1
|
Benevides VP, Saraiva MMS, Campos IC, Guerra PR, Silva SR, Miranda VFO, Almeida AM, Christensen H, Olsen JE, Berchieri Junior A. Salmonella Heidelberg isolates from poultry in Brazil and the United States share a large number of resistance and virulence determinants. Microb Pathog 2025; 204:107523. [PMID: 40180234 DOI: 10.1016/j.micpath.2025.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Salmonella enterica subps. enterica serovar Heidelberg (SH) is one of the most common serovars isolated from poultry and associated with severe infections in humans. Commonly considered multidrug-resistant, it represents a risk to public health. We analyzed 317 SH genomes, including 314 from the Enterobase database from Brazil and the United States (US), and added three recently sequenced Brazilian isolates. In genomes from both countries, the main identified resistance genes were: aac(6')-Iaa, fosA7, sul2, tet(A), and blaCMY-2. Mutations in GyrA (S83Y only from US genomes and S83F and D87N from Brazilian genomes) were observed in 17 % and 90.62 % of genomes from US and Brazil, respectively, and ParC mutation (T57S), was identified in all genomes. The plasmid replicons most identified in both countries were ColpVC, IncC, IncI1-I(Gamma), and IncX1. The core and soft-core genes were utilized as the basis for conducting a phylogenetic analysis, showing seven clusters of strains, of which only one was shared between strains from the US and Brazil. Overall, this study highlights the variation in genomic profiles of SH circulating in poultry production in both countries, emphasizing the need for improved surveillance measures to protect human and animal populations from potential outbreaks worldwide.
Collapse
Affiliation(s)
- Valdinete P Benevides
- Postgraduate Program in Agricultural Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil; São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil; Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - Mauro M S Saraiva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil; Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - Isabella C Campos
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Priscila R Guerra
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Saura R Silva
- Laboratory of Plant Systematics, Department of Biology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil.
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, Department of Biology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil.
| | - Adriana M Almeida
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
2
|
Locke SR, Vinayamohan PG, Diaz-Campos D, Habing G. Biofilm-forming Abilities of Salmonella Serovars Isolated From Clinically Ill Livestock at 48 and 168 h. J Food Prot 2025; 88:100466. [PMID: 39954737 DOI: 10.1016/j.jfp.2025.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Little is known regarding the biofilm-forming capabilities of a somewhat distinct population of Salmonellae present on-farm and responsible for illnesses in livestock and humans. Evaluation of cleaning and disinfection in preharvest environments has found little success in eradicating Salmonella biofilms to date. Disrupting the environmental survival of Salmonella via biofilm removal will be critical to reducing carriage in livestock reservoirs and the risk of foodborne illness. Therefore, the objective of this study was to characterize the biofilm-forming abilities of Salmonellae relevant to livestock and human health. Eighty-one isolates from 8 serovars (S. Typhimurium, Heidelberg, Montevideo, Agona, Newport, Dublin, 4,[5],12:i:-, Enteritidis) were sourced from poultry and clinically ill cattle, swine, and equine. We hypothesized that biofilm production rate would vary significantly between serovars, and biofilm density would increase from 48 to 168 hrs. Isolates were grown in 24-well microplates in tryptone soy broth at ambient temperature, with media refreshed every 48 h. Biofilm density was quantified using crystal violet assays. Strong biofilm formers comprised 84% (68/81) of isolates tested, while 5.9% (4/81) were considered weak. Biofilm density was significantly greater at 168 h versus 48 h for all serovars except Dublin. Additionally, biofilm growth rate varied by serovar. Differences in biofilm-associated genes were evaluated, and only the detection of csrB was significantly associated with the categorization of biofilm producers. Results suggest inconsistent cleaning likely allows for the establishment of biofilms in on-farm environments. Further, some serovars may pose a greater risk for rapid biofilm establishment. This study provides data necessary to inform the development of evidence-based cleaning and disinfection protocols effective against the most prolific biofilm-forming strains of virulent Salmonella.
Collapse
Affiliation(s)
- Samantha R Locke
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Poonam G Vinayamohan
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Gregory Habing
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
3
|
Caro-Castro J, Quino W, Flores-León D, Guzmán F, Garcia-de-la-Guarda R, Gavilan RG. Comparative genomic analysis provides new insights into non-typhoidal Salmonella population structure in Peru. Sci Rep 2024; 14:27316. [PMID: 39516510 PMCID: PMC11549418 DOI: 10.1038/s41598-024-78331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Non-typhoidal Salmonella (NTS) is one of the leading causes of foodborne outbreaks worldwide, especially in low- and middle-income countries such as Peru. To understand the dynamics of NTS serotypes circulating in the country, the whole genomes of 1122 NTS strains from 1998 to 2018 were analyzed using phylogenomic and comparative genomics tools. A total of 40 different Sequences Type (STs) were identified, the five most frequent being ST-32 (S. Infantis, 37.25%), ST-11 (S. Enteritidis, 23.8%), ST-19 (S. Typhimurium, 14.17%), ST-31 (S. Newport, 6.77%), and ST-413 (S. Mbandaka, 4.72%). Furthermore, the maximum likelihood phylogeny showed high clonality between strains from the same ST recovered from different isolation sources, as well as a variable recombination rate, when comparing each ST individually. Moreover, several virulence factors involved in adherence and invasion, as well as plasmids and prophages, are strongly associated with the most frequent STs, while multidrug resistance markers are mostly linked to ST-32. This work provides an overview of the main genomic characteristics linked to the high-frequency ST, which have undergone few genetic modifications over time, suggesting a high adaptation of these NTS circulating clones in Peru.
Collapse
Affiliation(s)
- Junior Caro-Castro
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
- Grupo de Investigación Genómica Funcional de Microorganismos y Biorremediación, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Willi Quino
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
| | - Diana Flores-León
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Frank Guzmán
- Grupo de Investigación en Epidemiología y Diseminación de la Resistencia a Antimicrobianos-"One Health", Universidad Científica del Sur, Lima, Peru
| | - Ruth Garcia-de-la-Guarda
- Grupo de Investigación Genómica Funcional de Microorganismos y Biorremediación, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ronnie G Gavilan
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru.
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| |
Collapse
|
4
|
Soltan Dallal MM, Nasser A, Karimaei S. Characterization of Virulence Genotypes, Antimicrobial Resistance Patterns, and Biofilm Synthesis in Salmonella spp Isolated from Foodborne Outbreaks. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:4805228. [PMID: 39346023 PMCID: PMC11436275 DOI: 10.1155/2024/4805228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Salmonella is the main bacterial pathogen that causes foodborne disease, particularly in developing countries. Nontyphoidal Salmonella (NTS) include Enteritidis and Typhimurium as the most prevalent strains which are one of the significant causes of acute gastroenteritis in children. Therefore, identifying the most predominant serovars, types of common contaminated food, and paying attention to their antibiotic resistance are the main factors in the prevention and control strategy of salmonellosis. This study was undertaken to evaluate the prevalence rate of serovars, the biofilm formation, antimicrobial resistance (AMR) status, and phenotypic virulence factors of Salmonella strains isolated from diarrhea samples in some cities of Iran. A total of 40 (10.41%) Salmonella isolates were recovered from 384 diarrhea samples processed and the most common serovar was Salmonella serovar Typhimurium (82.5). Also, all isolates belonging to serovar Typhimurium showed more virulence factors compared to other serovars. The isolates showed a high resistance rate to ampicillin (95%) and nalidixic acid (87.5%), while a low resistance rate was found for chloramphenicol (2.5%). Moreover, significant variances in the capacity of biofilm formation were found between different Salmonella serotypes. The resistance of NTS to extant choice drugs is a potential public health problem. Constant monitoring of AMR pattern and virulence profile of NTS serovars is suggested for the prevention of salmonellosis in humans.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Food Microbiology Research CenterTehran University of Medical Sciences, Tehran, Iran
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| | - Samira Karimaei
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Lozano-Villegas KJ, Rondón-Barragán IS. Virulence and Antimicrobial-Resistant Gene Profiles of Salmonella spp. Isolates from Chicken Carcasses Markets in Ibague City, Colombia. Int J Microbiol 2024; 2024:4674138. [PMID: 39220438 PMCID: PMC11364481 DOI: 10.1155/2024/4674138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella spp. is one of the leading causes of foodborne bacterial infections, with major impacts on public health and healthcare system. Salmonella is commonly transmitted via the fecal-to-oral route, and food contaminated with the bacteria (e.g., poultry products) is considered a common source of infection, being a potential risk for public health. The study aims to characterize the antimicrobial resistance- and virulence-associated genes in Salmonella isolates recovered from chicken marketed carcasses (n = 20). The presence of 14 antimicrobial and 23 virulence genes was evaluated using end-point PCR. The antimicrobial genes were detected in the following proportion among the isolates: bla TEM 100%, dfrA1 and bla CMY2 90% (n = 18), aadA1 75% (n = 15), sul1 and sul2 50% (n = 10), floR 45% (n = 9), qnrD 20% (n = 4), and aadA2 15% (n = 3). catA, sul3, qnrS, and aac(6')-Ib genes were absent in all isolates. Regarding virulence-associated genes, all Salmonella strains contain invA, fimA, avrA, msgA, sopB, and sopE. The cdtB gene was present in 95% (n = 19) of isolates, whereas spvC and spvB were present in 55% (n = 11). Other virulence genes such as spiC, lpfC, lpfA, and csgA were present in 90% (n = 18) of strains. The presence of antimicrobial and virulence genes in several Salmonella strains in chicken meat suggests the potential pathogenicity of the strains, which is relevant given the possibility of cross-contamination which represents a significant threat to public health.
