1
|
Ho JN, Byun SS, Kim D, Ryu H, Lee S. Dasatinib induces apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in bladder cancer cells. Investig Clin Urol 2024; 65:593-602. [PMID: 39505519 PMCID: PMC11543652 DOI: 10.4111/icu.20240250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024] Open
Abstract
PURPOSE Bladder cancer is a common genitourinary malignant disease worldwide. Dasatinib is a small molecule inhibitor of Src family kinases. We investigated the anticancer effect and putative molecular mechanisms of dasatinib on T24 and cisplatin-resistant T24R2 human bladder cancer cells. MATERIALS AND METHODS Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation in dasatinib treated bladder cancer cells. Flow cytometry was used to determined cell cycle arrest and apoptosis. The expression of apoptosis and autophagy related proteins were detected by western blot analysis. RESULTS In bladder cancer cells, dasatinib significantly reduced cell proliferation, colony formation, and induced G1-phase arrest. Dasatinib triggered apoptosis along with an increased expression of apoptosis-related genes (caspases, PARP, and cytochrome c). Down-regulation of Bcl-2 and up-regulation of Bad, which are hallmarks of apoptosis, were found to play a dominant role in mediating the effects of dasatinib treatment. We further showed that dasatinib inhibits p-Src, p-PI3K, p-Akt, and p-mTOR in bladder cancer cells. Dasatinib also increased the expression of markers of autophagy flux such as LC3-II and p62. CONCLUSIONS These results confirmed that dasatinib is a potent chemotherapeutic drug which induces apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in bladder cancer cells.
Collapse
Affiliation(s)
- Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Danhyo Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hoyoung Ryu
- Department of Urology, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
3
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
4
|
Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00089-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundCells have evolved balanced mechanisms to protect themselves by initiating a specific response to a variety of stress. TheTP53gene, encoding P53 protein, is one of the many widely studied genes in human cells owing to its multifaceted functions and complex dynamics. The tumour-suppressing activity of P53 plays a principal role in the cellular response to stress. The majority of the human cancer cells exhibit the inactivation of the P53 pathway. In this review, we discuss the recent advancements in P53 research with particular focus on the role of P53 in DNA damage responses, apoptosis, autophagy, and cellular metabolism. We also discussed important P53-reactivation strategies that can play a crucial role in cancer therapy and the role of P53 in various diseases.Main bodyWe used electronic databases like PubMed and Google Scholar for literature search. In response to a variety of cellular stress such as genotoxic stress, ischemic stress, oncogenic expression, P53 acts as a sensor, and suppresses tumour development by promoting cell death or permanent inhibition of cell proliferation. It controls several genes that play a role in the arrest of the cell cycle, cellular senescence, DNA repair system, and apoptosis. P53 plays a crucial role in supporting DNA repair by arresting the cell cycle to purchase time for the repair system to restore genome stability. Apoptosis is essential for maintaining tissue homeostasis and tumour suppression. P53 can induce apoptosis in a genetically unstable cell by interacting with many pro-apoptotic and anti-apoptotic factors.Furthermore, P53 can activate autophagy, which also plays a role in tumour suppression. P53 also regulates many metabolic pathways of glucose, lipid, and amino acid metabolism. Thus under mild metabolic stress, P53 contributes to the cell’s ability to adapt to and survive the stress.ConclusionThese multiple levels of regulation enable P53 to perform diversified roles in many cell responses. Understanding the complete function of P53 is still a work in progress because of the inherent complexity involved in between P53 and its target proteins. Further research is required to unravel the mystery of this Guardian of the genome “TP53”.
