1
|
Garay MI, Mazo T, Ferrero V, Barotto NN, Lagares C, Granton MF, Moreira-Espinoza MJ, Cremonezzi DC, Comba A, Brunotto MN, Tolosa EJ, Fernandez-Zapico ME, Pasqualini ME. Novel inhibitory effect of Omega-3 fatty acids regulating pancreatic cancer progression. Carcinogenesis 2025; 46:bgae081. [PMID: 39742417 DOI: 10.1093/carcin/bgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/03/2025] Open
Abstract
Pancreatic cancer is a devastating malignancy in great need of new and more effective treatment approaches. In recent years, studies have indicated that nutritional interventions, particularly nutraceuticals, may provide novel avenues to modulate cancer progression. Here, our study characterizes the impact of ω-3 polyunsaturated fatty acids, eicosapentaenoic acid, and docosahexaenoic acid, as a nutraceutical intervention in pancreatic cancer using a genetically engineered mouse model driven by KrasG12D and Trp53R172H. This model closely resembles human pancreatic carcinogenesis, offering a disease relevant platform for translational research. Our findings showed that ω-3 polyunsaturated fatty acids intervention (using a diet supplemented with 6% cod liver oil) significantly reduced tumor volume as well as lung and liver metastasis and a trend toward improved survival rate compared with control treated mice. This antitumoral effect was accompanied by distinct changes in tumor membrane fatty acid profile and eicosanoids release. Furthermore, the eicosapentaenoic acid and docosahexaenoic acid intervention also reduced malignant histological parameters and induced apoptosis without affecting cell proliferation. Of note is the significant reduction in tumor fibrosis that was associated with decreased levels of Sonic Hedgehog, a major ligand controlling this cellular compartment in pancreatic cancer. All together our results demonstrate the impact of eicosapentaenoic acid and docosahexaenoic acid as antitumor regulators in pancreatic cancer, suggesting potential for ω-3 polyunsaturated fatty acids as a possible antitumoral dietary intervention. This research opens new avenues for integrating nutraceutical strategies in pancreatic cancer management.
Collapse
Affiliation(s)
- María I Garay
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Tamara Mazo
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Victoria Ferrero
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Nelso N Barotto
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - Clarisa Lagares
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
| | - María F Granton
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - María J Moreira-Espinoza
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| | - David C Cremonezzi
- Departamento de Patología, Hospital Nacional de Clínicas, FCM-UNC, 5000 Córdoba, Argentina
| | - Andrea Comba
- Department of Pathology, Division Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Mabel N Brunotto
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, UNC, 5016 Córdoba, Argentina
| | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | | | - María E Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina
- Instituto de Biología Celular y Cátedra de Biología Celular, Histología y Embriología, FCM-UNC, 5016 Córdoba, Argentina
| |
Collapse
|
2
|
The Modulatory Effects of Fatty Acids on Cancer Progression. Biomedicines 2023; 11:biomedicines11020280. [PMID: 36830818 PMCID: PMC9953116 DOI: 10.3390/biomedicines11020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide and the global cancer burden rises rapidly. The risk factors for cancer development can often be attributed to lifestyle factors, of which an unhealthy diet is a major contributor. Dietary fat is an important macronutrient and therefore a crucial part of a well-balanced and healthy diet, but it is still unclear which specific fatty acids contribute to a healthy and well-balanced diet in the context of cancer risk and prognosis. In this review, we describe epidemiological evidence on the associations between the intake of different classes of fatty acids and the risk of developing cancer, and we provide preclinical evidence on how specific fatty acids can act on tumor cells, thereby modulating tumor progression and metastasis. Moreover, the pro- and anti-inflammatory effects of each of the different groups of fatty acids will be discussed specifically in the context of inflammation-induced cancer progression and we will highlight challenges as well as opportunities for successful application of fatty acid tailored nutritional interventions in the clinic.
Collapse
|
3
|
Relationship between 4-Hydroxynonenal (4-HNE) as Systemic Biomarker of Lipid Peroxidation and Metabolomic Profiling of Patients with Prostate Cancer. Biomolecules 2023; 13:biom13010145. [PMID: 36671530 PMCID: PMC9855859 DOI: 10.3390/biom13010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
An oxidative degradation product of the polyunsaturated fatty acids, 4-hydroxynonenal (4-HNE), is of particular interest in cancer research due to its concentration-dependent pleiotropic activities affecting cellular antioxidants, metabolism, and growth control. Although an increase in oxidative stress and lipid peroxidation was already associated with prostate cancer progression a few decades ago, the knowledge of the involvement of 4-HNE in prostate cancer tumorigenesis is limited. This study investigated the appearance of 4-HNE-protein adducts in prostate cancer tissue by immunohistochemistry using a genuine 4-HNE monoclonal antibody. Plasma samples of the same patients and samples of the healthy controls were also analyzed for the presence of 4-HNE-protein adducts, followed by metabolic profiling using LC-ESI-QTOF-MS and GC-EI-Q-MS. Finally, the analysis of the metabolic pathways affected by 4-HNE was performed. The obtained results revealed the absence of 4-HNE-protein adducts in prostate carcinoma tissue but increased 4-HNE-protein levels in the plasma of these patients. Metabolomics revealed a positive association of different long-chain and medium-chain fatty acids with the presence of prostate cancer. Furthermore, while linoleic acid positively correlated with the levels of 4-HNE-protein adducts in the blood of healthy men, no correlation was obtained for cancer patients indicating altered lipid metabolism in this case. The metabolic pathway of unsaturated fatty acids biosynthesis emerged as significantly affected by 4-HNE. Overall, this is the first study linking 4-HNE adduction to plasma proteins with specific alterations in the plasma metabolome of prostate cancer patients. This study revealed that increased 4-HNE plasma protein adducts could modulate the unsaturated fatty acids biosynthesis pathway. It is yet to be determined if this is a direct result of 4-HNE or whether they are produced by the same underlying mechanisms. Further mechanistic studies are needed to grasp the biological significance of the observed changes in prostate cancer tumorigenesis.