Collapse
Affiliation(s)
- Kelly Johanna Lozano-Villegas
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| |
Collapse
|
6
|
Lucca V, Borges KA, Furian TQ, Chitolina GZ, Streck AF, da Rocha DT, de Souza Moraes HL, Nascimento VP. Phenotypic and molecular characterisation of Salmonella spp. isolates in healthy poultry. Br Poult Sci 2024; 65:415-423. [PMID: 38717314 DOI: 10.1080/00071668.2024.2337180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/05/2024] [Indexed: 07/27/2024]
Abstract
1. Epidemiological surveillance of Salmonella spp. serves as a primary tool for maintaining the health of poultry flocks. Characterising circulating serotypes is crucial for implementing control and prevention measures. This study conducted phenotypic and molecular characterisation of S. enterica Pullorum, S. enterica Heidelberg, and S. enterica Corvalis isolated from broiler chickens during slaughtering.2. All strains were susceptible to gentamicin, neomycin and norfloxacin. However, resistance rates exceeded 50% for ciprofloxacin and tiamulin, irrespective of the serotype. Approximately 64% of strains were classified as multidrug-resistant, with S. enterica Heidelberg strains exhibiting significantly higher overall resistance. The isolates demonstrated the ability to adhere and produce biofilm at a minimum of three temperatures, with S. enterica Pullorum capable of biofilm production at all temperatures encountered during poultry rearing.3. Each strain possessed between two and seven different virulence-associated genes. Genetic similarity, as indicated by pulsed field gel electrophoresis, exceeded 90% for all three serotypes and strains were classified in the R5 ribotype by PCR, regardless of serotype. Sequencing revealed high similarity among all strains, with homology ranging from 99.61 to 100% and all were classified to a single cluster.4. The results suggested a clonal relationship among the strains, indicating the possible circulation of a unique clonal group of S. enterica Pullorum in the southern region of Brazil.
Collapse
Affiliation(s)
- V Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - K A Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - T Q Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - G Z Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - A F Streck
- Departamento de Medicina Veterinária, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - D T da Rocha
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - H L de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V P Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Pottker ES, Rodrigues LB, Borges KA, de Souza SO, Furian TQ, Pippi Salle CT, de Souza Moraes HL, do Nascimento VP. Bacteriophages as an alternative for biological control of biofilm-forming Salmonella enterica. FOOD SCI TECHNOL INT 2024; 30:197-206. [PMID: 36529875 DOI: 10.1177/10820132221144341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Salmonellosis is one of the most common foodborne diseases worldwide. Surface adherence and biofilm formation are among the main strategies evolved by Salmonella to survive under harsh conditions and are risk factors for its spread through the food chain. Owing to the increase in antimicrobial resistance, there is a growing need to develop other methods to control foodborne pathogens, and bacteriophages have been suggested as a potential alternative for this purpose. The aim of this study was to evaluate bacteriophages as a biological control of Salmonella enterica serotypes to inhibit and remove bacterial biofilms. A total of 12 S. enterica isolates were selected for this study, all of which were biofilm producers. Seven bacteriophages were tested, individually and in a cocktail, for their host range and efficiency of plating (EOP). The phage cocktail was evaluated for its antibiofilm effect against the Salmonella biofilms. Phages UPF_BP1, UPF_BP2, UPF_BP3, UPF_BP6, and 10:2 possessed a broad lytic spectrum and could infect all S. enterica strains. Phages 10:2, UPF_BP6, and UPF_BP3 had high EOP in 10, 9, and 9 out of the 12 S. enterica strains, respectively. The cocktail was able to infect all S. enterica strains and had a high EOP in 10 out of 12 S. enterica isolates, presenting a broader host range than any of the tested single phages. A wide variation of inhibition among strains was observed, ranging from 14.72% to 88.53%. Multidrug-resistant and strong biofilm producer strains showed high biofilm inhibition levels by phage cocktail. Our findings demonstrate the ability of the cocktail to prevent biofilm formation and remove formed biofilms of Salmonella. These results indicate that the phage cocktail is a promising candidate to be used as an alternative for the control of Salmonella biofilms through surface conditioning.
Collapse
Affiliation(s)
- Emanuele Serro Pottker
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Beatriz Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Sain A, Sharma DK, Singathia R, Gaurav A, Patidar C, Suthar P, Rathore K, Juneja R. Antibiotic resistance and virulence genes profile of Non typhodial Salmonella species isolated from poultry enteritis in India. Trop Anim Health Prod 2024; 56:91. [PMID: 38430331 DOI: 10.1007/s11250-024-03932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Salmonella species (spp) is the most important gastrointestinal pathogen present ubiquitously. Non typhoidal Salmonella (NTS) is commonly associated with gastroenteritis in humans. Layer birds once get infection with NTS, can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria. It results in a high risk of potential exposure of eggs to the bacteria. The current study was conducted to determine the serotype diversity, presence of virulence genes, antibiotic resistance pattern, and genes of NTS from poultry enteritis. Out of 151 intestinal swabs from poultry total 118 NTS were isolated, which were characterized serologically as S. Typhimurium (51 strains), S. Weltevreden (57 strains) and untypable (10 strains). Most effective antibiotics were amikacin, gentamycin and ceftriaxone (33.05%) followed by ampicillin, azithromycin and ciprofloxacin (16.69%), co-trimoxazole (13.55%), and tetracycline (6.78%). Multidrug resistance recorded in 17.70% (N = 21/118) strains. Antimicrobial-resistant genes i.e. blaTEM, blaSHV, blaCTX-M, tet(A), tet(B), tet(C), sul1, sul2, sul3. blaTEM and tet(A) were present in 95% (20/21). Eleven virulence genes i.e. invA, hilA, sivH, tolC, agfA, lpfA, spaN, pagC, spiA, iroN and fliC 2 were present in all the 30 isolates. While, sopE was present in only 2 isolates, NTS strains with characteristics of pathogenicity and multidrug resistance from poultry enteritis were detected. Multidrug resistance showed the necessity of prudent use of antibiotics in the poultry industry.
Collapse
Affiliation(s)
- Arpita Sain
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Science (CVAS), Navania, India
| | | | - Rajesh Singathia
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Science (CVAS), Navania, India
| | - Abhishek Gaurav
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Science (CVAS), Navania, India
| | - Chaman Patidar
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Science (CVAS), Navania, India
| | - PrabuRam Suthar
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Science (CVAS), Navania, India
| | - Karishma Rathore
- Department of Veterinary Public Health and Epidemiology, College of Veterinary and Animal Science (CVAS), Navania, India
| | - Rohit Juneja
- Department of Veterinary Gynaecology and Obstetrics, CVAS, Navania, India
| |
Collapse
|
9
|
Dehdashti S, Mohseni P, Ghanbarpour R, Aslani S, Moradiyan MS, Kalantar-Neyestanaki D. The emergence of carbapenem-resistance and New Delhi metallo-β-lactamase-1 ( blaNDM-1) among Salmonella spp. in Kerman, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:29-38. [PMID: 38682060 PMCID: PMC11055441 DOI: 10.18502/ijm.v16i1.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Salmonella species (spp) are the most prevalent zoonotic pathogens that cause outbreaks of gastroenteritis worldwide. Therefore evaluation of the profile of antibiotic resistance, virulence factors, and plasmid replicon types in these bacteria is necessary to control and prevent the spread of potentially pathogenic and drug-resistant strains. Materials and Methods This study was performed on 39 Salmonella spp. The antibacterial susceptibility of isolates to various antibiotic agents was determined using disk diffusion test. β-lactamases (bla) including ESBLs, AmpC, MBLs, and virulence genes were detected by PCR methods. Plasmid incompatibility groups among the isolates were identified using PCR-based replicon typing (PBRT). Results The most prevalent virulent gene was phoP/Q (84.6%). slyA, sopB, and stn were identified in 79.4% (n=31), 69.2% (n=27), and 2.5% (n=1) of the isolates, respectively. The antibiotic susceptibility testing showed that 30.7% of the isolates were ESBL-producing. blaTEM (41%; n=16) was the most frequent β-lactamase gene among the isolates followed by blaNDM-1 (15.4%; n=6), blaDHA (7.7%; n=3), and blaCTX-M (1.5%; n=1). Six different plasmid replicon types, including IncP (n=9; 23%), IncFIC (n=3; 7.70%), IncY (n=3; 7.70%), IncI1-Iγ (n=2; 5.12%), IncFIIAs (n=1; 2.56%), and IncN (n=1; 2.56%) were observed among the isolates. Conclusion Our study showed the emergence of carbapenem-resistant and blaNDM-1 among Salmonella spp. for the first time in Kerman, Iran. Since Salmonella spp. plays an important role in the transmission of resistance genes in livestock and humans in the food chains, so more stringent control policies are recommended to prevent the circulation of drug-resistant and potentially pathogenic strains from animals to humans.