Collapse
|
5
|
Liu L, Yu ZY, Yu TT, Cui SH, Yang L, Chang H, Qu YH, Lv XF, Zhang XA, Ren CC. A Slug-dependent mechanism is responsible for tumor suppression of p53-stabilizing compound CP-31398 in p53-mutated endometrial carcinoma. J Cell Physiol 2020; 235:8768-8778. [PMID: 32633026 DOI: 10.1002/jcp.29720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Mutation in the tumor suppressor gene p53 is the most frequent molecular defect in endometrial carcinoma (EC). Recently, CP-31398, a p53-stabilizing compound, has been indicated to possess the ability to alter the expression of non-p53 target genes in addition to p53 downstream genes in tumor cells. Herein, we explore the alternative mechanisms underlying the restoration of EC tumor suppressor function in mutant p53 by CP-31398. A p53-mutated EC cell was constructed in AN3CA cells with restored or partial loss of Slug using lentiviral vectors, followed by treatment with 25 μM CP-31398. A p53-independent mechanism of CP-31398 was confirmed by the interaction between mouse double minute 2 homolog (MDM2) and Slug AN3CA cells treated with IWR-1 (inhibitor of Wnt response 1). Furthermore, the AN3CA cells were treated with short hairpin RNA against Slug, Wnt-specific activators (LiCl) or inhibitors (XAV-939) followed by CP-31398 treatment. Moreover, AN3CA cell proliferation and apoptosis were examined. A tumorigenicity assay was conducted in nude mice. CP-31398 could promote the apoptosis of p53-mutated EC cells, while Slug reversed this effect. Slug ubiquitination was found to occur via binding of Slug to MDM2 in AN3CA cells. We found that CP-31398 increased the GSK-3ß, p-Slug, Puma, Wtp53, and Bax expressions whereas Wnt, Mtp-53, Slug, Bcl-2, and Ki-67 expressions were decreased. However, these findings were reversed following the activation of the Wnt pathway and overexpression of Slug. Finally, the in vivo experimental evidence confirmed that CP-31398 with depleted Slug suppressed tumor growth by downregulating the Slug. Collectively, CP-31398-regulated Slug downregulation represses the p53-mutated EC via the p53/Wnt/Puma pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Ying Yu
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Tan-Tan Yu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hong Cui
- Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Hong Qu
- Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Feng Lv
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
7
|
2-Styryl-4-aminoquinazoline derivatives as potent DNA-cleavage, p53-activation and in vivo effective anticancer agents. Eur J Med Chem 2020; 186:111851. [DOI: 10.1016/j.ejmech.2019.111851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023]
|
8
|
Mohammed A, Janakiram NB, Madka V, Zhang Y, Singh A, Biddick L, Li Q, Lightfoot S, Steele VE, Lubet RA, Suen CS, Miller MS, Sei S, Rao CV. Intermittent Dosing Regimens of Aspirin and Naproxen Inhibit Azoxymethane-Induced Colon Adenoma Progression to Adenocarcinoma and Invasive Carcinoma. Cancer Prev Res (Phila) 2019; 12:751-762. [PMID: 31530543 PMCID: PMC6849393 DOI: 10.1158/1940-6207.capr-19-0312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022]
Abstract
Chronic use of aspirin and related drugs to reduce cancer risk is limited by unwanted side effects. Thus, we assessed the efficacy associated with different dosing regimens of aspirin and naproxen. Azoxymethane (AOM)-rat colon cancer model was used to establish the pharmacodynamic efficacy of aspirin and naproxen under different dosing regimens. Colon tumors were induced in rats (36/group) by two weekly doses of AOM. At the early adenoma stage, rats were fed diets containing aspirin (700 and 1,400 ppm) or naproxen (200 and 400 ppm), either continuously, 1 week on/1 week off, or 3 weeks on/3 weeks off, or aspirin (2,800 ppm) 3 weeks on/3 weeks off. All rats were euthanized 48 weeks after AOM treatment and assessed for efficacy and biomarkers in tumor tissues. Administration of aspirin and naproxen produced no overt toxicities. Administration of different treatment regimens of both agents had significant inhibitory effects with clear dose-response effects. Aspirin suppressed colon adenocarcinoma multiplicity (both invasive and noninvasive) by 41% (P < 0.003) to 72% (P < 0.0001) and invasive colon adenocarcinomas by 67%-91% (P < 0.0001), depending on the treatment regimen. Naproxen doses of 200 and 400 ppm inhibited invasive adenocarcinoma multiplicity by 53%-88% (P < 0.0001), depending on the dosing regimen. Colonic tumor biomarker analysis revealed that proliferation (proliferating cell nuclear antigen and p21), apoptosis (p53 and Caspase-3), and proinflammatory mediators (IL1β and prostaglandin E2) were significantly correlated with the tumor inhibitory effects of aspirin and naproxen. Overall, our results suggest that intermittent dosing regimens with aspirin or naproxen demonstrated significant efficacy on the progression of adenomas to adenocarcinomas, without gastrointestinal toxicities.
