1
|
Hirsch RM, Premsankar S, Kurnit KC, Chiou LF, Rabjohns EM, Lee HN, Broaddus RR, Vaziri C, Bowser JL. CD73 restrains mutant β-catenin oncogenic activity in endometrial carcinomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624183. [PMID: 39605508 PMCID: PMC11601622 DOI: 10.1101/2024.11.18.624183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Missense mutations in exon 3 of CTNNB1, the gene encoding β-catenin, are associated with poor outcomes in endometrial carcinomas (EC). Clinically, CTNNB1 mutation status has been difficult to use as a predictive biomarker as β-catenin oncogenic activity is modified by other factors, and these determinants are unknown. Here we reveal that CD73 restrains the oncogenic activity of exon 3 β-catenin mutants, and its loss associates with recurrence. Using 7 patient-specific mutants, with genetic deletion or ectopic expression of CD73, we show that CD73 loss increases β-catenin-TCF/LEF transcriptional activity. In cells lacking CD73, membrane levels of mutant β-catenin decreased which corresponded with increased levels of nuclear and chromatin-bound mutant β-catenin. These results suggest CD73 sequesters mutant β-catenin to the membrane to limit its oncogenic activity. Adenosine A1 receptor deletion phenocopied increased β-catenin-TCF/LEF activity seen with NT5E deletion, suggesting that the effect of CD73 loss on mutant β-catenin is mediated via attenuation of adenosine receptor signaling. RNA-seq analyses revealed that NT5E deletion alone drives pro-tumor Wnt/β-catenin gene expression and, with CD73 loss, β-catenin mutants dysregulate zinc-finger and non-coding RNA gene expression. We identify CD73 as a novel regulator of oncogenic β-catenin and help explain variability in patient outcomes in CTNNB1 mutant EC.
Collapse
Affiliation(s)
- Rebecca M. Hirsch
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sunthoshini Premsankar
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Chancellor’s Science Scholars Program, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine C. Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Lilly F. Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Emily M. Rabjohns
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Pathobiology and Translational Science, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah N. Lee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica L. Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Ayuso-García P, Sánchez-Rueda A, Velasco-Avilés S, Tamayo-Caro M, Ferrer-Pinós A, Huarte-Sebastian C, Alvarez V, Riobello C, Jiménez-Vega S, Buendia I, Cañas-Martin J, Fernández-Susavila H, Aparicio-Rey A, Esquinas-Román EM, Ponte CR, Guhl R, Laville N, Pérez-Andrés E, Lavín JL, González-Lopez M, Cámara NM, Aransay AM, Lozano JJ, Sutherland JD, Barrio R, Martinez-Chantar ML, Azkargorta M, Elortza F, Soriano-Navarro M, Matute C, Sánchez-Gómez MV, Bayón-Cordero L, Pérez-Samartín A, Bravo SB, Kurz T, Lama-Díaz T, Blanco MG, Haddad S, Record CJ, van Hasselt PM, Reilly MM, Varela-Rey M, Woodhoo A. Neddylation orchestrates the complex transcriptional and posttranscriptional program that drives Schwann cell myelination. SCIENCE ADVANCES 2024; 10:eadm7600. [PMID: 38608019 PMCID: PMC11014456 DOI: 10.1126/sciadv.adm7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.