Collapse
Affiliation(s)
- Sanaz Dehdashti
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Ghanbarpour
- Molecular Microbiology Research Group, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sajad Aslani
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Julianingsih D, Tung CW, Thapa K, Biswas D. Unveiling the Potential Ways to Apply Citrus Oil to Control Causative Agents of Pullorum Disease and Fowl Typhoid in Floor Materials. Animals (Basel) 2023; 14:23. [PMID: 38200754 PMCID: PMC10778308 DOI: 10.3390/ani14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This study investigates the potential role of Cold-pressed Valencia Terpeneless citrus oil (CO), as a natural antimicrobial, in controlling causative agents of pullorum disease and fowl typhoid in floor materials for poultry farming, specifically wooden chips. The study addresses the issues that have arisen as a result of the reduction in antibiotic use in poultry farming, which has resulted in the re-emergence of bacterial diseases including salmonellosis. CO efficiently inhibits the growth of pathogens including various serovars of Salmonella enterica (SE), including SE serovar Gallinarum (S. Gallinarum) and SE serovar Pullorum (S. Pullorum), in a dose-dependent manner. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of CO showed potential for controlling diverse S. Gallinarum and S. Pullorum isolates. Growth inhibition assays demonstrated that 0.4% (v/w) CO eliminated S. Pullorum and S. Gallinarum from 24 h onwards, also impacting poultry gut microbiota and probiotic strains. Floor material simulation, specifically wooden chips treated with 0.4% CO, confirmed CO's effectiveness in preventing S. Gallinarum and S. Pullorum growth on poultry house floors. This study also investigated the effect of CO on the expression of virulence genes in S. Gallinarum and S. Pullorum. Specifically, the study revealed that the application of CO resulted in a downregulation trend in virulence genes, including spiA, invA, spaN, sitC, and sifA, in both S. Pullorum and S. Gallinarum, implying that CO may alter the pathogenicity of these bacterial pathogens. Overall, this study reveals that CO has the potential to be used as a natural antimicrobial in the prevention and management of Salmonella-related infections in chicken production, offering a viable alternative to control these re-emerging diseases.
Collapse
Affiliation(s)
- Dita Julianingsih
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (D.J.); (C.-W.T.); (K.T.)
| | - Chuan-Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (D.J.); (C.-W.T.); (K.T.)
| | - Kanchan Thapa
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (D.J.); (C.-W.T.); (K.T.)
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (D.J.); (C.-W.T.); (K.T.)
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Qian M, Xu D, Wang J, Zaeim D, Han J, Qu D. Isolation, antimicrobial resistance and virulence characterization of Salmonella spp. from fresh foods in retail markets in Hangzhou, China. PLoS One 2023; 18:e0292621. [PMID: 37856530 PMCID: PMC10586686 DOI: 10.1371/journal.pone.0292621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Salmonella can cause severe foodborne diseases. This study investigated the prevalence of Salmonella spp. in fresh foods in Hangzhou market and their harborage of antibiotic resistance and virulence genes, antibiotic susceptibility, and pathogenicity. A total of 500 samples (pork, n = 140; chicken, n = 128; vegetable, n = 232) were collected over a one-year period. Salmonella was found in 4.2% (21) of samples with the detection rate in pork, chicken and vegetables as 4.3% (6), 6.3% (8), and 3% (7), respectively. One Salmonella strain was recovered from each positive sample. The isolates were identified as six serotypes, of which S. Enteritidis (n = 7) and S. Typhimurium (n = 6) were the most predominant serotypes. The majority of isolates showed resistance to tetracycline (85.7%) and/or ciprofloxacin (71.4%). Tetracycline resistance genes showed the highest prevalence (90.5%). The occurrence of resistance genes for β-lactams (blaTEM-1, 66.7%; and blaSHV, 9.5%) and aminoglycosides (aadA1, 47.6%; Aac(3)-Ia, 19%) was higher than sulfonamides (sul1, 42.9%) and quinolones (parC, 38.1%). The virulence gene fimA was detected in 57.1% of isolates. Gene co-occurrence analysis implied that resistance genes were associated with virulence genes. Furthermore, selected S. Typhimurium isolates (n = 4) carrying different resistance and virulence genes up-regulated the secretions of cytokines IL-6 and IL-8 by Caco-2 cells in different degrees, suggesting that virulence genes may play a role in inflammatory transcription. In in vivo virulence test, microbiological counts in mouse feces and tissues showed that all included S. Typhimurium were able to infect mice, with one strain showing significantly higher virulence than others. In conclusion, this study indicates Salmonella contamination in fresh foods in Hangzhou market poses a risk to public health and it should be closely monitored to prevent and control foodborne diseases.
Collapse
Affiliation(s)
- Min Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiankang Wang
- Agricultural Technology and Water Conservancy Service Center, Jiaxing, China
| | - Davood Zaeim
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
12
|
Algammal AM, El-Tarabili RM, Abd El-Ghany WA, Almanzalawi EA, Alqahtani TM, Ghabban H, Al-Otaibi AS, Alatfeehy NM, Abosleima NM, Hetta HF, Badawy GA. Resistance profiles, virulence and antimicrobial resistance genes of XDR S. Enteritidis and S. Typhimurium. AMB Express 2023; 13:110. [PMID: 37817026 PMCID: PMC10564691 DOI: 10.1186/s13568-023-01615-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Avian salmonellosis is concomitant with high financial crises in the poultry industry as well as food-borne illness in man. The present study is designed to investigate the emergence of Salmonella Enteritidis and Salmonella Typhimurium in diseased broilers, resistance profiles, and monitoring virulence and antibiotic resistance genes. Consequently, 450 samples (cloacal swabs, liver, and spleen) were collected from 150 diseased birds from different farms in Giza Governorate, Egypt. Subsequently, the bacteriological examination was done. Afterward, the obtained Salmonella isolates were tested for serogrouping, antibiogram, PCR monitoring of virulence (invA, stn, hilA, and pefA), and antimicrobial resistance genes (blaTEM, blaCTX-M, blaNDM, ermA, sul1, tetA, and aadA1). The total prevalence of Salmonella in the examined diseased broilers was 9.3%, and the highest prevalence was noticed in cloacal swabs. Among the recovered Salmonella isolates (n = 35), 20 serovars were recognized as S. Enteritidis and 15 serovars were identified as S. Typhimurium. Almost 60% of the retrieved S. Enteritidis serovars were extensively drug-resistant (XDR) to seven antimicrobial classes and inherited sul1, blaTEM, tetA, blaCTX-M, ereA, and aadA1 genes. Likewise, 25% of the recovered S. Enteritidis serovars were multidrug-resistant (MDR) to six classes and have sul1, blaTEM, tetA, blaCTX-M, and ereA resistance genes. Also, 66.7% of the retrieved S. Typhimurium serovars were XDR to seven classes and have sul1, blaTEM, tetA, blaCTX-M, ereA, and aadA1 genes. Succinctly, this report underlined the reemergence of XDR S. Typhimurium and S. Enteritidis in broiler chickens. Meropenem and norfloxacin exposed a hopeful antimicrobial activity toward the re-emerging XDR S. Typhimurium and S. Enteritidis in broilers. Moreover, the recurrence of these XDR Salmonella strains poses a potential public health threat.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Enas A Almanzalawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Tahani M Alqahtani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Amenah S Al-Otaibi
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Nayera M Alatfeehy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, 1261, Egypt
| | - Naira M Abosleima
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, 1261, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ghada A Badawy
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
- Department of Biology, Faculty of Science, University of Tabuk, 46429, Umluj, Saudi Arabia
| |
Collapse
|
13
|
Petano-Duque JM, Rueda-García V, Rondón-Barragán IS. Virulence genes identification in Salmonella enterica isolates from humans, crocodiles, and poultry farms from two regions in Colombia. Vet World 2023; 16:2096-2103. [PMID: 38023281 PMCID: PMC10668553 DOI: 10.14202/vetworld.2023.2096-2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Salmonella spp. is frequently found in the digestive tract of birds and reptiles and transmitted to humans through food. Salmonellosis is a public health problem because of pathogenicity variability in strains for virulence factors. This study aimed to identify the virulence genes in Salmonella isolates from humans, crocodiles, broiler cloacas, and broiler carcasses from two departments of Colombia. Materials and Methods This study was conducted on 31 Salmonella enterica strains from humans with gastroenteritis (seven), crocodiles (seven), broiler cloacas (six), and broiler carcasses (12) from Tolima and Santander departments of Colombia, belonging to 21 serotypes. All samples were tested for Salmonella spp. using culture method on selective and non-selective mediums. Extraction of genomic DNA was performed from fresh colonies, DNA quality was verified by spectrophotometry and confirmed by amplification of InvA gene using conventional polymerase chain reaction (PCR). bapA, fimA, icmF, IroB, marT, mgtC, nlpI, oafA, pagN, siiD, spvC, spvR, spvB, Stn, and vexA genes were amplified by PCR. Results The most prevalent gene was bapA (100%), followed by marT (96.77%), mgtC (93.55%), and fimA (83.87%). Likewise, IroB (70.97%), Stn (67.74%), spvR (61.29%), pagN (54.84%), icmF (54.8%), and SiiD (45.16%) were positive for more than 50% of the strains. Furthermore, none of the isolates tested positive for the vexA gene. Salmonella isolates presented 26 virulence profiles. Conclusion This study reported 14 virulence genes in Salmonella spp. isolates from humans with gastroenteritis, crocodiles, and broiler cloacas and carcasses. The distribution of virulence genes differed among sources. This study could help in decision-making by health and sanitary authorities.
