1
|
Cheng L, Yin Z, Liu H, Shi S, Lv L, Wang Y, Zhou M, Li M, Guo T, Guo X, Yang G, Ma J, Yu J, Zhang Y, Duo S, Zhao L, Li R. Inhibition of LncRNA H19 Attenuates Testicular Torsion-Induced Apoptosis and Preserves Blood-Testis Barrier Integrity. Int J Mol Sci 2025; 26:2134. [PMID: 40076761 PMCID: PMC11899958 DOI: 10.3390/ijms26052134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Testicular torsion is a common emergency in adolescents, and can lead to severe ischemia reperfusion injury (IRI). LncRNA H19 has been shown to increase during ischemia, but its role in testicular IRI remains unknown. Focusing on this research gap, we utilized H19 biallelic mutant mice and Sertoli cell line (TM4) to construct in vivo and in vitro models of ischemia/reperfusion (I/R) and oxygen-glucose deprivation/reperfusion (OGD/R). Compared to WT I/R mice, H19-/- I/R mice showed milder tissue disorganization and cell loss, with a more intact blood-testis barrier (BTB). The cell viability decreased, ROS levels and apoptosis-related factors such as Bax/Bcl-2 increased in TM4 cells after OGD/R, whereas these changes were reversed when H19 was knocked down followed by OGD/R (si-H19+OGD/R). In contrast, over-expression of H19 in TM4 cells exacerbates OGD/R-induced cell apoptosis. Through in-depth analysis of KEGG-enriched pathways, the PI3K/AKT pathway was identified as a potential target of H19 modulation. Western blotting confirmed that, in OGD/R cells, elevated H19 levels were accompanied by the excessive AKT phosphorylation and the tight junction marker ZO-1 degradation; and in si-H19+OGD/R cells, the decreased AKT phosphorylation was recovered and the up-regulated ZO-1 expression was weakened simultaneously via using the AKT activator SC79. These results suggest that inhibiting H19 in OGD/R cells might preserve the integrity of the BTB by reversing the excessive phosphorylation of AKT. Moreover, H19 deficiency in si-H19+OGD/R cells alleviated the disturbances in glycolysis, fatty acid biosynthesis, and amino acid metabolism. Our study indicates that H19 might be a potential therapeutic target for clinic testicular I/R treatment.
Collapse
Affiliation(s)
- Linxin Cheng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Han Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sijing Shi
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Limin Lv
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China;
| | - Yixi Wang
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.D.)
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianxu Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiyun Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guang Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junjun Ma
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jinbo Yu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.D.)
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
2
|
Zhang H, Li N, Zhang Y, Xu Y, Lu F, Lin D, Lin S, Li M, Yang B. Ganoderma lucidum Polysaccharide Peptide Alleviates Cyclophosphamide-Induced Male Reproductive Injury by Reducing Oxidative Stress and Apoptosis. Biomedicines 2024; 12:1632. [PMID: 39200097 PMCID: PMC11351902 DOI: 10.3390/biomedicines12081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Lu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Dongmei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| |
Collapse
|
3
|
Motamed Nia V, Rezaei N, Shokati Sayyad M, Seyedabadi M, Talebpour Amiri F, Shaki F. The Protective Effects of Citrulline on Testicular Injury Induced by Torsion and Detorsion in Adult Male Rats: An Experimental Study. J Reprod Infertil 2024; 25:201-210. [PMID: 39830325 PMCID: PMC11736274 DOI: 10.18502/jri.v25i3.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/18/2024] [Indexed: 01/22/2025] Open
Abstract
Background Testicular torsion is a critical urological emergency that can lead to testicular ischemia and significant tissue damage. Citrulline, a supplement known for enhancing cellular metabolism and mitigating oxidative stress and inflammation, has been explored for its protective effects against testicular injury resulting from torsion and detorsion in rat models. Methods This study involved 42 Wistar rats, divided into six groups: Sham, torsion/detorsion (T/D), and four groups receiving varying doses of Citrulline (300, 600, 900 mg/kg) and vitamin E (20 mg/kg). A surgical procedure was performed to induce torsion by rotating the left testicle for 4 hr, followed by reperfusion. Daily oral administration of the supplements continued for one week post-surgery. Assessments included oxidative stress markers, apoptosis, inflammation, pathology, and sperm parameters. Statistical analysis was conducted using GraphPad Prism. Results Citrulline administration at doses of 600 and 900 mg/kg significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels. Additionally, it increased glutathione (GSH) levels and decreased protein carbonyl levels at the 900 mg/kg dose. The expression of interleukin-6 (IL-6) decreased at 900 mg/kg, tumor necrosis factor-alpha (TNF-α) levels dropped at 600 and 900 mg/kg, and the pro-apoptotic factor Bax was reduced at all doses. Sperm analysis showed improved sperm count and motility at the 900 mg/kg dose. Histological examination revealed significant positive effects of Citrulline on testicular tissue. Conclusion Citrulline effectively lowers oxidative stress, inflammation, while enhancing sperm quality and pathological outcomes. These results indicate that Citrulline has potential as a therapeutic agent for testicular torsion.