Collapse
|
4
|
Huang J, Zhao B, Weinstein SJ, Albanes D, Mondul AM. Metabolomic profile of prostate cancer-specific survival among 1812 Finnish men. BMC Med 2022; 20:362. [PMID: 36280842 PMCID: PMC9594924 DOI: 10.1186/s12916-022-02561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Abnormal metabolism and perturbations in metabolic pathways play significant roles in the development and progression of prostate cancer; however, comprehensive metabolomic analyses of human data are lacking and needed to elucidate the interrelationships. METHODS We examined the serum metabolome in relation to prostate cancer survival in a cohort of 1812 cases in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Using an ultrahigh-performance LC-MS/MS platform, we identified 961 known metabolites in prospectively collected serum. Median survival time from diagnosis to prostate cancer-specific death (N=472) was 6.6 years (interquartile range=2.9-11.1 years). Cox proportional hazards regression models estimated hazard ratios and 95% confidence intervals of the associations between the serum metabolites (in quartiles) and prostate cancer death, adjusted for age at baseline and diagnosis, disease stage, and Gleason sum. In order to calculate risk scores, we first randomly divided the metabolomic data into a discovery set (70%) and validated in a replication set (30%). RESULTS Overall, 49 metabolites were associated with prostate cancer survival after Bonferroni correction. Notably, higher levels of the phospholipid choline, amino acid glutamate, long-chain polyunsaturated fatty acid (n6) arachidonate (20:4n6), and glutamyl amino acids gamma-glutamylglutamate, gamma-glutamylglycine, and gamma-glutamylleucine were associated with increased risk of prostate cancer-specific mortality (fourth versus first quartile HRs=2.07-2.14; P-values <5.2×10-5). By contrast, the ascorbate/aldarate metabolite oxalate, xenobiotics S-carboxymethyl-L-cysteine, fibrinogen cleavage peptides ADpSGEGDFXAEGGGVR and fibrinopeptide B (1-12) were related to reduced disease-specific mortality (fourth versus first quartile HRs=0.82-0.84; P-value <5.2×10-5). Further adjustment for years from blood collection to cancer diagnosis, body mass index, smoking intensity and duration, and serum total and high-density lipoprotein cholesterol did not alter the results. Participants with a higher metabolic score based on the discovery set had an elevated risk of prostate cancer-specific mortality in the replication set (fourth versus first quartile, HR=3.9, P-value for trend<0.0001). CONCLUSIONS The metabolic traits identified in this study, including for choline, glutamate, arachidonate, gamma-glutamyl amino acids, fibrinopeptides, and endocannabinoid and redox pathways and their composite risk score, corroborate our previous analysis of fatal prostate cancer and provide novel insights and potential leads regarding the molecular basis of prostate cancer progression and mortality.
Collapse
Affiliation(s)
- Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Nakamura N, Fujihara H, Kawaguchi K, Yamada H, Nakayama R, Yasukawa M, Kishi Y, Hamada Y, Masutani M. Possible Action of Olaparib for Preventing Invasion of Oral Squamous Cell Carcinoma In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23052527. [PMID: 35269669 PMCID: PMC8909974 DOI: 10.3390/ijms23052527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Despite recent advances in treatment, the prognosis of oral cancer remains poor, and prevention of recurrence and metastasis is critical. Olaparib is a PARP1 inhibitor that blocks polyADP-ribosylation, which is involved in the epithelial–mesenchymal transition (EMT) characteristic of tumor recurrence. We explored the potential of olaparib in inhibiting cancer invasion in oral carcinoma using three oral cancer cell lines, HSC-2, Ca9-22, and SAS. Olaparib treatment markedly reduced their proliferation, migration, invasion, and adhesion. Furthermore, qRT-PCR revealed that olaparib inhibited the mRNA expression of markers associated with tumorigenesis and EMT, notably Ki67, Vimentin, β-catenin, MMP2, MMP9, p53, and integrin α2 and β1, while E-Cadherin was upregulated. In vivo analysis of tumor xenografts generated by injection of HSC-2 cells into the masseter muscles of mice demonstrated significant inhibition of tumorigenesis and bone invasion by olaparib compared with the control. This was associated with reduced expression of proteins involved in osteoclastogenesis, RANK and RANKL. Moreover, SNAIL and PARP1 were downregulated, while E-cadherin was increased, indicating the effect of olaparib on proteins associated with EMT in this model. Taken together, these findings confirm the effects of olaparib on EMT and bone invasion in oral carcinoma and suggest a new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Nanami Nakamura
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Hisako Fujihara
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
- Department of Oral Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
- Correspondence: ; Tel.: +81-45-580-8330; Fax: +81-45-581-1391
| | - Koji Kawaguchi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Hiroyuki Yamada
- Division of Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8050, Japan;
| | - Ryoko Nakayama
- Department of Pathology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
| | - Masaaki Yasukawa
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Yuta Kishi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Mitsuko Masutani
- Department of Frontier Life Science, Graduate School of Biochemical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
6
|
Aghasizadeh M, Moghaddam T, Bahrami AR, Sadeghian H, Alavi SJ, Matin MM. 8-Geranyloxycarbostyril as a potent 15-LOX-1 inhibitor showed great anti-tumor effects against prostate cancer. Life Sci 2022; 293:120272. [PMID: 35065164 DOI: 10.1016/j.lfs.2021.120272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Carbostyrils are quinolone derivatives, with possible growth inhibition properties on cancer cells. Unlike many tumors, 15-Lipoxygenase-1 (15-LOX-1) is highly expressed in prostate cancer (PCa) cells and has oncogenic properties. Here, with the hypothesis that 6-, 7- and 8-geranyloxycarbostyril (GQ) have inhibitory properties on 15-LOX-1, their effects were assessed on PCa cells. Their cytotoxic effects were evaluated by MTT assay and mechanism of cell death was investigated using annexin V/PI staining. Finally, the anti-tumor properties of 8-GQ were assessed in immunocompromised C57BL/6 mice bearing human PCa cells. Accordingly, these compounds could effectively inhibit 15-LOX activity in PCa cells. MTT and flow cytometry tests confirmed their toxic effects on PCa cells, with no significant toxicity on normal cells, and apoptosis was the main mechanism of cell death. In vivo results indicated that use of 8-GQ at 50 mg/kg had stronger anti-tumor effects than 5 mg/kg cisplatin, with fewer side effects on normal tissues. Therefore, 8-GQ can be introduced as a potential drug candidate with 15-LOX-1 inhibitory potency, which can be effective in treatment of prostate cancer, and should be considered for further drug screening investigations.