Collapse
Affiliation(s)
- Julieth Michel Petano-Duque
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
14
|
Ndlovu L, Butaye P, Maliehe TS, Magwedere K, Mankonkwana BB, Basson AK, Ngema SS, Madoroba E. Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa. Pathogens 2023; 12:pathogens12050641. [PMID: 37242311 DOI: 10.3390/pathogens12050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
As poultry organ meat is widely consumed, especially in low- and middle-income countries, there is reason to investigate it as a source of Salmonella infections in humans. Consequently, the aim of this study was to determine the prevalence, serotypes, virulence factors and antimicrobial resistance of Salmonella isolated from chicken offal from retail outlets in KwaZulu-Natal, South Africa. Samples (n = 446) were cultured for the detection of Salmonella using ISO 6579-1:2017. Presumptive Salmonella were confirmed using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. Salmonella isolates were serotyped using the Kauffmann-White-Le Minor scheme and antimicrobial susceptibility was determined by the Kirby-Bauer disk diffusion technique. A conventional PCR was used for the detection of Salmonella invA, agfA, lpfA and sivH virulence genes. Of the 446 offal samples, 13 tested positive for Salmonella (2.91%; CI = 1.6-5). The serovars included S. Enteritidis (n = 3/13), S. Mbandaka (n = 1/13), S. Infantis (n = 3/13), S. Heidelberg (n = 5/13) and S. Typhimurium (n = 1/13). Antimicrobial resistance against amoxicillin, kanamycin, chloramphenicol and oxytetracycline was found only in S. Typhimurium and S. Mbandaka. All 13 Salmonella isolates harboured invA, agfA, lpfA and sivH virulence genes. The results show low Salmonella prevalence from chicken offal. However, most serovars are known zoonotic pathogens, and multi-drug resistance was observed in some isolates. Consequently, chicken offal products need to be treated with caution to avoid zoonotic Salmonella infections.
Collapse
Affiliation(s)
- Lindokuhle Ndlovu
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Tsolanku S Maliehe
- Department of Water and Sanitation, University of Limpopo, Polokwane 0727, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa
| | - Bongi B Mankonkwana
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Siyanda S Ngema
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
15
|
Webber B, Pottker ES, Rizzo NN, Núncio AS, Peixoto CS, Mistura E, Dos Santos LR, Rodrigues LB, do Nascimento VP. Surface conditioning with bacteriophages reduces biofilm formation of Salmonella Heidelberg. FOOD SCI TECHNOL INT 2023; 29:275-283. [PMID: 35075919 DOI: 10.1177/10820132221074783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salmonella remains one of the most common foodborne pathogens worldwide, and its resistance to antimicrobials has increased considerably over the years. In this context, was evaluated the action of three bacteriophages isolated or combined in inhibiting the adhesion and removal of Salmonella Heidelberg biofilm on a polystyrene surface. The bacteriophages UPF_BP1, UPF_BP2, UPF_BP3 and a pool of them were used for biocontrol of Salmonella Heidelberg biofilms on polystyrene surface in the action times of 3, 6 and 9 h. Individual and combined phages exhibited reductions in Salmonella Heidelberg adhesion of up to 83.4% and up to 64.0% in removal of preformed biofilm. The use of synergistic combinations between the phages is the most indicated option due to its potential to reduce biofilms. The use of the bacteriophage pool in surface conditioning is an alternative in the control of Salmonella Heidelberg biofilms.
Collapse
Affiliation(s)
- Bruna Webber
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Emanuele S Pottker
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natalie N Rizzo
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriana Sp Núncio
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Caroline S Peixoto
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Enzo Mistura
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciana R Dos Santos
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Laura B Rodrigues
- Graduate Program in Bio-experimentation, 28129Graduate Program in Bio-experimentation, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Vladimir P do Nascimento
- Center for Diagnostics and Research in Avian Pathology (CDPA), Faculty of Veterinary28124, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Vilela FP, Dos Prazeres Rodrigues D, Allard MW, Falcão JP. Genomic analyses of drug-resistant Salmonella enterica serovar Heidelberg strains isolated from meat and related sources between 2013 and 2017 in the south region of Brazil. Curr Genet 2023; 69:141-152. [PMID: 36920496 DOI: 10.1007/s00294-023-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Salmonella enterica serovar Heidelberg (S. Heidelberg) is a zoonotic, ubiquitous, and worldwide-distributed pathogen, responsible for gastroenteritis in humans caused by the consumption of contaminated food. In this study, 11 S. Heidelberg strains isolated from chicken and bovine meat, drag swab, and animal feed between 2013 and 2017 in states of the southern region of Brazil were characterized by whole-genome sequencing (WGS) analyses. Antimicrobial resistance against 18 antimicrobials was determined by disk-diffusion and ciprofloxacin's minimum inhibitory concentration by Etest®. The search for resistance and virulence genes, plasmids, Salmonella Pathogenicity Islands (SPIs) plus multi-locus sequence typing (MLST), and single-nucleotide polymorphisms (SNPs) analyses was conducted using WGS data. All strains harbored resistance genes fosA7, aac(6')-Iaa, sul2, tet(A), blaCMY-2, mdsA, and mdsB, and point mutations in gyrA and parC. All strains showed a phenotypic multidrug-resistant profile, with resistant or intermediate resistant profiles against 14 antimicrobials tested. Plasmids ColpVC, IncC, IncX1, and IncI1-I(Alpha) were detected. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, and type III secretion systems plus 10 SPIs were detected. All strains were assigned to ST15 and belonged to two SNP clusters showing high similarity to isolates from the United Kingdom, Chile, Germany, the Netherlands, China, South Africa, and South Korea. In conclusion, the presence of multidrug-resistant S. Heidelberg strains in Brazil showing a global genomic relationship may alert for the necessity of stronger surveillance measures by food safety and public health authorities to limit its spread to humans and animals through foods.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/n, Bloco S-Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/n, Bloco S-Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
17
|
González-Torres B, González-Gómez JP, Ramírez K, Castro-del Campo N, González-López I, Garrido-Palazuelos LI, Chaidez C, Medrano-Félix JA. Population structure of the Salmonella enterica serotype Oranienburg reveals similar virulence, regardless of isolation years and sources. Gene 2023; 851:146966. [DOI: 10.1016/j.gene.2022.146966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
18
|
Guo L, Xiao T, Wu L, Li Y, Duan X, Liu W, Liu K, Jin W, Ren H, Sun J, Liu Y, Liao X, Zhao Y. Comprehensive profiling of serotypes, antimicrobial resistance and virulence of Salmonella isolates from food animals in China, 2015-2021. Front Microbiol 2023; 14:1133241. [PMID: 37082181 PMCID: PMC10110913 DOI: 10.3389/fmicb.2023.1133241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction Salmonella is a ubiquitous foodborne pathogen and mainly transmitted to human farm-to-fork chain through contaminated foods of animal origin. Methods In this study, we investigated the serotypes, antimicrobial resistance and virulence of Salmonella from China. Results A total of 617 Salmonella isolates were collected from 4 major food animal species across 23 provi nces in China from 2015-2021. Highest Salmonella prevalence were observed in Guangdong (44.4%) and Sandong (23.7%). Chickens (43.0%) was shown to be the major source of Salmonella contamination, followed by pigs (34.5%) and ducks (18.5%). The number of Salmonella increased significantly from 5.51% to 27.23% during 2015-2020. S. Derby (17.3%), S. Enteritidis (13.1%) and S. Typhimurium (11.4%) were the most common serotypes among 41 serotypes identifiedin this study. Antibiotic susceptibility testing showing that the majority of the Salmonella isolates were resistant to neomycin (99.7%), tetracycline (98.1%), ampicillin (97.4%), sulfadiazine/trimethoprim (97.1%), nalidixic acid (89.1%), doxycycline (83.1%), ceftria xone (70.3%), spectinomycin (67.7%), florfenicol (60.0%), cefotaxime (52.0%) and lomefloxacin (59.8%). The rates of resistance to multiple antibiotics in S. Derby and S.Typhimurium were higher than that in S. Enteritidis. However, the rate of resistance to fosfomycin were observed from higher to lower by S. Derby, S. Enteritidis, and S. Typhimurium. Biofilm formation ability analysis found that 88.49%of the Salmonella were able to produce biofilms, of which 236 Salmonella isolates were strong biofilm producer. Among the 26 types of antibiotics resistance genes (ARGs) were identified in this study, 4 ARGs (tetB,sul2,aadA2, and aph(3')-IIa) were highly prevalent. In addition, 5 β-lactam resistance genes (bla TEM, bla SHV, bla CMY-2, bla CTX-M, and bla OXA) and 7 quinolone resistance genes (oqxA, oqxB, qnrB, qnrC, qnrD, qnrS, and qeqA) were detected among these isolates. 12 out of 17 virulence genes selected in this study were commonly presented in the chromosomes of tested isolate, with a detection rate of over 80%, including misL, spiA, stn, pagC, iroN, fim, msgA, sopB, prgH, sitC, ttrC, spaN. Discussion This study provided a systematical updating on surveillance on prevalence of Salmonella from food animals in China, shedding the light on continued vigilance for Salmonella in food animals.
