rats was used to visualize changes in glucose metabolism in the main glucose metabolizing organs and investigate the pathogenesis of SDM. METHODS SDM and T2DM rat models were established. During this time, PET/CT imaging was used to measure the %ID/g value of skeletal muscle and liver to evaluate glucose uptake. The pancreatic, skeletal muscle and liver were analyzed by immunohistochemistry. RESULTS SDM rats showed increased fasting blood glucose and insulin levels, hyperplasia of islet α and β cells, increased FDG uptake in skeletal muscle accompanied by an up-regulation of PI3Kp85α, IRS-1, and GLUT4, no significant changes in liver uptake, and that glycogen storage in the liver and skeletal muscle increased. T2DM rats showed atrophy of pancreatic islet β cells and decreased insulin levels, significantly reduced FDG uptake and glycogen storage in skeletal muscle and liver. CONCLUSIONS The pathogenesis of SDM is different from that of T2DM. The increased glucose metabolism of skeletal muscle may be related to the increased compensatory secretion of insulin. Glucocorticoids promote the proliferation of islet α cells and cause an increase in gluconeogenesis in the liver, which may cause increased blood glucose.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Jinxin Zhou
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Huijun Ju
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Liying Zhu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
12
|
Schreyer S, Klein C, Pfeffer A, Rasińska J, Stahn L, Knuth K, Abuelnor B, Panzel AEC, Rex A, Koch S, Hemmati-Sadeghi S, Steiner B. Chia seeds as a potential cognitive booster in the APP23 Alzheimer's disease model. Sci Rep 2020; 10:18215. [PMID: 33106576 PMCID: PMC7589531 DOI: 10.1038/s41598-020-75209-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Glucose hypometabolism potentially contributes to Alzheimer's disease (AD) and might even represent an underlying mechanism. Here, we investigate the relationship of diet-induced metabolic stress and AD as well as the therapeutic potential of chia seeds as a modulator of glucose metabolism in the APP23 mouse model. 4-6 (pre-plaque stage, PRE) and 28-32 (advanced-plaque stage, ADV) weeks old APP23 and wild type mice received pretreatment for 12 weeks with either sucrose-rich (SRD) or control diet, followed by 8 weeks of chia seed supplementation. Although ADV APP23 mice generally showed functioning glucose homeostasis, they were more prone to SRD-induced glucose intolerance. This was accompanied by elevated corticosterone levels and mild insulin insensitivity. Chia seeds improved spatial learning deficits but not impaired cognitive flexibility, potentially mediated by amelioration of glucose tolerance, attenuation of corticosterone levels and reversal of SRD-induced elevation of pro-inflammatory cytokine levels. Since cognitive symptoms and plaque load were not aggravated by SRD-induced metabolic stress, despite enhanced neuroinflammation in the PRE group, we conclude that impairments of glucose metabolism do not represent an underlying mechanism of AD in this mouse model. Nevertheless, chia seeds might provide therapeutic potential in AD as shown by the amelioration of cognitive symptoms.
Collapse
Affiliation(s)
- Stefanie Schreyer
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Charlotte Klein
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Pfeffer
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Justyna Rasińska
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Laura Stahn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Karlotta Knuth
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Basim Abuelnor
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Alina Elisabeth Catharina Panzel
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - André Rex
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Stefan Koch
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Barbara Steiner
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
13
|
In Vivo Studies of Inoculated Plants and In Vitro Studies Utilizing Methanolic Extracts of Endophytic Streptomyces sp. Strain DBT34 Obtained from Mirabilis jalapa L. Exhibit ROS-Scavenging and Other Bioactive Properties. Int J Mol Sci 2020; 21:ijms21197364. [PMID: 33036127 PMCID: PMC7582327 DOI: 10.3390/ijms21197364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) and other free radicals cause oxidative damage in cells under biotic and abiotic stress. Endophytic microorganisms reside in the internal tissues of plants and contribute to the mitigation of such stresses by the production of antioxidant enzymes and compounds. We hypothesized that the endophytic actinobacterium Streptomyces sp. strain DBT34, which was previously demonstrated to have plant growth-promoting (PGP) and antimicrobial properties, may also have a role in protecting plants against several stresses through the production of antioxidants. The present study was designed to characterize catalase and superoxide dismutase (SOD), two enzymes involved in the detoxification of ROS, in methanolic extracts derived from six endophytic actinobacterial isolates obtained from the traditional medicinal plant Mirabilis jalapa. The results of a preliminary screen