Collapse
Affiliation(s)
- Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- DoD/VA, Extremity Trauma & Amputation Center of Excellence, WRNMMC, Bethesda, Maryland
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anil Singh
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- VA Medical Center, Oklahoma City, Oklahoma
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qian Li
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stanley Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vernon E Steele
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Chen S Suen
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Mark Steven Miller
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- VA Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
9
|
Liu L, Yu TT, Ren CC, Yang L, Cui SH, Zhang XA. CP-31398 inhibits the progression of cervical cancer through reversing the epithelial mesenchymal transition via the downregulation of PAX2s. J Cell Physiol 2019; 234:2929-2942. [PMID: 30132866 DOI: 10.1002/jcp.27109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/28/2018] [Indexed: 01/18/2023]
Abstract
CP-31398, a styrylquinazoline, emerges from a screen for therapeutic agents that restore the wild-type DNA-binding conformation of mutant p53 to suppress tumors in vivo, but its effects on cervical cancer (CC) remain unknown. Hence, this study aimed to explore the effects CP-31398 has on the CC cells and to investigate whether it is associated with paired box 2 (PAX2) expression. CC cells were treated with different concentrations of CP-31398 (1, 2, 4, 6, 8, and 10 μg/ml) to determine the optimum concentration using fluorometric microculture cytotoxicity assay. After constructing the sh-PAX2 vector, CC cells were transfected with sh-PAX2 or treated with CP-31398. The effects of CP-31398 or PAX2 silencing on CC cell proliferation, apoptosis, invasion, and migration were evaluated. Epithelial mesenchymal transition (EMT)-related genes such as E-cadherin, vimentin, N-cadherin, snail, and twist in CC cells were detected. Tumor formation experiment in nude mice was performed to observe tumor growth. The optimum concentration of CP-31398 was 2 μg/ml. PAX2 was overexpressed in CC cells. CC cells treated with CP-31398 or treated with sh-PAX2 inhibited proliferation, invasion, and migration but promoted apoptosis with decreased PAX2 expression. The EMT process in CC cells was also reversed after treatment with CP-31398 or sh-PAX2. Moreover, the tumor formation experiment in nude mice revealed the inhibitory activity of CP-31398 in CC tumor in nude mice by suppressing PAX2. Our results provide evidence that CP-31398 could inhibit EMT and promote apoptosis of CC cells to curb CC tumor growth by downregulating PAX2.