Collapse
Affiliation(s)
- Lili Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Bolin Biotechnology Co., Qingdao, China
| | - Tianan Xiao
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Liqin Wu
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Yan Li
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Xiaoxiao Duan
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Kaidi Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjie Jin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yahong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoping Liao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Xiaoping Liao,
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Yongda Zhao,
| |
Collapse
|
19
|
Molecular Detection of Virulence Factors in Salmonella serovars Isolated from Poultry and Human Samples. Vet Med Int 2023; 2023:1875253. [PMID: 36910894 PMCID: PMC9998162 DOI: 10.1155/2023/1875253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Salmonellosis is a common infectious disease in humans caused by Salmonella spp., which in recent years has shown an increase in its incidence, with products of avian origin being a common source of transmission. To present a successful infective cycle, there are molecular mechanisms such as virulence factors that provide characteristics that facilitate survival, colonization, and damage to the host. According to this, the study aims to characterize the virulence factors of Salmonella spp. strains isolated from broilers (n = 39) and humans (n = 10). The presence of 24 virulence genes was evaluated using end-point PCR. All the strains of Salmonella spp. isolated from broiler chickens revealed presence of 7/24 (29, 16%) virulence genes (lpfA, csgA, sitC, sipB, sopB, sopE, and sivH). Regarding the strains isolated from cases of gastroenteritis in humans, all strains contained (14/24, 58, 33%) virulence genes (lpfA, csgA, pagC, msgA, spiA, sitC, iroN, sipB, orgA, hilA, sopB, sifA, avrA, and sivH). In summary, the presence of virulence genes in different strains of Salmonella isolated from broilers and humans could be described as bacteria with potential pathogenicity due to the type and number of virulence genes detected. These findings are beneficial for the pathogenic monitoring of Salmonella in Colombia.
Collapse
|
20
|
Pavon RDN, Mendoza PDG, Flores CAR, Calayag AMB, Rivera WL. Genotypic virulence profiles and associations in Salmonella isolated from meat samples in wet markets and abattoirs of Metro Manila, Philippines. BMC Microbiol 2022; 22:292. [PMID: 36474155 PMCID: PMC9724337 DOI: 10.1186/s12866-022-02697-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Salmonella are pathogenic foodborne bacteria with complex pathogenicity from numerous virulence genes housed in Salmonella pathogenicity islands (SPIs), plasmids, and other gene cassettes. However, Salmonella virulence gene distributions and mechanisms remain unestablished. In the Philippines, studies mainly report Salmonella incidences and antimicrobial resistance, but little to none on virulence profiles, their associations to animal sources, collection sites and Salmonella serogroups. Hence, a total of 799 Salmonella isolates, previously obtained from pig, cow, and chicken meat samples in wet markets and abattoirs (wet markets: 124 chicken, 151 cow, and 352 pig meat isolates; abattoirs: 172 pig tonsil and jejunum isolates) in Metro Manila, Philippines, were revived and confirmed as Salmonella through invA gene polymerase chain reaction (PCR). Isolates were then screened for eight virulence genes, namely avrA, hilA, sseC, mgtC, spi4R, pipB, spvC and spvR, by optimized multiplex PCR and significant pair associations between virulence genes were determined through Fisher's exact test. Gene frequency patterns were also determined. Salmonella serogroups in addition to animal sources and location types were also used to predict virulence genes prevalence using binary logistic regression. RESULTS High frequencies (64 to 98%) of SPI virulence genes were detected among 799 Salmonella isolates namely mgtC, pipB, avrA, hilA, spi4R and sseC, from most to least. However, only one isolate was positive for plasmid-borne virulence genes, spvC and spvR. Diversity in virulence genes across Salmonella serogroups for 587 Salmonella isolates (O:3 = 250, O:4 = 133, O:6,7 = 99, O:8 = 93, O:9 = 12) was also demonstrated through statistical predictions, particularly for avrA, hilA, sseC, and mgtC. mgtC, the most frequent virulence gene, was predicted by serogroup O:9, while sseC, the least frequent, was predicted by serogroup O:4 and chicken animal source. The highest virulence gene pattern involved SPIs 1-5 genes which suggests the wide distribution and high pathogenic potential of Salmonella. Statistical analyses showed five virulence gene pair associations, namely avrA and hilA, avrA and spi4R, hilA and spi4R, sseC and spi4R, and mgtC and pipB. The animal sources predicted the presence of virulence genes, sseC and pipB, whereas location type for hilA and spi4R, suggesting that these factors may contribute to the type and pathogenicity of Salmonella present. CONCLUSION The high prevalence of virulence genes among Salmonella in the study suggests the high pathogenic potential of Salmonella from abattoirs and wet markets of Metro Manila, Philippines which poses food safety and public health concerns and threatens the Philippine food animal industry. Statistical associations between virulence genes and prediction analyses across Salmonella serogroups and external factors such as animal source and location type and presence of virulence genes suggest the diversity of Salmonella virulence and illustrate determining factors to Salmonella pathogenicity. This study recommends relevant agencies in the Philippines to improve standards in food animal industries and increase efforts in monitoring of foodborne pathogens.
Collapse
Affiliation(s)
- Rance Derrick N. Pavon
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Paolo D. G. Mendoza
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Camille Andrea R. Flores
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Alyzza Marie B. Calayag
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Windell L. Rivera
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| |
Collapse
|
21
|
Rodríguez-Hernández R, Herrera-Sánchez MP, Ortiz-Muñoz JD, Mora-Rivera C, Rondón-Barragán IS. Molecular Characterization of Salmonella spp. Isolates from Wild Colombian Babilla ( Caiman crocodilus fuscus) Isolated In Situ. Animals (Basel) 2022; 12:ani12233359. [PMID: 36496880 PMCID: PMC9737335 DOI: 10.3390/ani12233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Salmonella enterica is a pathogen capable of colonizing various environments, including the intestinal tract of different animals such as mammals, birds, and reptiles, which can act as carriers. S. enterica infection induces different clinical diseases, gastroenteritis being the most common, which in some cases, can evolve to septicemia and meningitis. Reptiles and amphibians have been reported as a reservoir of Salmonella, and transmission of the pathogen to humans has been documented. This study aimed to determine the presence of virulence genes and characterize the genotypic antibiotic resistance profile in Salmonella strains isolated from Caiman crocodilus fuscus obtained in situ (natural habitat) in Prado, Tolima, Colombia in a previous study and stored in a strain bank in our laboratory. Fifteen Salmonella strains were evaluated through endpoint PCR to determine the presence of resistance genes and virulence genes. The genes blaTEM, strB, and sul1 were detected in all the strains that confer resistance to ampicillin, streptomycin, and sulfamethoxazole, as well as the virulence genes invA, pefA, prgH, spaN, tolC, sipB, sitC, pagC, msgA, spiA, sopB, sifA, lpfA, csgA, hilA, orgA, iroN, avrA, and sivH, indicating the possible role of babilla (Caiman crocodilus fuscus) as a carrier of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Roy Rodríguez-Hernández
- Poultry Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - María Paula Herrera-Sánchez
- Poultry Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Julián David Ortiz-Muñoz
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Cristina Mora-Rivera
- Biodiversity and Dynamics of Tropical Ecosystems Research Group, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Immunobiology and Pathogenesis Research Group, Faculty of Veterinary Medicine, University of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Colombia
- Correspondence: ; Tel.: +57-300-498-1037
| |
Collapse
|
22
|
Martins Morasi R, Zimbardi da Silva A, Thais Alves Dantas S, Faganello C, Cristina Bastos Juliano L, Lúcia Mores Rall V, Ribeiro Tiba-Casas M, Pantoja JC, Ferreira Amarante A, Cristina Cirone Silva N. Overview of antimicrobial resistance and virulence factors in Salmonella spp. isolated in the last two decades from chicken in Brazil. Food Res Int 2022; 162:111955. [DOI: 10.1016/j.foodres.2022.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
|
23
|
Mashayekh Z, Moradi Bidhendi S, Khaki P. Detection of invA, sivH, and agfA Virulence Genes in Salmonella spp. Isolated from Broiler Breeder Farms in Alborz Province, Iran. ARCHIVES OF RAZI INSTITUTE 2022; 77:607-614. [PMID: 36284959 PMCID: PMC9548246 DOI: 10.22092/ari.2021.353674.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/14/2021] [Indexed: 06/16/2023]
Abstract
Salmonellosis, among poultry infectious diseases, not only imposes economic losses in the field of poultry breeding but also is considered a zoonotic disease. This study aimed to investigate the presence of invA, sivH, and agfA virulence genes in Salmonella species. The present study was conducted on 30 Salmonella strains. Samples were cultured on selective and differential media, and afterward, the isolates were serotyped using specific antisera based on the Kauffman-White table. Subsequently, the samples were analyzed to detect invA, sivH, and agfA genes by polymerase chain reaction technique. The results indicated that 30 (100%) isolates had invA and agfA virulence genes and 28 (93.33%) isolates had a sivH virulence gene. The highest frequency of serotypes was related to Salmonella infantis. Among the studied serotypes, Salmonella uno and Salmonella O35 lacked the sivH virulence gene, unlike other serotypes. The findings of this study could pave the way for Salmonella monitoring and be used as a pattern to detect Salmonella bacteria-bearing genes encoding invasion and fimbria.