Collapse
Affiliation(s)
- Mehrdad Aghasizadeh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Jamal Alavi
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
7
|
Garay MI, Comba A, Vara Messler M, Barotto NN, Silva RA, Repossi G, Quiroga PL, Mazzudulli GM, Brunotto MN, Pasqualini ME. Tumorigenic effect mediated by ROS/eicosanoids and their regulation on TP53 expression in a murine mammary gland adenocarcinoma. Prostaglandins Other Lipid Mediat 2021; 155:106564. [PMID: 34004336 DOI: 10.1016/j.prostaglandins.2021.106564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the in vivo and in vitro effects of dietary ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) and their derivatives on the expression of TP53 and their relationship with cellular proliferation and death in a murine mammary adenocarcinoma model. BALB/c mice were divided in three diet groups: chia oil (ChO) rich in ω-3, corn oil (CO) rich in ω-6/ω-3 and safflower oil (SO) rich in ω-6 and subcutaneously inoculated with LMM3 mammary tumor cell line. Results demonstrated that diets with higher concentration of omega-6 PUFAs induced an increment of linoleic and arachidonic acid on tumor cell membranes increasing ROS liberation, 12(S)-HHT generation, TP53, Ki67 expression and cell proliferation. However, diets enriched with high content in omega-3 PUFAs induced higher tumor cell apoptosis and tumor infiltration of CD3+ lymphocytes, lowest cell viability and proliferation. Dietary omega-3 PUFAs nutritional intervention can be used as a potential preventative strategy to inhibit the molecular signaling pathways involved in the mammary tumor growth process as the TP53.
Collapse
Affiliation(s)
- M I Garay
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - A Comba
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA.
| | - M Vara Messler
- Dipartimento di Oncologia, Università di Torino, 10124 Torino, Italy.
| | - N N Barotto
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - R A Silva
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - G Repossi
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - P L Quiroga
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - G M Mazzudulli
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - M N Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - M E Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina; Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
8
|
Fontaine D, Figiel S, Félix R, Kouba S, Fromont G, Mahéo K, Potier-Cartereau M, Chantôme A, Vandier C. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res 2020; 61:840-858. [PMID: 32265321 PMCID: PMC7269763 DOI: 10.1194/jlr.ra120000634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Indexed: 12/16/2022] Open
Abstract
Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage [i.e., plasmalogens (Pls)] at the sn1 position of the glycerol backbone, and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs) and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.
Collapse
Affiliation(s)
- Delphine Fontaine
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sandy Figiel
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Romain Félix
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sana Kouba
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Gaëlle Fromont
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Department of Pathology, CHRU Bretonneau, F-37044 Tours CEDEX 9, France
| | - Karine Mahéo
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | | | - Aurélie Chantôme
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | - Christophe Vandier
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France. mailto:
| |
Collapse
|
9
|
Jiao Y, Watts T, Xue J, Hannafon B, Ding WQ. Sorafenib and docosahexaenoic acid act in synergy to suppress cancer cell viability: a role of heme oxygenase 1. BMC Cancer 2018; 18:1042. [PMID: 30367621 PMCID: PMC6204058 DOI: 10.1186/s12885-018-4946-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022] Open
Abstract
Background Docosahexaenoic acid (DHA) is a long chain n-3 polyunsaturated fatty acid that has anticancer activity. Heme oxygenase 1 (HO-1) is a potential therapeutic target due to its cytoprotective activity in cancer cells. We recently reported that DHA induces HO-1 gene transcription in human cancer cells by augmenting the degradation of Bach1 protein, which functions as a negative regulator of HO-1. Since the degradation of Bach1 protein relies on protein phosphorylation, we hypothesized that DHA-induced HO-1 gene transcription could be attenuated by kinase inhibitors, resulting in an enhanced cytotoxicity. Sorafenib, a tyrosine kinase inhibitor, was first applied to test our hypothesis. Methods Human cancer cell lines and a xenograft nude mouse model were applied to test our hypothesis. Gene expression was analyzed by western blot analysis and reporter gene assay. Cell viability was analyzed using a colorimetric assay. Isobologram was applied to analyze drug action. Results Pretreatment of cancer cells with Sorafenib significantly attenuated DHA-induced degradation of Bach1 protein. Consequently, DHA-induced HO-1 gene transcription was reversed by Sorafenib as evidenced by western blot and reporter gene analysis. Sorafenib acted synergistically with DHA to suppress cancer cell viability in various human cancer cell lines and suppressed tumor xenograft growth in mice fed a fish oil enriched diet (high n-3/DHA), as compared to mice fed a corn oil (high n-6) diet. Screening of the NCI-Oncology Drug Set IV identified a group of anticancer compounds, including Sorafenib, which enhanced DHA’s cytotoxicity, as well as a set of compounds that attenuated DHA’s cytotoxicity. Conclusions We demonstrate that sorafenib attenuates DHA-induced HO-1 expression and acts in synergy with DHA to suppress cancer cell viability and tumor growth. Considering the known health benefits of DHA and the clinical effectiveness of Sorafenib, their combination is an attractive therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK, 73104, USA.,Department of Radiation Genetics, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Tanya Watts
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK, 73104, USA
| | - Jing Xue
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK, 73104, USA.,Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Bethany Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, Oklahoma City, 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK, 73104, USA. .,Peggy and Charles Stephenson Cancer Center, Oklahoma City, 73104, USA.