indicated that Streptomyces sp. strain DBT34 was the best overall strain and was therefore used in subsequent detailed analyses. A methanolic extract of DBT34 exhibited significant antioxidant potential in 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. The cytotoxicity of DBT34 against liver hepatocellular cells (HepG2) was also determined. Results indicated that methanolic extract of Streptomyces sp. strain DBT34 exhibited significant catalase and SOD-like activity with 158.21 U resulting in a 55.15% reduction in ROS. The IC50 values of a crude methanolic extract of strain DBT34 on DPPH radical scavenging and ABTS radical cation decolorization were 41.5 µg/mL and 47.8 µg/mL, respectively. Volatile compounds (VOC) were also detected in the methanolic extract of Streptomyces sp. strain DBT34 using GC-MS analysis to correlate their presence with bioactive potential. Treatments of rats with DBT34 extract and sitagliptin resulted in a significant (p ≤ 0.001) reduction in total cholesterol, LDL-cholesterol, and VLDL-cholesterol, relative to the vehicle control and a standard diabetic medicine. The pancreatic histoarchitecture of vehicle control rats exhibited a compact volume of isolated clusters of Langerhans cells surrounded by acinies with proper vaculation. An in-vivo study of Streptomyces sp. strain DBT34 on chickpea seedlings revealed an enhancement in its antioxidant potential as denoted by lower IC50 values for DPPH and ABTS radical scavenging activity under greenhouse conditions in relative comparison to control plants. Results of the study indicate that strain DBT34 provides a defense mechanism to its host through the production of antioxidant therapeutic agents that mitigate ROS in hosts subjected to biotic and abiotic stresses.
Collapse
|
14
|
Meng Z, Yu Y, Zhang Y, Yang X, Lv X, Guan F, Hatch GM, Zhang M, Chen L. Highly bioavailable Berberine formulation improves Glucocorticoid Receptor-mediated Insulin Resistance via reduction in association of the Glucocorticoid Receptor with phosphatidylinositol-3-kinase. Int J Biol Sci 2020; 16:2527-2541. [PMID: 32792855 PMCID: PMC7415432 DOI: 10.7150/ijbs.39508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 07/03/2020] [Indexed: 11/05/2022] Open
Abstract
Excess glucocorticoid (GC) production is known to induce obesity and insulin resistance through increased activation of the glucocorticoid receptor (GR). The molecular mechanism for the non-genomic effects of excessive circulating GC on the insulin-signalling pathway in skeletal muscle is unknown. The plant alkaloid berberine has been shown to attenuate insulin resistance and inhibit gluconeogenesis in type 2 diabetic animals. A highly bioavailable berberine formulation termed Huang-Gui solid dispersion (HGSD), is a preparation of berberine coupled to sodium caprate and this markedly improving berberines bioavailability. Here we examined how HGSD treatment attenuated GR-mediated alteration in PI3K signalling and insulin resistance in diabetic rats, dexamethasone-treated mice and in insulin resistant C2C12 skeletal muscle cells. Blood glucose and skeletal muscle GC levels were increased and insulin signalling impaired in skeletal muscle of type 2 diabetic rats compared to controls. Treatment of these animals with HGSD restored blood glucose and skeletal muscle GC levels to that of controls. Insulin resistant C2C12 skeletal muscle cells exhibited impaired insulin signalling compared to controls and treatment of HGSD and RU486, an antagonist of GR, restored insulin signalling to that of control cells. Administration of dexamethasone to mice increased GR/GRα-associated PI3K and reduced IRS1-associated PI3K, phosphorylated-AKT, and membrane GLUT4 translocation resulting in a higher blood glucose concentration compared to controls. HGSD treatment of these mice improved insulin resistance by reducing the association of GR/GRα with PI3K. Excess GC-induced insulin resistance is mediated by increased association of GR with PI3K and treatment with HGSD attenuates these effects. We hypothesize that HGSD may be a promising candidate drug for the treatment of type 2 diabetes by reducing the association of GR with PI3K in skeletal muscle.
Collapse
Affiliation(s)
- Zhaojie Meng
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of American
| | - Yang Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Yining Zhang
- The First Hospital, Jilin University, Changchun, China
| | - Xuehan Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiaoyan Lv
- The Second Hospital, Jilin University, Changchun, China
| | - Fengying Guan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, DREAM Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Machado MP, Schavinski AZ, Deluque AL, Volpato GT, Campos KE. The Treatment of Prednisone in Mild Diabetic Rats: Biochemical Parameters and Cell Response. Endocr Metab Immune Disord Drug Targets 2020; 20:797-805. [DOI: 10.2174/1871530319666191204130007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Abstract
Background:
Limited studies have been carried out with prednisone (PRED) in treatment by
glucose intolerant individuals, even in this model the animals presented low blood glucose levels at
adulthood, by the high regenerative capacity of β-cell.