Collapse
Affiliation(s)
- Paula Ayuso-García
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Alejandro Sánchez-Rueda
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Sergio Velasco-Avilés
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Miguel Tamayo-Caro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Aroa Ferrer-Pinós
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Cecilia Huarte-Sebastian
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Vanesa Alvarez
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Selene Jiménez-Vega
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Izaskun Buendia
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
| | - Jorge Cañas-Martin
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Héctor Fernández-Susavila
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Adrián Aparicio-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Eva M. Esquinas-Román
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Carlos Rodríguez Ponte
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Romane Guhl
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Université Paris Cité Magistère Européen de Génétique, 85 Boulevard Saint-Germain, 75006 Paris, France
| | - Nicolas Laville
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Université Paris Cité Magistère Européen de Génétique, 85 Boulevard Saint-Germain, 75006 Paris, France
| | - Encarni Pérez-Andrés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - José L. Lavín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- NEIKER–Basque Institute for Agricultural Research and Development, Applied Mathematics Department, Bioinformatics Unit, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika González-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Nuria Macías Cámara
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ana M. Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - James D. Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - María Luz Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - María Victoria Sánchez-Gómez
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Laura Bayón-Cordero
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Alberto Pérez-Samartín
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15705 Santiago de Compostela, A Coruña, Spain
| | - Thimo Kurz
- Evotec SE, Innovation Dr, Milton, Abingdon OX14 4RT, UK and School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tomas Lama-Díaz
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15706 Santiago de Compostela, A Coruña, Spain
| | - Miguel G. Blanco
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15706 Santiago de Compostela, A Coruña, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - Saif Haddad
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher J. Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Peter M. van Hasselt
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, 3584 EA, Utrecht, Netherlands
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Bizkaia, Spain
- Department of Functional Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
- Oportunius Research Professor at CIMUS/USC, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
3
|
Silva J, Omar N, Sittaramane V, Cowell JK. Identification of small molecules that suppress cell invasion and metastasis promoted by WASF3 activation. Heliyon 2023; 9:e20662. [PMID: 37867831 PMCID: PMC10585217 DOI: 10.1016/j.heliyon.2023.e20662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
The WASF3 gene promotes cancer cell invasion and metastasis, and genetic inactivation leads to suppression of metastasis. To identify small molecules that might interfere with WASF3 function, we performed an in silico docking study to the regulatory pocket of WASF3 using the National Cancer Institute (NCI) diversity set VI small molecule library. Compounds that showed the maximum likelihood of interaction with WASF3 were screened for their effect on cell movement in breast and prostate cancer cells, a well-established predictor of invasion and metastasis. Three hit compounds were identified that affected cell movement, and the same compounds also suppressed cell migration and invasion in vitro in both MDA-MB-231 breast cancer cells and Du145 prostate cancer cells. Using a zebrafish metastasis assay, one of these compounds, NSC670283, showed significant suppression of metastasis in vivo while not affecting cell proliferation. NSC670283 showed a consistent effect on suppression of invasion and metastasis, and cellular temperature shift assays provided support for physical interaction with WASF3. In addition, suppression of cell movement and invasion was accompanied by a decrease in actin filament polymerization. The data in this study suggest that these small molecules inhibit cancer cell invasion and metastasis, and to our knowledge, it is the first identification of a small molecule that can potentially inhibit WASF3-directed metastasis, laying the foundation for medicinal chemistry approaches to enhance the potency of the identified compounds.
Collapse
Affiliation(s)
- Jeane Silva
- The Georgia Cancer Center, 1410 Laney Walker Blvd., Augusta, GA 30912, Georgia
- Department of Interdisciplinary Health Sciences, College of Allied Sciences, Augusta University, GA, 30912, Georgia
| | - Nivin Omar
- Department of Pathology, Medical College of Georgia, Augusta University, GA, 30912, Georgia
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, Georgia
| | - John K. Cowell
- The Georgia Cancer Center, 1410 Laney Walker Blvd., Augusta, GA 30912, Georgia
| |
Collapse
|
4
|