| |
Collapse
|
10
|
Ganesan K, Sukalingam K, Xu B. Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers- A critical review. Crit Rev Food Sci Nutr 2017; 59:488-505. [DOI: 10.1080/10408398.2017.1379470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University – Hong Kong Baptist University United International College, Zhuhai, China
| | - Kumeshini Sukalingam
- Food Science and Technology Program, Beijing Normal University – Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University – Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
11
|
Scherma ME, Madzzuduli G, Silva RA, Garay MI, Repossi G, Brunotto M, Pasqualini ME. The effects of ω-6 and ω-3 fatty-acids on early stages of mice DMBA submandibular glands tumorigenesis. Prostaglandins Leukot Essent Fatty Acids 2017; 125:48-55. [PMID: 28987722 DOI: 10.1016/j.plefa.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 01/28/2023]
Abstract
The aim of this work was: to assess the impact of diets enriched in polyunsaturated fatty acids ω-3 and ω-6 families on the lipid profile of cell membrane and their effect on cycle regulation and apoptosis, evaluated by TP53 and Ki-67 expression in 9,10-dimethyl-1,2-benzanthracene (DMBA) induced tumor development in submandibular glands (SMG) in murine models. To generate tumorigenic changes, SMG mice in the experimental group were injected with 50μl of 0.5% of DMBA. Both control (no DMBA) and experimental groups of BALB/c mice were fed with: chia oil (ChO), rich in ω-3 fatty acid; corn oil (CO), rich in ω-6/ω-3 fatty acid; and safflower (SO) oil, rich in ω-6fatty acid. Results demonstrate novel differential effects of ω-3 and ω-6 PUFAs on the regulation of early tumorigenesis events in murine SMG injected with DMBA. This knowledge may help to develop chemoprotective treatments, therapeutic agents and health promotion and prevention activities in humans.
Collapse
Affiliation(s)
- M E Scherma
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - G Madzzuduli
- Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - R A Silva
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - M I Garay
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - G Repossi
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina
| | - M Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - M E Pasqualini
- Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud, (INICSA-CONICET-UNC), Argentina.
| |
Collapse
|
12
|
Fasano E, Serini S, Cittadini A, Calviello G. Long-chain n-3 PUFA against breast and prostate cancer: Which are the appropriate doses for intervention studies in animals and humans? Crit Rev Food Sci Nutr 2017; 57:2245-2262. [PMID: 25897862 DOI: 10.1080/10408398.2013.850060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The potential antineoplastic effect of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) remains a highly controversial issue. Numerous animal studies have supported the anticancer role of these dietary fatty acids, whereas conflicting results have been obtained in population studies, and only a few intervention human trials have been so far performed. In view of the possibility that the anticancer effects may be maximally observed within a defined range of EPA and DHA doses, herein we critically review the results and doses used in both animal studies and human clinical trials focusing on the possible n-3 PUFA protective effects against breast and prostate cancer. Our main aim is to identify the EPA and/or DHA ranges of doses needed to obtain clear anticancer effects. This may be of great help in designing future animal studies, and also in understanding the most appropriate dose for further human intervention studies. Moreover, since the healthy effects of these fatty acids have been strictly related to their increased incorporation in plasma and tissue lipids, we also examine and discuss the incorporation changes following the administration of the effective anticancer EPA and/or DHA doses in animals and humans.
Collapse
Affiliation(s)
- Elena Fasano
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| | - Simona Serini
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| | - Achille Cittadini
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| | - Gabriella Calviello
- a Institute of General Pathology, Università Cattolica S. Cuore , Rome , Italy
| |
Collapse
|
13
|
Aucoin M, Cooley K, Knee C, Fritz H, Balneaves LG, Breau R, Fergusson D, Skidmore B, Wong R, Seely D. Fish-Derived Omega-3 Fatty Acids and Prostate Cancer: A Systematic Review. Integr Cancer Ther 2017; 16:32-62. [PMID: 27365385 PMCID: PMC5736071 DOI: 10.1177/1534735416656052] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The use of natural health products in prostate cancer (PrCa) is high despite a lack of evidence with respect to safety and efficacy. Fish-derived omega-3 fatty acids possess anti-inflammatory effects and preclinical data suggest a protective effect on PrCa incidence and progression; however, human studies have yielded conflicting results. METHODS A search of OVID MEDLINE, Pre-MEDLINE, Embase, and the Allied and Complementary Medicine Database (AMED) was completed for human interventional or observational data assessing the safety and efficacy of fish-derived omega-3 fatty acids in the incidence and progression of PrCa. RESULTS Of 1776 citations screened, 54 publications reporting on 44 studies were included for review and analysis: 4 reports of 3 randomized controlled trials, 1 nonrandomized clinical trial, 20 reports of 14 cohort studies, 26 reports of 23 case-control studies, and 3 case-cohort studies. The interventional studies using fish oil supplements in patients with PrCa showed no impact on prostate-specific antigen levels; however, 2 studies showed a decrease in inflammatory or other cancer markers. A small number of mild adverse events were reported and interactions with other interventions were not assessed. Cohort and case-control studies assessing the relationship between dietary fish intake and the risk of PrCa were equivocal. Cohort studies assessing the risk of PrCa mortality suggested an association between higher intake of fish and decreased risk of prostate cancer-related death. CONCLUSIONS Current evidence is insufficient to suggest a relationship between fish-derived omega-3 fatty acid and risk of PrCa. An association between higher omega-3 intake and decreased PrCa mortality may be present but more research is needed. More intervention trials or observational studies with precisely measured exposure are needed to assess the impact of fish oil supplements and dietary fish-derived omega-3 fatty acid intake on safety, PrCa incidence, treatment, and progression.