Collapse
Affiliation(s)
- Z Mashayekh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S Moradi Bidhendi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P Khaki
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
24
|
Faula LL, Cerqueira MMOP, Madeira JEGC, Souza MR, Souza FN, Amancio GCS. Phenotypic and Genotypic Characterization of Salmonella Isolates Recovered from Foods Linked to Human Salmonellosis Outbreaks in Minas Gerais State, Brazil. J Food Prot 2022; 85:142-154. [PMID: 34525206 DOI: 10.4315/jfp-21-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella is one of the primary pathogens that causes foodborne diseases worldwide. In the present study, we characterized Salmonella isolates recovered from foods linked to human salmonellosis outbreaks in Minas Gerais, Brazil, from 2003 to 2017. Serotype, antimicrobial susceptibility, presence of virulence genes, and genetic polymorphism as determined by repetitive element sequence-based PCR were determined for 70 Salmonella isolates. Thirteen Salmonella serotypes were identified, and the most prevalent were Enteritidis and Typhimurium, comprising 52 (74.3%) of the 70 isolates. Sixty-five (92.8%) of the isolates were resistant to at least 1 of the 15 antimicrobials tested. Ten isolates (14.2%) had a multidrug resistance phenotype. Isolates were screened for 16 virulence genes, which were found in 75.7 to 100% of the isolates. A statistical difference was found among Salmonella serotypes in the presence of the sipB, sopE, lfpA, sefA, and spvC genes. Based on their DNA fingerprints, 40 isolates of Salmonella Enteritidis from 16 outbreaks were separated into 14 groups and 12 isolates of Salmonella Typhimurium were separated into 6 groups. These serological patterns were similar to those reported by public health centers worldwide. Of concern is the high prevalence among the isolates in this study of both virulence genes and resistance to antimicrobials, especially to critically important drugs. Special attention should be given to Salmonella Enteritidis. Although the genomes of these Salmonella isolates were relatively variable, high genetic similarity was observed among them, and some had identical fingerprints. These results support the hypothesis of clonal circulation of Salmonella isolates causing human infections in Minas Gerais. HIGHLIGHTS
Collapse
Affiliation(s)
- Leandro L Faula
- Divisão de Vigilância Sanitária e Ambiental, Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Belo Horizonte 30510-010, Brazil.,Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Medicina Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Monica M O P Cerqueira
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Medicina Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Jovita E G C Madeira
- Divisão de Vigilância Sanitária e Ambiental, Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Belo Horizonte 30510-010, Brazil
| | - Marcelo R Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Medicina Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Fernando N Souza
- Departamento de Medicina Interna, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo 05508-270, Brazil.,Programa de Pós Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
| | - Gláucia C S Amancio
- Divisão de Vigilância Sanitária e Ambiental, Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Belo Horizonte 30510-010, Brazil
| |
Collapse
|
25
|
The Invasin and Complement-Resistance Protein Rck of Salmonella is More Widely Distributed than Previously Expected. Microbiol Spectr 2021; 9:e0145721. [PMID: 34704781 PMCID: PMC8549739 DOI: 10.1128/spectrum.01457-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rck open reading frame (ORF) on the pefI-srgC operon encodes an outer membrane protein responsible for invasion of nonphagocytic cell lines and resistance to complement-mediated killing. Until now, the rck ORF was only detected on the virulence plasmids of three serovars of Salmonella subsp. enterica (i.e., Bovismorbificans, Enteritidis, and Typhimurium). The increasing number of Salmonella genome sequences allowed us to use a combination of reference sequences and whole-genome multilocus sequence typing (wgMLST) data analysis to probe the presence of the operon and of rck in a wide array of isolates belonging to all Salmonella species and subspecies. We established the presence of partial or complete operons in 61 subsp. enterica serovars as well as in 4 other subspecies with various syntenies and frequencies. The rck ORF itself was retrieved in 36 subsp. enterica serovars and in two subspecies with either chromosomal or plasmid-borne localization. It displays high conservation of its sequence within the genus, and we demonstrated that most of the allelic variations identified did not alter the virulence properties of the protein. However, we demonstrated the importance of the residue at position 38 (at the level of the first extracellular loop of the protein) in the invasin function of Rck. Altogether, our results highlight that rck is not restricted to the three formerly identified serovars and could therefore have a more important role in virulence than previously expected. Moreover, this work raises questions about the mechanisms involved in rck acquisition and about virulence plasmid distribution and evolution. IMPORTANCE The foodborne pathogen Salmonella is responsible for a wide variety of pathologies depending on the infected host, the infecting serovars, and its set of virulence factors. However, the implication of each of these virulence factors and their role in the specific host-pathogen interplay are not fully understood. The significance of our research is in determining the distribution of one of these factors, the virulence plasmid-encoded invasin and resistance to complement killing protein Rck. In addition to providing elements of reflection concerning the mechanisms of acquisition of specific virulence genes in certain serotypes, this work will help to understand the role of Rck in the pathogenesis of Salmonella.
Collapse
|
26
|
Recent Evolution and Genomic Profile of Salmonella enterica Serovar Heidelberg Isolates from Poultry Flocks in Brazil. Appl Environ Microbiol 2021; 87:e0103621. [PMID: 34406824 DOI: 10.1128/aem.01036-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Heidelberg is isolated from poultry-producing regions around the world. In Brazil, S. Heidelberg has been frequently detected in poultry flocks, slaughterhouses, and chicken meat. The goal of the present study was to assess the population structure, recent temporal evolution, and some important genetic characteristics of S. Heidelberg isolated from Brazilian poultry farms. Phylogenetic analysis of 68 S. Heidelberg genomes sequenced here and additional whole-genome data from NCBI demonstrated that all isolates from the Brazilian poultry production chain clustered into a monophyletic group, here called S. Heidelberg Brazilian poultry lineage (SH-BPL). Bayesian analysis defined the time of the most recent common ancestor (tMRCA) as 2004, and the overall population size (Ne) was constant until 2008, when an ∼10-fold Ne increase was observed until circa 2013. SH-BPL presented at least two plasmids with replicons ColpVC (n = 68; 100%), IncX1 (n = 66; 97%), IncA/C2 (n = 65; 95.5%), ColRNAI (n = 43; 63.2%), IncI1 (n = 32; 47%), ColMG828, Col156, IncHI2A, IncHI2, IncQ1, IncX4, IncY, and TrfA (each with n < 4; <4% each). Antibiotic resistance genes were found, with high frequencies of fosA7 (n = 68; 100%), mdf(A) (n = 68; 100%), tet(34) (n = 68; 100%), sul2 (n = 64; 94.1%), and blaCMY-2 (n = 56; 82.3%), along with an overall multidrug resistance (MDR) profile. Ten Salmonella pathogenicity islands (SPI1 to SPI5, SPI9, and SPI11 to SPI14) and 139 virulence genes were also detected. The SH-BPL profile was like those of other previous S. Heidelberg isolates from poultry around the world in the 1990s. In conclusion, the present study demonstrates the recent introduction (2004) and high level of dissemination of an MDR S. Heidelberg lineage in Brazilian poultry operations. IMPORTANCE S. Heidelberg is the most frequent serovar in several broiler farms from the main Brazilian poultry-producing regions. Therefore, avian-source foods (mainly chicken carcasses) commercialized in the country and exported to other continents are contaminated with this foodborne pathogen, generating several national and international economic losses. In addition, isolates of this serovar are usually resistant to antibiotics and can cause human invasive and septicemic infection, representing a public health concern. This study demonstrates the use of whole-genome sequencing (WGS) to obtain epidemiological information for one S. Heidelberg lineage highly spread among Brazilian poultry farms. This information will help to define biosecurity measures to control this important Salmonella serovar in Brazilian and worldwide poultry operations.
Collapse
|
27
|
Melo RT, Galvão NN, Guidotti-Takeuchi M, Peres PABM, Fonseca BB, Profeta R, Azevedo VAC, Monteiro GP, Brenig B, Rossi DA. Molecular Characterization and Survive Abilities of Salmonella Heidelberg Strains of Poultry Origin in Brazil. Front Microbiol 2021; 12:674147. [PMID: 34220757 PMCID: PMC8253257 DOI: 10.3389/fmicb.2021.674147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to evaluate the genotypic and phenotypic characteristics of 20 strains of S. Heidelberg (SH) isolated from broilers produced in southern Brazil. The similarity and presence of genetic determinants linked to virulence, antimicrobial resistance, biofilm formation, and in silico-predicted metabolic interactions revealed this serovar as a threat to public health. The presence of the ompC, invA, sodC, avrA, lpfA, and agfA genes was detected in 100% of the strains and the luxS gene in 70% of them. None of the strains carries the blaSHV, mcr-1, qnrA, qnrB, and qnrS genes. All strains showed a multidrug-resistant profile to at least three non-β-lactam drugs, which include colistin, sulfamethoxazole, and tetracycline. Resistance to penicillin, ceftriaxone (90%), meropenem (25%), and cefoxitin (25%) were associated with the presence of blaCTX–M and blaCMY–2 genes. Biofilm formation reached a mature stage at 25 and 37°C, especially with chicken juice (CJ) addition. The sodium hypochlorite 1% was the least efficient in controlling the sessile cells. Genomic analysis of two strains identified more than 100 virulence genes and the presence of resistance to 24 classes of antibiotics correlated to phenotypic tests. Protein-protein interaction (PPI) prediction shows two metabolic pathways correlation with biofilm formation. Virulence, resistance, and biofilm determinants must be constant monitoring in SH, due to the possibility of occurring infections extremely difficult to cure and due risk of the maintenance of the bacterium in production environments.