Collapse
Affiliation(s)
- Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tan-Tan Yu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hong Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Liu L, Yang L, Chang H, Chen YN, Zhang F, Feng S, Peng J, Ren CC, Zhang XA. CP‑31398 attenuates endometrial cancer cell invasion, metastasis and resistance to apoptosis by downregulating MDM2 expression. Int J Oncol 2019; 54:942-954. [PMID: 30628640 PMCID: PMC6365028 DOI: 10.3892/ijo.2019.4681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies of the female reproductive system, and metastasis is a major cause of mortality. In this study, we aimed to explore the role of CP-31398 in the migration, invasion and apoptosis of EC cells by its regulation of the expression of the murine double minute 2 (MDM2) gene. For this purpose, EC tissues and adjacent normal tissues were collected, and the positive expression rate of MDM2 in these tissues was assessed. Subsequently, the cellular 50% inhibitory concentration (IC50) of CP-31398 was measured. The EC RL95-2 and KLE cell lines had a higher MDM2 expression and were thus selected for use in subsequent experiments. The EC cells were then treated with CP-31398 (2 µg/ml), and were transfected with siRNA against MDM2 or an MDM2 overexpression plasmid in order to examine the effects of CP-31398 and MDM2 on EC cell activities. The expression of p53, p21, Bad, Bax, B-cell lymphoma-2 (Bcl-2), cytochrome c (Cyt-c), caspase-3, Cox-2, matrix metalloproteinase (MMP)-2 and MMP-9 was measured to further confirm the effects of CP-31398 on cell migration, invasion and apoptosis. Our results indicated that MDM2 was highly expressed in EC tissues. Notably, EC cell viability decreased with the increasing concentrations of CP-31398. The EC cells treated with CP-31398 or siRNA against MDM2 exhibited an increased apoptosis and a suppressed migration and invasion, corresponding to an increased expression of p53, p21, Bad, Bax, Cyt-c and caspase-3, as well as to a decreased expression of Bcl-2, Cox-2, MMP-2 and MMP-9. Moreover, treatment with CP-31398 and siRNA against MDM2 further enhanced these effects. Taken together, the findings of this study indicate that the CP-31398-mediated downregulation of MDM2 may suppress EC progression via its inhibitory role in EC cell migration, invasion and resistance to apoptosis. Therefore, treatment with CP-31398 may prove to be possible therapeutic strategy for EC.
Collapse
Affiliation(s)
- Ling Liu
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Yang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Chang
- Laboratory of Tumor Precision Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yan-Nan Chen
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Zhang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuo Feng
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Peng
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
11
|
Abstract
The tumour suppressor gene TP53 is the most frequently mutated gene in cancer. Wild-type p53 can suppress tumour development by multiple pathways. However, mutation of TP53 and the resultant inactivation of p53 allow evasion of tumour cell death and rapid tumour progression. The high frequency of TP53 mutation in tumours has prompted efforts to restore normal function of mutant p53 and thereby trigger tumour cell death and tumour elimination. Small molecules that can reactivate missense-mutant p53 protein have been identified by different strategies, and two compounds are being tested in clinical trials. Novel approaches for targeting TP53 nonsense mutations are also underway. This Review discusses recent progress in pharmacological reactivation of mutant p53 and highlights problems and promises with these strategies.
Collapse
Affiliation(s)
- Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Julie Bianchi
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Grassi ES, Vezzoli V, Negri I, Lábadi Á, Fugazzola L, Vitale G, Persani L. SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways. Oncotarget 2017; 6:36383-99. [PMID: 26415230 PMCID: PMC4742184 DOI: 10.18632/oncotarget.5799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide. The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies. In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability. We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valeria Vezzoli
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Irene Negri
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Current address: IRIBHM, Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Árpád Lábadi
- Department of Laboratory Medicine, University of Pécs, Pécs, Hungary
| | - Laura Fugazzola
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Endocrine Unit-Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Giovanni Vitale
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
13
|
Chala B, Choi MH, Moon KC, Kim HS, Kwak C, Hong ST. Development of Urinary Bladder Pre-Neoplasia by Schistosoma haematobium Eggs and Chemical Carcinogen in Mice. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:21-29. [PMID: 28285503 PMCID: PMC5365267 DOI: 10.3347/kjp.2017.55.1.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/19/2017] [Accepted: 02/01/2017] [Indexed: 11/25/2022]
Abstract
Schistosoma haematobium is a biocarcinogen of human urinary bladder (UB). The present study investigated developing UB cancer mouse model by injecting S. haematobium eggs into the bladder wall and introduction of chemical carcinogens. Histopathological findings showed mild hyperplasia to epithelial vacuolar change, and high grade dysplasia. Squamous metaplasia was observed in the S. haematobium eggs+NDMA group at week 12 but not in other groups. Immunohistochemistry revealed significantly high expression of Ki-67 in urothelial epithelial cells of the S. haematobium eggs+BBN group at week 20. The qRT-PCR showed high expression of p53 gene in S. haematobium eggs group at week 4 and S. haematobium eggs+BBN group at week 20. E-cadherin and vimentin showed contrasting expression in S. haematobium eggs+BBN group. Such inverse expression of E-cadherin and vimentin may indicate epithelial mesenchymal transition in the UB tissue. In conclusion, S. haematobium eggs and nitrosamines may transform UB cells into squamous metaplasia and dysplasia in correlation with increased expression of Ki-67. Marked decrease in E-cadherin and increase in p53 and vimentin expressions may support the transformation. The present study introduces a promising modified animal model for UB cancer study using S. haematobium eggs.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min-Ho Choi
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyung Suk Kim
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sung-Tae Hong
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
14
|
Abstract
The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research.