Objective:
The aim was to evaluate the effects of the treatment of PRED in mild diabetes on biochemical
and immunological biomarkers.
Methods:
Rats were randomly divided into four groups: control (C), treated control C+PRED (treatment
of 1.25 mg/Kg/day PRED); diabetic DM (mild diabetes) and treated diabetic DM+PRED (treatment
with same dose as C+PRED group). Untreated groups received vehicle, adjusted volume to body
weight. The treatment lasted 21 days and measured body weight, food and water intake, and glycemia
weekly. In the 3rd week, the Oral Glucose Tolerance Test (OGTT) and the Insulin Tolerance Test (ITT)
was performed. On the last day, the rats were killed and the blood was collected for biochemical analyzes,
leukogram and immunoglobulin G levels.
Results:
There was a significant decrease in body weight in mild diabetes; however, the treatment in
diabetic groups increased food intake, glycemia, and the number of total leukocytes, lymphocytes and
neutrophils. On the other hand, it decreased the levels of triglycerides, high-density and very lowdensity
lipoproteins. In addition, diabetic groups showed glucose intolerance and mild insulin resistance,
confirming that this model induces glucose intolerant in adult life.
Conclusion:
The results showed that the use of prednisone is not recommended for glucose intolerant
individuals and should be replaced in order to not to aggravate this condition.
Collapse
Affiliation(s)
- Mariana P.R. Machado
- Postgraduate Program in Pharmacology and Biotechnology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Sao Paulo, Brazil
| | - Aline Z. Schavinski
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Amanda L. Deluque
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo T. Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological Sciences and Health, Federal University of Mato Grosso (UFMT), Barra do Garcas, Mato Grosso, Brazil
| | - Kleber E. Campos
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological Sciences and Health, Federal University of Mato Grosso (UFMT), Barra do Garcas, Mato Grosso, Brazil
| |
Collapse
|
16
|
Rahimi L, Rajpal A, Ismail-Beigi F. Glucocorticoid-Induced Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:1133-1145. [PMID: 32368109 PMCID: PMC7171875 DOI: 10.2147/dmso.s247379] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs) are commonly used at high doses and for prolonged periods (weeks to months) in the treatment of a variety of diseases. Among the many side effects are increased insulin resistance with disturbances in glucose/insulin homeostasis and increased deposition of lipids (mostly triglycerides) in the liver. Here, we review the metabolic pathways of lipid deposition and removal from the liver that become altered by excess glucocorticoids. Pathways of lipid deposition stimulated by excess glucocorticoids include 1) increase in appetite and high caloric intake; 2) increased blood glucose levels due to GC-induced stimulation of gluconeogenesis; 3) stimulation of de novo lipogenesis that is augmented by the high glucose and insulin levels and by GC itself; and 4) increased release of free fatty acids from adipose stores and stimulation of their uptake by the liver. Pathways that decrease hepatic lipids affected by glucocorticoids include a modest stimulation of very-low-density lipoprotein synthesis and secretion into the circulation and inhibition of β-oxidation of fatty acids. Role of 11β-hydroxysteroid dehydrogenases-1 and -2 and the reversible conversion of cortisol to cortisone on intracellular levels of cortisol is examined. In addition, GC control of osteocalcin expression and the effect of this bone-derived hormone in increasing insulin sensitivity are discussed. Finally, research focused on gaining a better understanding of the dose and duration of treatment with glucocorticoids, which leads to increased triglyceride deposition in the liver, and the reversibility of the condition is highlighted.