Collapse
Affiliation(s)
- Vida Motamed Nia
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nastaran Rezaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokati Sayyad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Akhigbe R, Odetayo A, Akhigbe T, Hamed M, Ashonibare P. Pathophysiology and management of testicular ischemia/reperfusion injury: Lessons from animal models. Heliyon 2024; 10:e27760. [PMID: 38694115 PMCID: PMC11058307 DOI: 10.1016/j.heliyon.2024.e27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Testicular torsion is a urological emergency that involves the twisting of the spermatic cord along its course. Compelling pieces of evidence have implicated oxidative stress-sensitive signaling in pathogenesis of testicular I/R injury. Although, surgical detorsion is the mainstay management; blockade of the pathways involved in the pathogenesis may improve the surgical outcome. Experimental studies using various testicular I/R models have been reported in a bid to explore the mechanisms associated with testicular I/R and evaluate the benefits of potential therapeutic measures; however, most are limited by their shortcomings. Thus, this review was intended to describe the details of the available testicular I/R models as well as their merits and drawbacks, the pathophysiological basis and consequences of testicular I/R, and the pharmacological agents that have being proposed to confer testicular benefits against testicular I/R. This provides an understanding of the pathophysiological events and available models used in studying testicular I/R. In addition, this research provides evidence-based molecules with therapeutic potentials as well as their mechanisms of action in testicular I/R.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A.F. Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - P.J. Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
5
|
Khormali M, Farahpour MR. The navel nanoethosomal formulation of gamma-oryzanol attenuates testicular ischemia/reperfusion damages. Heliyon 2024; 10:e28687. [PMID: 38633627 PMCID: PMC11021891 DOI: 10.1016/j.heliyon.2024.e28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Testicular torsion reduces blood flow to testes and induces tissue ischemia. Antioxidant can have pivotal roles in alleviation of the effects of torsion/reperfusion. Gamma-oryzanol (γ-Oryzanol) has several pharmacological properties such as antioxidant and anti-apoptosis that can be used in this way. This study was conducted to evaluate the effects of nanoethosomal formulation of gamma-oryzanol (γ-Oryzanol-NEs) on testicular damages in a mouse model of ischemia/reperfusion damage. Following induction of ischemia/reperfusion, the mice were treated with γ-Oryzanol and γ-Oryzanol-NEs (6 mg/kg) in times of 3 h and 6 h. The expression of positive cells of TUNEL, superoxide dismutase (SOD), glutathione peroxidase (GPx), heat shock protein-70 (HSP70) and caspase 3 and histopathological parameters were assessed. The results showed higher expression of positive cells of TUNEL, HSP70 and caspase 3 and lower expressions of SOD and GPx in control mice compared with those treated with γ-Oryzanol-NEs (P = 0.001). The treatment with γ-Oryzanol-NEs could decrease pathological damages and the expression of positive cells of TUNEL, HSP70 and caspase 3 and increase the expressions of SOD and GPx. In conclusion, γ-Oryzanol-NEs could have the protective effects on torsion/reperfusion by decreasing apoptosis and increasing antioxidant status in a mouse model.