Collapse
Affiliation(s)
- Amanda L Hudson
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| | - Emily K Colvin
- Amanda L. Hudson, PhD, is a Sydney Neuro-Oncology Group postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia. Emily K. Colvin is a Cancer Institute NSW postdoctoral fellow at the Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, NSW, Australia
| |
Collapse
|
15
|
Madka V, Mohammed A, Li Q, Zhang Y, Biddick L, Patlolla JMR, Lightfoot S, Towner RA, Wu XR, Steele VE, Kopelovich L, Rao CV. Targeting mTOR and p53 Signaling Inhibits Muscle Invasive Bladder Cancer In Vivo. Cancer Prev Res (Phila) 2016; 9:53-62. [PMID: 26577454 PMCID: PMC4839263 DOI: 10.1158/1940-6207.capr-15-0199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/12/2015] [Indexed: 01/16/2023]
Abstract
Urothelial tumors, accompanied by mutations of the tumor suppressor protein TP53 and dysregulation of mTOR signaling, are frequently associated with aggressive growth and invasiveness. We investigated whether targeting these two pathways would inhibit urothelial tumor growth and progression. Six-week-old transgenic UPII-SV40T male mice (n = 15/group) were fed control diet (AIN-76A) or experimental diets containing mTOR inhibitor (rapamycin, 8 or 16 ppm), p53 stabilizing agent [CP31398 (CP), 150 ppm], or a combination. Mice were euthanized at 40 weeks of age. Urinary bladders were collected and evaluated to determine tumor weight and histopathology. Each agent alone, and in combination, significantly inhibited tumor growth. Treatment with rapamycin alone decreased tumor weight up to 67% (P < 0.0001). Similarly, CP showed approximately 77% (P < 0.0001) suppression of tumor weight. The combination of low-dose rapamycin and CP led to approximately 83% (P < 0.0001) inhibition of tumor weight. There was no significant difference in tumor weights between rapamycin and CP treatments (P > 0.05). However, there was a significant difference between 8 ppm rapamycin and the combination treatment. Tumor invasion was also significantly inhibited in 53% (P < 0.005) and 66% (P < 0.0005) mice after 8 ppm and 16 ppm rapamycin, respectively. However, tumor invasion was suppressed in 73% (P < 0.0001) mice when CP was combined with 8 ppm rapamycin. These results suggest that targeting two or more pathways achieve better treatment efficacy than a single-agent high-dose strategy that could increase the risk of side effects. A combination of CP and rapamycin may be a promising method of inhibiting muscle-invasive urothelial transitional cell carcinoma.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qian Li
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jagan M R Patlolla
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Xue-Ru Wu
- Department of Urology, NYU Medical Center, New York, New York
| | - Vernon E Steele
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Levy Kopelovich
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
16
|
|
17
|
Madka V, Mohammed A, Li Q, Zhang Y, Kumar G, Lightfoot S, Wu X, Steele V, Kopelovich L, Rao CV. TP53 modulating agent, CP-31398 enhances antitumor effects of ODC inhibitor in mouse model of urinary bladder transitional cell carcinoma. Am J Cancer Res 2015; 5:3030-41. [PMID: 26693057 PMCID: PMC4656728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023] Open
Abstract
Mutations of the tumor suppressor p53 and elevated levels of polyamines are known to play key roles in urothelial tumorigenesis. We investigated the inhibition of polyamines biosynthesis and the restoration of p53 signaling as a possible means of preventing muscle invasive urothelial tumors using DFMO, an ODC-inhibiting agent, and CP-31398 (CP), a p53 stabilizing agent. Transgenic UPII-SV40T male mice at 6weeks age (n=15/group) were fed control diet (AIN-76A) or experimental diets containing DFMO (1000 and 2000 ppm) or 150 ppm CP or both. At 40 weeks of age, all mice were euthanized and urinary bladders were evaluated to determine tumor weight and histopathology. Low-dose DFMO had a moderate significant inhibitory effect on tumor growth (38%, P<0.02) and tumor invasion (23%). High-dose DFMO had a 47% tumor inhibition (P<0.0001) and 40% inhibition tumor invasion. There was no significant difference between 1000 and 2000 ppm doses of DFMO (P>0.05). CP at 150 ppm alone had a strong inhibitory effect on tumor growth by 80% (P<0.0001); however, no effect on tumor invasion was observed. Interestingly, the combination of DFMO (1000 ppm) and CP (150 ppm) led to significant decrease in tumor weight (70%, P<0.0001) and tumor invasion (62.5%; P<0.005). Molecular analysis of the urothelial tumors suggested a modulation of polyamine biosynthesis, proliferation, cell cycle regulators resulting from the use of these agents. These results suggest that targeting two or more pathways could be an effective approach for chemoprevention. A combination of CP and DFMO appears to be a promising strategy for urothelial TCC prevention.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Qian Li
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Xueru Wu
- Department of Urology, NYU Medical CenterNY, USA
| | - Vernon Steele
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer InstituteBethesda, MD, USA
| | | | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Department of Medicine, Hematology-Oncology Section, University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| |
Collapse
|
18
|
Pflaum J, Schlosser S, Müller M. p53 Family and Cellular Stress Responses in Cancer. Front Oncol 2014; 4:285. [PMID: 25374842 PMCID: PMC4204435 DOI: 10.3389/fonc.2014.00285] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022] Open
Abstract
p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens, and oxidative stress. Upon activation, p53 leads to cell-cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein and also hold functions distinct from p53. Today more than 40 different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g., Nutlins, RITA, PRIMA-1, and MIRA-1 among others) have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.
Collapse
Affiliation(s)
- Johanna Pflaum
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Sophie Schlosser
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
19
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
20
|
Frequent expression of zinc-finger protein ZNF165 in human urinary bladder transitional cell carcinoma. Immunobiology 2014; 220:68-73. [PMID: 25214475 DOI: 10.1016/j.imbio.2014.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
The aim of the study is to evaluate mRNA/protein expression of zinc finger protein 165 (ZNF165) in transitional cell carcinomas (TCCs) of urinary bladder and correlate its expression with the clinicopathological characteristics of patients. In this study, the methods of quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were utilized to evaluate mRNA/protein expression of ZNF165 in TCC. Independent Student's t test, ANOVA and Chi-square (χ(2)) were used to analyze the data statistically. We observed overexpression of ZNF165 mRNA in testis and majority (59.2%) of TCC patients. ZNF165 mRNA expression was also detected in adjacent noncancerous tissues (ANCTs) and some other normal tissues. Relative mean fold expression of ZNF165 mRNA was found to be significantly (p<0.01) higher in muscle-invasive bladder cancer (MIBC) as compared to non-muscle-invasive bladder cancer (NMIBC) patients. (12.11±9.57 vs. 5.72±2.61, p=0.009). ZNF165 protein expression was demonstrated on archival formalin-fixed, paraffin-embedded (FFPE) bladder tissues using IHC and nuclear staining pattern was detected. No significant difference was observed in protein expression of ZNF165 between the two groups (NMIBC and MIBC patients) (61.1% vs. 55.2%, p=0.629). No significant protein expression of ZNF165 was observed among ANCTs and benign prostatic hyperplasia (BPH) used as control. Our study results suggest that ZNF165 mRNA/protein expression was observed in TCC of human urinary bladder and might be used as a novel diagnostic biomarker and as well a vaccine target in development of urinary bladder cancer specific immunotherapy.