Collapse
Affiliation(s)
- Monique Aucoin
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Christopher Knee
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Heidi Fritz
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | | | - Rodney Breau
- Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Dean Fergusson
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Becky Skidmore
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | | | - Dugald Seely
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Integrative Cancer Centre, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Huerta-Yépez S, Tirado-Rodriguez AB, Hankinson O. Role of diets rich in omega-3 and omega-6 in the development of cancer. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:446-456. [PMID: 29421289 DOI: 10.1016/j.bmhimx.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, some studies have addressed the therapeutic effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and the opposite effects of omega-6 (ω-6) PUFAs on several diseases, including cardiovascular disorders, diabetes, neurodegenerative diseases, and cancer. Research demonstrates the safety of these naturally occurring ingredients. Of particular interest, several studies have shown that ω-3 PUFAs possess a therapeutic role against certain types of cancer. It is also known that ω-3 PUFAs can improve the efficacy and tolerability of chemotherapy. Previous reports have indicated that suppression of nuclear factor-κB, activation of AMPK/SIRT1, modulation of cyclooxygenase (COX) activity, and up-regulation of novel anti-inflammatory lipid mediators such as protectins, maresins, and resolvins, are the main mechanisms of the antineoplastic effect of ω-3 PUFAs. In contrast, several studies have demonstrated that ω-6 PUFAs induce progression in certain types of cancer. In this review, we discuss epidemiological and experimental studies addressing the relationship between the development of some types of cancer, including colon and colorectal carcinoma, breast cancer, prostate cancer, lung cancer and neuroblastoma, and the ingestion to ω-3 and ω-6 (PUFAs). We also discuss the clinical data, addressing the therapeutic role of omega-3 PUFA against different types of cancer.
Collapse
Affiliation(s)
- Sara Huerta-Yépez
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States; Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ana B Tirado-Rodriguez
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States
| | - Oliver Hankinson
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States.
| |
Collapse
|
15
|
Huerta-Yépez S, Tirado-Rodriguez AB, Hankinson O. Role of diets rich in omega-3 and omega-6 in the development of cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bmhime.2017.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Pondugula SR, Ferniany G, Ashraf F, Abbott KL, Smith BF, Coleman ES, Mansour M, Bird RC, Smith AN, Karthikeyan C, Trivedi P, Tiwari AK. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells. Biochem Biophys Res Commun 2015; 460:1002-7. [PMID: 25847597 DOI: 10.1016/j.bbrc.2015.03.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 01/26/2023]
Abstract
Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA.
| | - Glennie Ferniany
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Farah Ashraf
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA; Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Elaine S Coleman
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Mahmoud Mansour
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - R Curtis Bird
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Annette N Smith
- Department of Clinical Sciences, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, MP 462033, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, MP 462033, India
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
17
|
Garcia CP, Lamarque AL, Comba A, Berra MA, Silva RA, Labuckas DO, Das UN, Eynard AR, Pasqualini ME. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model. Nutrition 2015; 31:570-7. [DOI: 10.1016/j.nut.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 11/15/2022]
|
18
|
Jurczyszyn A, Czepiel J, Gdula-Argasińska J, Paśko P, Czapkiewicz A, Librowski T, Perucki W, Butrym A, Castillo JJ, Skotnicki AB. Plasma fatty acid profile in multiple myeloma patients. Leuk Res 2014; 39:400-5. [PMID: 25666255 DOI: 10.1016/j.leukres.2014.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 11/30/2022]
Abstract
New membrane formation in the proliferating tumor cells consequently results in hypermetabolism of fatty acids (FA), as seen in many cancer patients, including multiple myeloma (MM). The FA composition of plasma reflects both endogenous synthesis as well as the dietary supply of these compounds. Additionally, obesity is a risk factor for the development of MM. The aim of this study was to compare the FA composition of plasma in 60 MM patients and 60 healthy controls. We noted significant differences in the FA profile of plasma from patients with MM when compared to the control group. Increased levels of saturated and n-6 polyunsaturated fatty acids in MM patients suggest that there may be increased endogenous synthesis of these fatty acids, likely due to increased expression of desaturase and elongase. Furthermore, cluster analysis showed differences in the distribution of FA in plasma from MM patients compared to controls. Dietary fat and a deranged endogenous FA metabolism may contribute to cancer-associated inflammation through an abnormal arachidonic acid metabolism, caused by pro-inflammatory derivatives. Our study supports further research on the biochemistry of lipids in patients with MM.