Collapse
Affiliation(s)
- Roberta T Melo
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Newton N Galvão
- Ministry of Agriculture, Livestock and Supply, Rio de Janeiro, Brazil
| | | | - Phelipe A B M Peres
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Belchiolina B Fonseca
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme P Monteiro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Daise A Rossi
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
28
|
Bahramianfard H, Derakhshandeh A, Naziri Z, Khaltabadi Farahani R. Prevalence, virulence factor and antimicrobial resistance analysis of Salmonella Enteritidis from poultry and egg samples in Iran. BMC Vet Res 2021; 17:196. [PMID: 34030671 PMCID: PMC8142639 DOI: 10.1186/s12917-021-02900-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most common serovars, associated with human salmonellosis. The food-borne outbreak of this bacterium is mainly related to the consumption of contaminated poultry meat and poultry products, including eggs. Therefore, rapid and accurate detection, besides investigation of virulence characteristics and antimicrobial resistance profiles of S. Enteritidis in poultry and poultry egg samples is essential. A total of 3125 samples (2250 poultry and 875 poultry egg samples), sent to the administrative centers of veterinary microbiology laboratories in six provinces of Iran, were examined for Salmonella contamination, according to the ISO 6579 guideline. Next, duplex PCR was conducted on 250 presumptive Salmonella isolates to detect invA gene for identification of the genus Salmonella and sdf gene for identification of S. Enteritidis. Subsequently, the S. Enteritidis isolates were examined for detection of important virulence genes (pagC, cdtB, msgA, spaN, tolC, lpfC, and spvC) and determination of antibiotic resistance patterns against nalidixic acid, trimethoprim-sulfamethoxazole, cephalothin, ceftazidime, colistin sulfate, and kanamycin by the disk diffusion method. RESULTS Overall, 8.7 and 2.3% of poultry samples and 6.3 and 1.3% of eggs were contaminated with Salmonella species and S. Enteritidis, respectively. The invA and msgA genes (100%) and cdtB gene (6.3%) had the highest and the lowest prevalence rates in S. Enteritidis isolates. The spvC gene, which is mainly located on the Salmonella virulence plasmid, was detected in 50.8% of S. Enteritidis isolates. The S. Enteritidis isolates showed the highest and the lowest resistance to nalidixic acid (87.3%) and ceftazidime (11.1%), respectively. Unfortunately, 27.0% of S. Enteritidis isolates were multidrug-resistant (MDR). CONCLUSION The rate of contamination with Salmonella in the poultry and egg samples, besides the presence of antimicrobial resistant and MDR Salmonella isolates harboring the virulence genes in these samples, could significantly affect food safety and subsequently, human health. Therefore, continuous monitoring of animal-source foods, enhancement of poultry farm control measures, and limiting the use of antibiotics for prophylactic purposes in food producing animals, are essential for reducing the zoonotic risk of this foodborne pathogen for consumers and also choosing effective antibiotics for the treatment of salmonellosis.
Collapse
Affiliation(s)
- Hassan Bahramianfard
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zahra Naziri
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Reza Khaltabadi Farahani
- Department of Poultry Disease, National Reference Laboratories, Applied Studies and Diagnosis Center, Tehran, Iran
| |
Collapse
|
29
|
Dos Santos AMP, Ferrari RG, Panzenhagen P, Rodrigues GL, Conte-Junior CA. Virulence genes identification and characterization revealed the presence of the Yersinia High Pathogenicity Island (HPI) in Salmonella from Brazil. Gene 2021; 787:145646. [PMID: 33848574 DOI: 10.1016/j.gene.2021.145646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
Salmonella spp. is one of the major agents of foodborne disease worldwide, and its virulence genes are responsible for the main pathogenic mechanisms of this micro-organism. The whole-genome sequencing (WGS) of pathogens has become a lower-cost and more accessible genotyping tool providing many gene analysis possibilities. This study provided an in silico investigation of 129 virulence genes, including plasmidial and bacteriophage genes from Brazilian strains' public Salmonella genomes. The frequency analysis of the four most sequenced serovars and a temporal analysis over the past four decades was also performed. The NCBI sequence reads archive (SRA) database comprised 1077 Salmonella public whole-genome sequences of strains isolated in Brazil between 1968 and 2018. Among the 1077 genomes, 775 passed in Salmonella in silico Typing (SISTR) quality control, which also identified 41 different serovars in which the four most prevalent were S. Enteritidis, S. Typhimurium, S. Dublin, and S. Heidelberg. Among these, S. Heidelberg presented the most distinct virulence profile, besides presenting Yersinia High Pathogenicity Island (HPI), rare and first reported in Salmonella from Brazil. The genes mgtC, csgC, ssaI and ssaS were the most prevalent within the 775 genomes with more than 99% prevalence. On the other hand, the less frequent genes were astA, iucBCD, tptC and shdA, with less than 1% frequency. All of the plasmids and bacteriophages virulence genes presented a decreasing trend between the 2000 s and 2010 s decades, except for the phage gene grvA, which increased in this period. This study provides insights into Salmonella virulence genes distribution in Brazil using freely available bioinformatics tools. This approach could guide in vivo and in vitro studies besides being an interesting method for the investigation and surveillance of Salmonella virulence. Moreover, here we propose the genes mgtC, csgC, ssaI and ssaS as additional targets for PCR identification of Salmonella in Brazil due to their very high frequency in the studied genomes.
Collapse
Affiliation(s)
- Anamaria M P Dos Santos
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela G Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil.
| | - Pedro Panzenhagen
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grazielle L Rodrigues
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Molecular & Analytical Laboratory Center, Faculty of Veterinary, Department of Food Technology, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Center for Food Analysis (NAL-LADETEC), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Dominguez JE, Viñas MR, Herrera M, Moroni M, Gutkind GO, Mercado EC, Di Conza JA, Chacana PA. Molecular characterization and antimicrobial resistance profiles of Salmonella Heidelberg isolates from poultry. Zoonoses Public Health 2021; 68:309-315. [PMID: 33594796 DOI: 10.1111/zph.12819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022]
Abstract
In the last 10 years, Salmonella Heidelberg has been extensively isolated from poultry in several countries. In this context, molecular characterization is essential to understand whether the strains have entered the farms from a single or several sources. Thus, the aim of this study was to determine the genetic relationship and antimicrobial susceptibility of S. Heidelberg strains isolated between 2011 and 2012 from broiler farms belonging to three integrated poultry companies located in Argentina. The genetic relatedness of the S. Heidelberg isolates was determined by pulsed-field gel electrophoresis (PFGE), and resistance to 21 antimicrobials was determined by the disc diffusion method. The isolates were assigned to four PFGE patterns. Most of the strains showed 100% similarity and belonged to the same integrated poultry company. This PFGE pattern was also prevalent in S. Heidelberg strains isolated from humans in several provinces of Argentina, which suggests an epidemiological association between human and poultry strains. All the isolates were classified as multidrug-resistant (MDR), and no clear relationship was observed between PFGE and resistance patterns. S. Heidelberg strains may circulate among farms from the same integrated company due to common sources of contamination. To guarantee the safety of the poultry product for the consumers, holistic approaches including surveillance of Salmonella throughout the production chain together with control measures are crucial.