Collapse
|
21
|
Pathuri G, Madka V, Hedrick AF, Lightfoot S, Awasthi V, Cowley BD, Rao CV, Gali H. Evaluation of (99m)Tc-probestin SPECT as a novel technique for noninvasive imaging of kidney aminopeptidase N expression. Mol Pharm 2014; 11:2948-53. [PMID: 24988047 PMCID: PMC4144757 DOI: 10.1021/mp5002872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/23/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
Aminopeptidase N (APN; CD13; EC 3.4.11.2) is a zinc-dependent membrane-bound exopeptidase that catalyzes the removal of N-terminal amino acids from peptides. APN is known to be highly expressed on renal cortical proximal tubules. APN expression levels are markedly decreased under the influence of nephrotoxins and in the tumor regions of renal cancers. Thus, molecular imaging of kidney APN expression could provide pathophysiological information about kidneys noninvasively. Probestin is a potent APN inhibitor and binds to APN. Abdominal SPECT imaging was conducted at 1 h postinjection of (99m)Tc-probestin in a group of 12 UPII-SV40T transgenic and wild-type mice. UPII-SV40T mice spontaneously develop urothelial carcinoma in situ and invasive transitional cell carcinoma (TCC) that invade kidneys. Histopathology and immunohistochemistry analysis were used to confirm the presence of tumor and to evaluate APN expression in kidney. Radioactivity in normal tissue regions of renal cortex was clearly visible in SPECT images, whereas tumor regions of renal cortex displayed significantly lower or no radioactivity uptake. Histopathological analysis of kidney sections showed normal morphology for both renal pelvic and cortical regions in wild-type mice and abnormal morphology in some transgenic mice. Proliferating cell nuclear antigen staining confirmed the presence of tumor in those abnormal regions. Immunohistochemical analysis of kidney sections using anti-CD13 antibody showed significantly lower APN expression in tumor regions compared to normal regions. Results obtained in this study demonstrate the potential use of (99m)Tc-probestin SPECT as a novel technique for noninvasive imaging of kidney APN expression.
Collapse
Affiliation(s)
- Gopal Pathuri
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| | - Venkateshwar Madka
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| | - Andria F. Hedrick
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| | - Stanley
A. Lightfoot
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| | - Vibhudutta Awasthi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| | - Benjamin D. Cowley
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| | - Chinthalapally V. Rao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| | - Hariprasad Gali
- Department
of Pharmaceutical Sciences, College of Pharmacy, Center for Cancer
Prevention and Drug Development, Hematology/Oncology Section, Department
of Medicine, PCS Oklahoma Cancer Center, and Nephrology Section, Department of Medicine,
College of Medicine, The University of Oklahoma
Health Sciences Center, Oklahoma
City, Oklahoma 73117, United States
| |
Collapse
|
22
|
Madka V, Mohammed A, Li Q, Zhang Y, Patlolla JMR, Biddick L, Lightfoot S, Wu XR, Steele V, Kopelovich L, Rao CV. Chemoprevention of urothelial cell carcinoma growth and invasion by the dual COX-LOX inhibitor licofelone in UPII-SV40T transgenic mice. Cancer Prev Res (Phila) 2014; 7:708-16. [PMID: 24795386 PMCID: PMC4310686 DOI: 10.1158/1940-6207.capr-14-0087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiologic and clinical data suggest that use of anti-inflammatory agents is associated with reduced risk for bladder cancer. We determined the chemopreventive efficacy of licofelone, a dual COX-lipoxygenase (LOX) inhibitor, in a transgenic UPII-SV40T mouse model of urothelial transitional cell carcinoma (TCC). After genotyping, six-week-old UPII-SV40T mice (n = 30/group) were fed control (AIN-76A) or experimental diets containing 150 or 300 ppm licofelone for 34 weeks. At 40 weeks of age, all mice were euthanized, and urinary bladders were collected to determine urothelial tumor weights and to evaluate