Collapse
Affiliation(s)
| | - Jacek Czepiel
- Department of Infectious Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Czapkiewicz
- Faculty of Management, AGH University of Science and Technology, Krakow, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - William Perucki
- Department of Medicine, John Dempsey Hospital, University of Connecticut, Farmington, CT, USA
| | - Aleksandra Butrym
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University, Wroclaw, Poland; Department of Physiology, Medical University, Wroclaw, Poland
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
19
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
20
|
Jurczyszyn A, Czepiel J, Gdula-Argasińska J, Czapkiewicz A, Biesiada G, Dróżdż M, Perucki W, Castillo JJ. Erythrocyte membrane fatty acids in multiple myeloma patients. Leuk Res 2014; 38:1260-5. [PMID: 25192858 DOI: 10.1016/j.leukres.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/09/2014] [Accepted: 08/16/2014] [Indexed: 01/01/2023]
Abstract
Mounting data show that fatty acids (FA) and fatty acid synthase (FAS) function could be potential targets for multiple myeloma (MM) therapy. Our study aimed at comparing the FA composition of erythrocyte membranes of MM patients and healthy controls. MM patients had higher saturated FA and n-6 polyunsaturated FA (PUFA) and lower monounsaturated, n-3 PUFA and trans-FA indices than controls. The n-3/n-6 PUFA ratio was lower in MM patients and there was distinct clustering of variants of individual FA in MM patients. The FA content of erythrocyte membrane could serve as a diagnostic and/or predictive biomarker in MM.
Collapse
Affiliation(s)
| | - Jacek Czepiel
- Department of Infectious Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Czapkiewicz
- Faculty of Management, AGH University of Science and Technology, Krakow, Poland
| | - Grażyna Biesiada
- Department of Infectious Diseases, Jagiellonian University Medical College, Krakow, Poland
| | | | - William Perucki
- Students' Scientific Society, Jagiellonian University Medical College, Krakow, Poland
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
21
|
Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD, Shao YW, Aiken A, Waterhouse PD, Karamboulas C, Hess FM, Ohtsuka T, Okada Y, Ailles L, Ludwig A, Wrana JL, Kislinger T, Khokha R. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol 2014; 16:889-901. [DOI: 10.1038/ncb3021] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022]
|
22
|
McCarty MF, DiNicolantonio JJ, Lavie CJ, O'Keefe JH. Omega-3 and prostate cancer: examining the pertinent evidence. Mayo Clin Proc 2014; 89:444-50. [PMID: 24613035 DOI: 10.1016/j.mayocp.2013.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - James J DiNicolantonio
- Mid-America Heart Institute at Saint Luke's Hospital, Kansas City, MO; Wegmans Pharmacy, Ithaca, NY
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, LA; Pennington Biomedical Research Center, Baton Rouge, LA
| | - James H O'Keefe
- Mid America Heart Institute, University of Missouri, Kansas City, MO
| |
Collapse
|
23
|
Wang S, Hannafon BN, Wolf RF, Zhou J, Avery JE, Wu J, Lind SE, Ding WQ. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation. J Nutr Biochem 2014; 25:515-25. [PMID: 24613086 DOI: 10.1016/j.jnutbio.2013.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/18/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
Abstract
The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK 73104, USA
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK 73104, USA
| | - Roman F Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK 73104, USA
| | - Jundong Zhou
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, P. R. China
| | - Jori E Avery
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK 73104, USA
| | - Jinchang Wu
- Department of Radio-Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, P. R. China
| | - Stuart E Lind
- Departments of Pathology and Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 411A, Oklahoma City, OK 73104, USA.
| |
Collapse
|
24
|
The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53. BIOMED RESEARCH INTERNATIONAL 2013; 2013:568671. [PMID: 23841076 PMCID: PMC3691929 DOI: 10.1155/2013/568671] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/29/2013] [Indexed: 11/17/2022]
Abstract
Docosahexaenoic acid (DHA) induces autophagy-associated apoptotic cell death in wild-type p53 cancer cells via regulation of p53. The present study investigated the effects of DHA on PC3 and DU145 prostate cancer cell lines harboring mutant p53. Results show that, in addition to apoptosis, DHA increased the expression levels of lipidated form LC3B and potently stimulated the autophagic flux, suggesting that DHA induces both autophagy and apoptosis in cancer cells expressing mutant p53. DHA led to the generation of mitochondrial reactive oxygen species (ROS), as shown by the mitochondrial ROS-specific probe mitoSOX. Similarly, pretreatment with the antioxidant N-acetyl-cysteine (NAC) markedly inhibited both the autophagy and the apoptosis triggered by DHA, indicating that mitochondrial ROS mediate the cytotoxicity of DHA in mutant p53 cells. Further, DHA reduced the levels of phospho-Akt and phospho-mTOR in a concentration-dependent manner, while NAC almost completely blocked that effect. Collectively, these findings present a novel mechanism of ROS-regulated apoptosis and autophagy that involves Akt-mTOR signaling in prostate cancer cells with mutant p53 exposed to DHA.
Collapse
|
25
|
Stott-Miller M, Neuhouser ML, Stanford JL. Consumption of deep-fried foods and risk of prostate cancer. Prostate 2013; 73:960-9. [PMID: 23335051 PMCID: PMC3756514 DOI: 10.1002/pros.22643] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Evidence suggests that high-heat cooking methods may increase the risk of prostate cancer (PCa). The addition of oil/fat, as in deep-frying, may be of particular concern, and has not specifically been investigated in relation to PCa. Potential mechanisms include the formation of potentially carcinogenic agents such as aldehydes, acrolein, heterocyclic amines, polycyclic aromatic hydrocarbons, and acrylamide. METHODS We estimated odds ratios (OR) and 95% confidence intervals (CI) for the association between tertiles of intake of deep-fried foods from a food frequency questionnaire (French fries, fried chicken, fried fish, doughnuts and snack chips) and PCa risk, adjusted for potential confounders, among 1,549 cases and 1,492 controls. We additionally examined associations with more aggressive PCa (defined as regional/distant stage, elevated Gleason score or prostate-specific antigen level). RESULTS Compared with <1/week, there was a positive association with PCa risk for intake ≥1/week of French fries (OR = 1.37; 95% CI, 1.11-1.69), fried chicken (OR = 1.30; 95% CI, 1.04-1.62), fried fish (OR = 1.32; 95% CI, 1.05-1.66), and doughnuts (OR = 1.35; 95% CI, 1.11-1.66). There was no association for snack chips (OR = 1.08; 95% CI, 0.89-1.32). Most of the estimates were slightly stronger for more aggressive disease (OR = 1.41; 95% CI, 1.04-1.92 for fried fish). CONCLUSION Regular consumption of select deep-fried foods is associated with increased PCa risk. Whether this risk is specific to deep-fried foods, or whether it represents risk associated with regular intake of foods exposed to high heat and/or other aspects of the Western lifestyle, such as fast food consumption, remains to be determined.