Collapse
Affiliation(s)
- Mobina Khormali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
6
|
Freni J, Pallio G, Marini HR, Micali A, Irrera N, Romeo C, Puzzolo D, Mannino F, Minutoli L, Pirrotta I, Scarfone A, Antonuccio P. Positive Effects of the Nutraceutical Association of Lycopene and Selenium in Experimental Varicocele. Int J Mol Sci 2023; 24:13526. [PMID: 37686330 PMCID: PMC10488142 DOI: 10.3390/ijms241713526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Many natural substances commonly found in healthy diets have been studied for their potential to reduce male infertility associated with varicocele. A positive role of selenium (Se) or lycopene alone was demonstrated in experimental varicocele, while no data are available on their association. One group of male Sprague-Dawley rats was sham operated and daily treated with Se (3 mg/kg, i.p.), lycopene (1 mg/kg, i.p.), or their association. A second group underwent surgery to induce varicocele. Sham and half of the varicocele animals were sacrificed after twenty-eight days, while the residual animals were treated for one more month and then sacrificed. In varicocele animals, testosterone levels and testes weight were reduced, Hypoxia Inducible Factor-1α (HIF-1α) expression was absent in the tubules and increased in Leydig cells, caspare-3 was increased, seminiferous epithelium showed evident structural changes, and many apoptotic germ cells were demonstrated with TUNEL assay. The treatment with lycopene or Se alone significantly increased testis weight and testosterone levels, reduced apoptosis and caspase-3 expression, improved the tubular organization, decreased HIF-1α positivity of Leydig cells, and restored its tubular positivity. Lycopene or Se association showed a better influence on all biochemical and morphological parameters. Therefore, the nutraceutical association of lycopene plus Se might be considered a possible therapeutic tool, together with surgery, in the treatment of male infertility. However, long-term experimental and clinical studies are necessary to evaluate sperm quantity and quality.
Collapse
Affiliation(s)
- Jose Freni
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Antonio Micali
- Department of Human Adult and Childhood Pathology, University of Messina, 98122 Messina, Italy; (A.M.); (C.R.); (P.A.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Carmelo Romeo
- Department of Human Adult and Childhood Pathology, University of Messina, 98122 Messina, Italy; (A.M.); (C.R.); (P.A.)
| | - Domenico Puzzolo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Igor Pirrotta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Alessandro Scarfone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Pietro Antonuccio
- Department of Human Adult and Childhood Pathology, University of Messina, 98122 Messina, Italy; (A.M.); (C.R.); (P.A.)
| |
Collapse
|
7
|
Li Y, Liang W, Han Y, Zhao W, Wang S, Qin C. Triterpenoids and Polysaccharides from Ganoderma lucidum Improve the Histomorphology and Function of Testes in Middle-Aged Male Mice by Alleviating Oxidative Stress and Cellular Apoptosis. Nutrients 2022; 14:nu14224733. [PMID: 36432421 PMCID: PMC9696538 DOI: 10.3390/nu14224733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is an inevitable physiological process accompanied by a decline in body physiology, including male fertility. A preparation from Ganoderma lucidum (GL) containing triterpenes and polysaccharides has been shown to have anti-aging properties. In the current study, the effects of GL on mating ability, testosterone secretion, and testicular structure and function were observed in middle-aged male mice. The GL preparation was administered orally to mice for 2 to 5 months, and then behavioral, serological, and histopathological examinations were performed. Results showed that in the GL group of mice, the mating latency was shortened, the number of pursuits within 20 min was increased, and the mating success rate was higher compared to control mice. Additionally, the levels of serum testosterone, cell proliferation (Ki67), and sperm-specific lactate dehydrogenase (LDH)-C4 were increased, while the levels of senescence-related protein p16 and cellular apoptosis were decreased in GL mice. Testicular spermatogenic cells and sperm and stromal cells were reduced and exhibited structural disorder in 11- and 14-month-old control mice, while these changes were improved compared to age-matched mice receiving the GL preparation. Furthermore, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and the pro-apoptotic protein Bax were decreased, while the anti-apoptotic protein Bcl-2 was increased in GL mice. Finally, the mitochondrial structure was relatively complete in GL mice compared to controls. Therefore, GL has the potential to improve testicular structure and function in middle-aged male mice by alleviating oxidative stress, maintaining mitochondrial homeostasis, and reducing cellular apoptosis.
Collapse
Affiliation(s)
- Yanhong Li
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Wei Liang
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Yunlin Han
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Wenjie Zhao
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Siyuan Wang
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
| | - Chuan Qin
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing 100021, China
- NHC Key Laboratory of Human Diseases Comparative Medicine, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- National Human Diseases Animal Model Resource Center, the Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China
- Correspondence: ; Tel.: +86-010-87778141
| |
Collapse
|