histopathology. Results showed that bladders of the transgenic mice fed control diet weighed 3 to 5-fold more than did those of the wild-type mice due to urothelial tumor growth. However, treatment of transgenic mice with licofelone led to a significant, dose-dependent inhibition of the urothelial tumor growth (by 68.6%-80.2%, P < 0.0001 in males; by 36.9%-55.3%, P < 0.0001 in females) compared with the control group. The licofelone diet led to the development of significantly fewer invasive tumors in these transgenic mice. Urothelial tumor progression to invasive TCC was inhibited in both male (up to 50%; P < 0.01) and female mice (41%-44%; P < 0.003). Urothelial tumors of the licofelone-fed mice showed an increase in apoptosis (p53, p21, Bax, and caspase3) with a decrease in proliferation, inflammation, and angiogenesis markers (proliferating cell nuclear antigen, COX-2, 5-LOX, prostaglandin E synthase 1, FLAP, and VEGF). These results suggest that licofelone can serve as potential chemopreventive for bladder TCC.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qian Li
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuting Zhang
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jagan M R Patlolla
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Laura Biddick
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stan Lightfoot
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xue-Ru Wu
- Department of Urology, NYU Medical Center, New York, New York; and
| | - Vernon Steele
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Levy Kopelovich
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Chinthalapally V Rao
- Authors' Affiliations: Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, PCS Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
| |
Collapse
|
23
|
Bykov VJ, Wiman KG. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett 2014; 588:2622-7. [DOI: 10.1016/j.febslet.2014.04.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 01/22/2023]
|
24
|
Rao CV, Patlolla JMR, Qian L, Zhang Y, Brewer M, Mohammed A, Desai D, Amin S, Lightfoot S, Kopelovich L. Chemopreventive effects of the p53-modulating agents CP-31398 and Prima-1 in tobacco carcinogen-induced lung tumorigenesis in A/J mice. Neoplasia 2013; 15:1018-27. [PMID: 24027427 PMCID: PMC3769881 DOI: 10.1593/neo.131256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Expression of the p53 tumor suppressor protein is frequently altered in tobacco-associated lung cancers. We studied chemopreventive effects of p53-modulating agents, namely, CP-31398 and Prima-1, on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung adenoma and adenocarcinoma formation in female A/J mice. Seven-week-old mice were treated with a single dose of NNK (10 µmol/mouse) by intraperitoneal injection and, 3 weeks later, were randomized to mice fed a control diet or experimental diets containing 50 or 100 ppm CP-31398 or 150 or 300 ppm Prima-1 for either 17 weeks (10 mice/group) or 34 weeks (15 mice/group) to assess the efficacy against lung adenoma and adenocarcinoma. Dietary feeding of 50 or 100 ppm CP-31398 significantly suppressed (P < .0001) lung adenocarcinoma by 64% and 73%, respectively, after 17 weeks and by 47% and 56%, respectively, after 34 weeks. Similarly, 150 or 300 ppm Prima-1 significantly suppressed (P < .0001) lung adenocarcinoma formation by 56% and 62%, respectively, after 17 weeks and 39% and 56%, respectively, after 34 weeks. Importantly, these results suggest that both p53 modulators cause a delay in the progression of adenoma to adenocarcinoma. Immunohistochemical analysis of lung tumors from mice exposed to p53-modulating agents showed a significantly reduced tumor cell proliferation and increased accumulation of wild-type p53 in the nucleus. An increase in p21- and apoptotic-positive cells was also observed in lung tumors of mice exposed to p53-modulating agents. These results support a chemopreventive role of p53-modulating agents in tobacco carcinogen-induced lung adenocarcinoma formation.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | | | | | | | | | | | | | | |
Collapse
|