Collapse
Affiliation(s)
- Marni Stott-Miller
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Marian L. Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| |
Collapse
|
26
|
Surette ME. Dietary omega-3 PUFA and health: stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils. Mol Nutr Food Res 2013; 57:748-59. [PMID: 23417895 DOI: 10.1002/mnfr.201200706] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 12/21/2012] [Indexed: 11/10/2022]
Abstract
The daily consumption of dietary omega-3 PUFA is recommended by governmental agencies in several countries and by a number of health organizations. The molecular mechanisms by which these dietary PUFA affect health involve the enrichment of cellular membranes with long-chain 20- and 22-carbon omega-3 PUFA that impacts tissues by altering membrane protein functions, cell signaling, and gene expression profiles. These changes are recognized to have health benefits in humans, especially relating to cardiovascular outcomes. Cellular membrane enrichment and health benefits are associated with the consumption of long-chain omega-3 PUFA found in marine oils, but are not generally linked with the consumption of alpha-linolenic acid, the 18-carbon omega-3 PUFA found in plant seed oils. However, the supply of omega-3 PUFA from marine sources is limited and may not be sustainable. New plant-derived sources of omega-3 PUFA like stearidonic acid-soy oil from genetically modified soybeans and Ahiflower oil from Buglossoides arvensis seeds that are enriched in the 18-carbon omega-3 PUFA stearidonic acid are being developed and show promise to become effective as well as sustainable sources of omega-3 PUFA. An example of changes in tissue lipid profiles associated with the consumption of Ahiflower oil is presented in a mouse feeding study.
Collapse
Affiliation(s)
- Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.
| |
Collapse
|
27
|
Liu C, Xu D, Han H, Fan Y, Schain F, Xu Z, Claesson HE, Björkholm M, Sjöberg J. Transcriptional regulation of 15-lipoxygenase expression by histone h3 lysine 4 methylation/demethylation. PLoS One 2012; 7:e52703. [PMID: 23285160 PMCID: PMC3532411 DOI: 10.1371/journal.pone.0052703] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/19/2012] [Indexed: 01/22/2023] Open
Abstract
15-Lipoxygenase-1 (15-LOX-1) oxidizes polyunsaturated fatty acids to a rich spectrum of biologically active metabolites and is implicated in physiological membrane remodelling, inflammation and apoptosis. Its deregulation is involved in the pathogenesis of diverse cancer and immune diseases. Recent experimental evidence reveals that dynamic histone methylation/demethylation mediated by histone methyltransferases and demethylases plays a critical role in regulation of chromatin remodelling and gene expression. In the present study, we compared the histone 3 lysine 4 (H3-K4) methylation status of the 15-LOX-1 promoter region of the two Hodgkin lymphoma (HL) cell lines L1236 and L428 with abundant and undetectable 15-LOX-1 expression, respectively. We identified a potential role of H3-K4 methylation in positive regulation of 15-LOX-1 transcription. Furthermore, we found that histone methyltransferase SMYD3 inhibition reduced 15-LOX-1 expression by decreasing promoter activity in L1236 cells. SMYD3 knock down in these cells abolished di-/trimethylation of H3-K4, attenuated the occupancy by the transactivator STAT6, and led to diminished histone H3 acetylation at the 15-LOX-1 promoter. In contrast, inhibition of SMCX, a JmjC-domain-containing H3-K4 tri-demethylase, upregulated 15-LOX-1 expression through induction of H3-K4 trimethylation, histone acetylation and STAT6 recruitment at the 15-LOX-1 promoter in L428 cells. In addition, we observed strong SMYD3 expression in the prostate cancer cell line LNCaP and its inhibition led to decreased 15-LOX-1 expression. Taken together, our data suggest that regulation of histone methylation/demethylation at the 15-LOX-1 promoter is important in 15-LOX-1 expression.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
O’Flaherty JT, Hu Y, Wooten RE, Horita DA, Samuel MP, Thomas MJ, Sun H, Edwards IJ. 15-lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival. PLoS One 2012; 7:e45480. [PMID: 23029040 PMCID: PMC3447860 DOI: 10.1371/journal.pone.0045480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/20/2012] [Indexed: 02/06/2023] Open
Abstract
A 15-LOX, it is proposed, suppresses the growth of prostate cancer in part by converting arachidonic, eicosatrienoic, and/or eicosapentaenoic acids to n-6 hydroxy metabolites. These metabolites inhibit the proliferation of PC3, LNCaP, and DU145 prostate cancer cells but only at ≥1-10 µM. We show here that the 15-LOX metabolites of docosahexaenoic acid (DHA), 17-hydroperoxy-, 17-hydroxy-, 10,17-dihydroxy-, and 7,17-dihydroxy-DHA inhibit the proliferation of these cells at ≥0.001, 0.01, 1, and 1 µM, respectively. By comparison, the corresponding 15-hydroperoxy, 15-hydroxy, 8,15-dihydroxy, and 5,15-dihydroxy metabolites of arachidonic acid as well as DHA itself require ≥10-100 µM to do this. Like DHA, the DHA metabolites a) induce PC3 cells to activate a peroxisome proliferator-activated receptor-γ (PPARγ) reporter, express syndecan-1, and become apoptotic and b) are blocked from slowing cell proliferation by pharmacological inhibition or knockdown of PPARγ or syndecan-1. The DHA metabolites thus slow prostate cancer cell proliferation by engaging the PPARγ/syndecan-1 pathway of apoptosis and thereby may contribute to the prostate cancer-suppressing effects of not only 15-LOX but also dietary DHA.