Collapse
Affiliation(s)
- Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Aman Rajpal
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
17
|
Zagayko A, Briukhanova T, Lytkin D, Kravchenko A, Fylymonenko V. Prospects for Using the Natural Antioxidant Compounds in the Obesity Treatment. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.83421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
18
|
El-Sonbaty YA, Suddek GM, Megahed N, Gameil NM. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie 2019; 167:119-134. [PMID: 31557503 DOI: 10.1016/j.biochi.2019.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022]
Abstract
Protocatechuic acid (PCA), the natural phenolic antioxidant, reportedly exhibited hypoglycemic and insulin-like effects. Recent studies have reported its cardioprotective effect in glucocorticoid (GC)-induced hypertensive rats. Nevertheless, its beneficial role has not been investigated in the setting of GCs excess-induced insulin resistance. This study aimed to investigate the possible protective potential and the plausible mechanisms of pretreatment with PCA against GCs-induced insulin resistance, liver steatosis and vascular dysfunction. Insulin resistance was induced in male Wistar rats by a 7-day treatment with dexamethasone (DEX) (1 mg/kg/day, i.p.). PCA (50, 100 mg/kg/day, orally) was started 7 days before DEX administration and continued during the test period. PCA significantly and dose-dependently attenuated DEX-induced a) glucose intolerance (↓ AUCOGTT), b) hyperglycemia (↓ fasting blood glucose), c) impaired insulin sensitivity [↓fasting plasma insulin and homeostasis model assessment of insulin resistance (HOMA-IR) index)] and d) dyslipidemia (↓total cholesterol, triglycerides, low-density lipoprotein-cholesterol and very low-density lipoprotein-cholesterol). PCA mitigated DEX-induced liver steatosis with associated reduction in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Moreover, PCA ameliorated DEX-induced vascular dysfunction and enhanced ACh-induced relaxation in aortic rings. The metabolic ameliorating effects of PCA might be attributed to the enhanced insulin signaling in soleus muscles (↑AKT phosphorylation) and mitigating gluconeogenesis (↓ hepatic mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). The vasculoprotective effect of PCA might be related to its ability to restore normal mRNA expression of [endothelial nitric oxide synthase (eNOS) and NADPH Oxidase 4 (NOX4)]. PCA restored normal oxidative balance [↓ oxidant species, malondialdehyde (MDA) and (↑ antioxidant superoxide dismutase (SOD)]. The findings herein reveal for the first time that PCA may be taken as a supplement with GCs to limit their metabolic and vascular side effects through its hypoglycemic, insulin-sensitizing, hypolipidemic and antioxidant effects.
Collapse
Affiliation(s)
- Yomna A El-Sonbaty
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nirmeen Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Fofié CK, Nguelefack-Mbuyo EP, Tsabang N, Kamanyi A, Nguelefack TB. Hypoglycemic Properties of the Aqueous Extract from the Stem Bark of Ceiba pentandra in Dexamethasone-Induced Insulin Resistant Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4234981. [PMID: 30305829 PMCID: PMC6164203 DOI: 10.1155/2018/4234981] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022]
Abstract
Parts of Ceiba pentandra are wildly used in Africa to treat diabetes and previous works have demonstrated their in vivo antidiabetic effects on type 1 diabetes models. In addition, it has been recently shown that the decoction and the methanol extract from the stem bark of C. pentandra potentiate in vitro, the peripheral glucose consumption by the liver and skeletal muscle slices. But nothing is known about its effect on type II diabetes, especially on insulin resistance condition. We investigated herein the antihyperglycemic, insulin-sensitizing potential, and cardioprotective effects of the dried decoction from the stem bark of Ceiba pentandra (DCP) in dexamethasone-induced insulin resistant rats. DCP phytochemical analysis using LC-MS showed the presence of many compounds, including 8-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthaquinone, 2,4,6-trimethoxyphenol, and vavain. Wistar rats were given intramuscularly (i.m.) dexamethasone (1 mg/kg/day) alone or concomitantly with oral doses of DCP (75 or 150 mg/kg/day) or metformin (40 mg/kg/day) for 9 days. Parameters such as body weight, glycemia, oral glucose tolerance, plasma triglycerides and cholesterol, blood pressure, and heart rate were evaluated. Moreover, cardiac, hepatic and aortic antioxidants (reduced glutathione, catalase, and superoxide dismutase), malondialdehyde level, and nitric oxide content were determined. DCP decreased glycemia by up to 34% and corrected the impairment of glucose tolerance induced by dexamethasone but has no significant effect on blood pressure and heart rate. DCP reduced the total plasma cholesterol and triglycerides as compared to animals treated only with dexamethasone. DCP also increased catalase, glutathione, and NO levels impaired by dexamethasone, without any effect on SOD and malondialdehyde. In conclusion, the decoction of the stem bark of Ceiba pentandra has insulin sensitive effects as demonstrated by the improvement of glucose tolerance, oxidative status, and plasma lipid profile. This extract may therefore be a good candidate for the treatment of type II diabetes.
Collapse
Affiliation(s)
- Christian Kuété Fofié
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Elvine Pami Nguelefack-Mbuyo
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Nole Tsabang
- Institut de Recherche Médicale et d'Etude des Plantes Médicinales (IMPM), Cameroon
| | - Albert Kamanyi
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Télesphore Benoît Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|