Collapse
Affiliation(s)
- Johana Elizabeth Dominguez
- Instituto de Patobiología Veterinaria (IPVet), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
| | - María Rosa Viñas
- Servicios de Enterobacterias, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán (ANLIS-Malbrán), Buenos Aires, Argentina
| | - Mariana Herrera
- Dirección General de Laboratorios y Control Técnico (Dilab), SENASA, Buenos Aires, Argentina
| | - Mirian Moroni
- Servicios de Enterobacterias, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán (ANLIS-Malbrán), Buenos Aires, Argentina
| | - Gabriel Omar Gutkind
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Elsa Cristina Mercado
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICvyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - José Alejandro Di Conza
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Pablo Anibal Chacana
- Instituto de Patobiología Veterinaria (IPVet), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina.,Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICvyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| |
Collapse
|
31
|
Kumar N, Mohan K, Georges K, Dziva F, Adesiyun AA. Occurrence of Virulence and Resistance Genes in Salmonella in Cloacae of Slaughtered Chickens and Ducks at Pluck Shops in Trinidad. J Food Prot 2021; 84:39-46. [PMID: 32818228 DOI: 10.4315/jfp-20-203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
ABSTRACT The study used PCR to determine the molecular basis of the antibiotic resistance and virulence profiles of isolates of Salmonella by targeting genes encoding for carriage and persistence in the poultry. Of a total 1,503 cecal samples collected from poultry, 91 (6.1%) were positive for Salmonella. Ten different serotypes were detected from Salmonella isolates. The study was also conducted to determine the occurrence of 13 virulence and 12 resistance genes in isolates of Salmonella. All 46 isolates of Salmonella tested were positive for one or more of the 12 virulence genes detected, ranging from 0.0% (viaB) to 100.0% (invA, mgtB, pipA, and spi4D) (P < 0.05). Occurrence of virulence genes varied significantly (P < 0.05) by serotype but not by animal species. Only 4 (33.3%) of 12 resistance genes assayed were detected: strA, ampC, cmy2, and qnrB. Overall, the occurrence of detected resistance genes was 71.7% (33 of 46), and 87.1 and 40.0% of the isolates from chickens and ducks, respectively, were positive (P = 0.0009). The occurrence of resistance genes ranged from 2.2% (cmy2) to 50.0% (qnrB) in isolates positive for resistance gene. The findings provide evidence that poultry from "pluck shops" are colonized by Salmonella pathogens that harbor virulence and antimicrobial resistance genes; this may have clinical and therapeutic consequences, if the genes detected are expressed. Although there is a need for prudent use of antimicrobial agents in poultry production systems, there should be constant monitoring for the prevalence of resistance in Salmonella isolates using phenotypic methods. The importance of monitoring the occurrence of resistance genes in the pathogens in Trinidad cannot be ignored. HIGHLIGHTS
Collapse
Affiliation(s)
- Nitu Kumar
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine 331311, Trinidad and Tobago (ORCID: https://orcid.org/0000-0003-2082-6996 [N.K.]; https://orcid.org/0000-0001-6407-7654 [K.M.]; https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Krishna Mohan
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine 331311, Trinidad and Tobago (ORCID: https://orcid.org/0000-0003-2082-6996 [N.K.]; https://orcid.org/0000-0001-6407-7654 [K.M.]; https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Karla Georges
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine 331311, Trinidad and Tobago (ORCID: https://orcid.org/0000-0003-2082-6996 [N.K.]; https://orcid.org/0000-0001-6407-7654 [K.M.]; https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Francis Dziva
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine 331311, Trinidad and Tobago (ORCID: https://orcid.org/0000-0003-2082-6996 [N.K.]; https://orcid.org/0000-0001-6407-7654 [K.M.]; https://orcid.org/0000-0001-9470-9421 [A.A.A.])
| | - Abiodun A Adesiyun
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of The West Indies, St. Augustine 331311, Trinidad and Tobago (ORCID: https://orcid.org/0000-0003-2082-6996 [N.K.]; https://orcid.org/0000-0001-6407-7654 [K.M.]; https://orcid.org/0000-0001-9470-9421 [A.A.A.]).,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
32
|
Distribution of Salmonella Serovars in Humans, Foods, Farm Animals and Environment, Companion and Wildlife Animals in Singapore. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165774. [PMID: 32785026 PMCID: PMC7460486 DOI: 10.3390/ijerph17165774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023]
Abstract
We analyzed the epidemiological distribution of Salmonella serovars in humans, foods, animals and the environment as a One-Health step towards identifying risk factors for human salmonellosis. Throughout the 2012-2016 period, Salmonella ser. Enteritidis was consistently the predominating serovar attributing to >20.0% of isolates in humans. Other most common serovars in humans include Salmonella ser. Stanley, Salmonella ser. Weltevreden, Salmonella ser. Typhimurium and Salmonella ser. 4,5,12:b:-(dT+). S. Enteritidis was also the most frequent serovar found among the isolates from chicken/chicken products (28.5%) and eggs/egg products (61.5%) during the same period. In contrast, S. Typhimurium (35.2%) and Salmonella ser. Derby (18.8%) were prevalent in pork/pork products. S. Weltevreden was more frequent in seafood (19.2%) than others (≤3.0%). Most isolates (>80.0%) from farms, companion and wildlife animals belonged to serovars other than S. Enteritidis or S. Typhimurium. Findings demonstrate the significance of a One-Health investigative approach to understand the epidemiology Salmonella for more effective and integrated surveillance systems.
Collapse
|
33
|
Quantitative LAMP and PCR Detection of Salmonella in Chicken Samples Collected from Local Markets around Pathum Thani Province, Thailand. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8833173. [PMID: 32695808 PMCID: PMC7368944 DOI: 10.1155/2020/8833173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Salmonella is a bacterium that infects people when they consume contaminated food or liquids. To prevent humans from becoming ill, it is useful to have an efficient method of detecting Salmonella before the disease is passed on through the food chain. In this research, the efficiency of Salmonella detection was compared using the following four methods: conventional loop-mediated isothermal amplification (LAMP), PCR, quantitative LAMP (qLAMP), and qPCR. The artificial infection of chicken samples started with incubating of 10 mL of 108 CFU of S. typhimurium for 6 hr. and enriching for 2 hr. to represent real contamination of the samples. The results show that the sensitivity of Salmonella DNA detection in PCR, qPCR, LAMP, and qLAMP were 50 ng, 5 ng, 50 pg, and and 500 fg, respectively. Thirty samples of 10 g chicken were collected from 10 markets in Pathum Thani, Thailand; then, the infection was detected. The conventional LAMP, qLAMP, and qPCR methods detected Salmonella in all the chicken samples. However, the conventional PCR method detected Salmonella infection in only eight of the samples. Overall, the qLAMP method had the highest sensitivity of Salmonella DNA detection.
Collapse
|
34
|
F. Rabello R, R. Bonelli R, A. Penna B, P. Albuquerque J, M. Souza R, M. F. Cerqueira A. Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview. Animals (Basel) 2020; 10:E552. [PMID: 32224900 PMCID: PMC7222418 DOI: 10.3390/ani10040552] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
In animal husbandry, antimicrobial agents have been administered as supplements to increase production over the last 60 years. Large-scale animal production has increased the importance of antibiotic management because it may favor the evolution of antimicrobial resistance and select resistant strains. Brazil is a significant producer and exporter of animal-derived food. Although Brazil is still preparing a national surveillance plan, several changes in legislation and timely programs have been implemented. Thus, Brazilian data on antimicrobial resistance in bacteria associated with animals come from official programs and the scientific community. This review aims to update and discuss the available Brazilian data on this topic, emphasizing legal aspects, incidence, and genetics of the resistance reported by studies published since 2009, focusing on farm animals and derived foods with the most global public health impact. Studies are related to poultry, cattle, and pigs, and mainly concentrate on non-typhoid Salmonella, Escherichia coli, and Staphylococcus aureus. We also describe legal aspects of antimicrobial use in this context; and the current occurrence of genetic elements associated with resistance to beta-lactams, colistin, and fluoroquinolones, among other antimicrobial agents. Data here presented may be useful to provide a better understanding of the Brazilian status on antimicrobial resistance related to farm animals and animal-derived food products.
Collapse
Affiliation(s)
- Renata F. Rabello
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Raquel R. Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno A. Penna
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Julia P. Albuquerque
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| | - Rossiane M. Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói 24120-191, Brazil
| | - Aloysio M. F. Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil (B.A.P.); (J.P.A.)
| |
Collapse
|
35
|
Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AMF. Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview. Animals (Basel) 2020. [PMID: 32224900 DOI: 10.3390/ani1004055210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
In animal husbandry, antimicrobial agents have been administered as supplements to increase production over the last 60 years. Large-scale animal production has increased the importance of antibiotic management because it may favor the evolution of antimicrobial resistance and select resistant strains. Brazil is a significant producer and exporter of animal-derived food. Although Brazil is still preparing a national surveillance plan, several changes in legislation and timely programs have been implemented. Thus, Brazilian data on antimicrobial resistance in bacteria associated with animals come from official programs and the scientific community. This review aims to update and discuss the available Brazilian data on this topic, emphasizing legal aspects, incidence, and genetics of the resistance reported by studies published since 2009, focusing on farm animals and derived foods with the most global public health impact. Studies are related to poultry, cattle, and pigs, and mainly concentrate on non-typhoid Salmonella, Escherichia coli, and Staphylococcus aureus. We also describe legal aspects of antimicrobial use in this context; and the current occurrence of genetic elements associated with resistance to beta-lactams, colistin, and fluoroquinolones, among other antimicrobial agents. Data here presented may be useful to provide a better understanding of the Brazilian status on antimicrobial resistance related to farm animals and animal-derived food products.
Collapse
Affiliation(s)
- Renata F Rabello
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Raquel R Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bruno A Penna
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Julia P Albuquerque
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| | - Rossiane M Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói 24120-191, Brazil
| | - Aloysio M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói 24210-130, Brazil
| |
Collapse
|
36
|
Rodrigues IBBE, Silva RL, Menezes J, Machado SCA, Rodrigues DP, Pomba C, Abreu DLC, Nascimento ER, Aquino MHC, Pereira VLA. High Prevalence of Multidrug-Resistant Nontyphoidal Salmonella Recovered from Broiler Chickens and Chicken Carcasses in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - RL Silva
- Universidade Federal Fluminense, Brazil
| | | | | | | | - C Pomba
- Universidade de Lisboa, Portugal
| | - DLC Abreu
- Universidade Federal Fluminense, Brazil
| | | | | | | |
Collapse
|