Collapse
Affiliation(s)
- Joseph T. O’Flaherty
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yungping Hu
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Rhonda E. Wooten
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - David A. Horita
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael P. Samuel
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Haiguo Sun
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Iris J. Edwards
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
29
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|
30
|
Serini S, Fasano E, Piccioni E, Monego G, Cittadini AR, Celleno L, Ranelletti FO, Calviello G. DHA induces apoptosis and differentiation in human melanoma cells in vitro : involvement of HuR-mediated COX-2 mRNA stabilization and β-catenin nuclear translocation. Carcinogenesis 2011; 33:164-73. [DOI: 10.1093/carcin/bgr240] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
Dinosaurs and ancient civilizations: reflections on the treatment of cancer. Neoplasia 2011; 12:957-68. [PMID: 21170260 DOI: 10.1593/neo.101588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022] Open
Abstract
Research efforts in the area of palaeopathology have been seen as an avenue to improve our understanding of the pathogenesis of cancer. Answers to questions of whether dinosaurs had cancer, or if cancer plagued ancient civilizations, have captured the imagination as well as the popular media. Evidence for dinosaurian cancer may indicate that cancer may have been with us from the dawn of time. Ancient recorded history suggests that past civilizations attempted to fight cancer with a variety of interventions. When contemplating the issue why a generalized cure for cancer has not been found, it might prove useful to reflect on the relatively limited time that this issue has been an agenda item of governmental attention as well as continued introduction of an every evolving myriad of manmade carcinogens relative to the total time cancer has been present on planet Earth. This article reflects on the history of cancer and the progress made following the initiation of the "era of cancer chemotherapy."
Collapse
|
32
|
A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res 2011; 31:1-8. [DOI: 10.1016/j.nutres.2011.01.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/28/2010] [Accepted: 01/04/2011] [Indexed: 11/20/2022]
|
33
|
Comba A, Maestri DM, Berra MA, Garcia CP, Das UN, Eynard AR, Pasqualini ME. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis 2010; 9:112. [PMID: 20932327 PMCID: PMC2959203 DOI: 10.1186/1476-511x-9-112] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/08/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nutritional factors play a major role in cancer initiation and development. Dietary polyunsaturated fatty acids (PUFAs) have the ability to induce modifications in the activity of lipoxygenase (LOX) and cyclooxygenase (COX) enzymes that affect tumour growth. We studied the effect of two diets enriched in 6% Walnut and Peanut oils that are rich in ω-3 and ω9 PUFAs respectively on a murine mammary gland adenocarcinoma as compared with the control (C) that received commercial diet. RESULTS Peanut oil enriched diet induced an increase in membrane arachidonic acid (AA) content and the cyclooxygenase enzyme derived 12-HHT (p < 0.05) and simultaneously showed decrease in 12-LOX, 15-LOX-2, 15-LOX-1 and PGE activities (p < 0.05) that corresponded to higher apoptosis and lower mitosis seen in this group (p < 0.05). Furthermore, Peanut oil group showed lower T-cell infiltration (p < 0.05), number of metastasis (p < 0.05) and tumour volume (p < 0.05) and longer survival rate compared to other groups. CONCLUSIONS The results of the present study showed that Peanut oil-enriched diet protects against mammary cancer development by modulating tumour membrane fatty acids composition and LOX and COX enzyme activities.
Collapse
Affiliation(s)
- Andrea Comba
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
34
|
The War on Cancer rages on. Neoplasia 2010; 11:1252-63. [PMID: 20019833 DOI: 10.1593/neo.91866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 02/08/2023] Open
Abstract
In 1971, the "War on Cancer" was launched by the US government to cure cancer by the 200-year anniversary of the founding of the United States of America, 1976. This article briefly looks back at the progress that has been made in cancer research and compares progress made in other areas of human affliction. While progress has indeed been made, the battle continues to rage on.
Collapse
|
35
|
Reese AC, Fradet V, Witte JS. Omega-3 fatty acids, genetic variants in COX-2 and prostate cancer. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2009; 2:149-58. [PMID: 19776642 DOI: 10.1159/000235565] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dietary intake of fish and omega-3 polyunsaturated fatty acids (omega-3 PUFAs) may decrease the risk of prostate cancer development and progression to advanced stage disease. This could reflect the anti-inflammatory effects of PUFAs, possibly through mediation of cyclooxygenase (COX), a key enzyme in fatty acid metabolism and inflammation. Despite promising experimental evidence, epidemiological studies have reported somewhat conflicting results regarding the effects of fish/PUFAs on prostate cancer development and progression. The literature suggests that fish, and particularly long-chain omega-3 PUFAs, may have a more pronounced protective effect on biologically aggressive tumors or on their progression, and less on early steps of carcinogenesis. Moreover, the impact of LC omega-3 PUFAs may be modified by variation of the COX-2 gene. Overall, results to date support the hypothesis that long-chain omega-3 PUFAs may impact prostate inflammation and carcinogenesis via the COX-2 enzymatic pathway.
Collapse
Affiliation(s)
- Adam C Reese
- Department of Urology, University of California-San Francisco, CA 94158, USA
| | | | | |
Collapse
|