Singh P, Ali SA, Kumar S, Mohanty AK. CRISPR-Cas9 based knockout of S100A8 in mammary epithelial cells enhances cell proliferation and triggers oncogenic transformation via the PI3K-Akt pathway: Insights from a deep proteomic analysis. J Proteomics 2023; 288:104981. [PMID: 37544501 DOI: 10.1016/j.jprot.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
S100A8 is a calcium-binding protein with multiple functions, including being a chemoattractant for phagocytes and playing a key role in the inflammatory response. Its expression has been shown to influence epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer. However, the role of S100A8 in cell proliferation and differentiation remains unknown. In this study, we used the CRISPR-Cas9 system to knock out S100A8 in healthy mammary epithelial cells and investigated the resulting changes in proteome profiling and signaling pathways. Our results showed that S100A8 knockout led to an increase in cell proliferation and migration, reduced cell-cell adhesion, and increased apoptosis compared to wildtype cells. Proteomics data indicated that S100A8 significantly affects cell cycle progression, cell proliferation, and cell survival through the PI3K-Akt pathway. Furthermore, our findings suggest that S100A8 function is associated with Pten expression, a negative regulator of the PI3K-Akt pathway. These results indicate that S100A8 dysregulation in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, maintaining S100A8 expression is critical for preserving healthy cell physiology. This study provides novel insights into the role of S100A8 in cell proliferation and differentiation and its potential relevance to cancer biology. SIGNIFICANCE: The study suggests that maintaining S100A8 expression is critical for preserving healthy cell physiology, and dysregulation of S100A8 in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, targeting the PI3K-Akt pathway or regulating Pten expression, a negative regulator of the PI3K-Akt pathway, may be potential strategies for cancer treatment by controlling S100A8 dysregulation. Additionally, S100A8 and S100A9 have been shown to promote metastasis of breast carcinoma by forming a metastatic milieu. However, the differential expression of S100A8 in tumors and its dual effects of antitumor and protumor make the relationship between S100A8 and tumors complicated. Currently, most research focuses on the function of S100A8 as a secretory protein in the microenvironment of tumors, and its function inside healthy cells without forming dimers remains unclear. Furthermore, the study provides insight into the role of S100A8 in cell proliferation and differentiation, which may have implications for other diseases beyond cancer. The functional role of S100A8 in normal mammary epithelial cells remains completely uncertain. Therefore, the objective of this study is to investigate the function of S100A8 on proliferation in mammary epithelial cells after its deletion and to elucidate the underlying proteins involved in downstream signaling. Our findings indicate that the deletion of S100A8 leads to excessive proliferation in normal mammary epithelial cells, reduces apoptosis, and affects cell-cell adhesion molecules required for cellular communication, resulting in a cancer-like phenotype.
Collapse
Affiliation(s)
- Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Indian Veterinary Research Institute, Mukteshwar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
5
|
Xiao J, Sharma U, Arab A, Miglani S, Bhalla S, Suguru S, Suter R, Mukherji R, Lippman ME, Pohlmann PR, Zeck JC, Marshall JL, Weinberg BA, He AR, Noel MS, Schlegel R, Goodarzi H, Agarwal S. Propagated Circulating Tumor Cells Uncover the Potential Role of NFκB, EMT, and TGFβ Signaling Pathways and COP1 in Metastasis. Cancers (Basel) 2023; 15:1831. [PMID: 36980717 PMCID: PMC10046547 DOI: 10.3390/cancers15061831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Circulating tumor cells (CTCs), a population of cancer cells that represent the seeds of metastatic nodules, are a promising model system for studying metastasis. However, the expansion of patient-derived CTCs ex vivo is challenging and dependent on the collection of high numbers of CTCs, which are ultra-rare. Here we report the development of a combined CTC and cultured CTC-derived xenograft (CDX) platform for expanding and studying patient-derived CTCs from metastatic colon, lung, and pancreatic cancers. The propagated CTCs yielded a highly aggressive population of cells that could be used to routinely and robustly establish primary tumors and metastatic lesions in CDXs. Differential gene analysis of the resultant CTC models emphasized a role for NF-κB, EMT, and TGFβ signaling as pan-cancer signaling pathways involved in metastasis. Furthermore, metastatic CTCs were identified through a prospective five-gene signature (BCAR1, COL1A1, IGSF3, RRAD, and TFPI2). Whole-exome sequencing of CDX models and metastases further identified mutations in constitutive photomorphogenesis protein 1 (COP1) as a potential driver of metastasis. These findings illustrate the utility of the combined patient-derived CTC model and provide a glimpse of the promise of CTCs in identifying drivers of cancer metastasis.
Collapse
Affiliation(s)
- Jerry Xiao
- School of Medicine, Georgetown University, Washington, DC 20057, USA
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Utsav Sharma
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Abolfazl Arab
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sonakshi Bhalla
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Shravanthy Suguru
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Robert Suter
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Reetu Mukherji
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marc E. Lippman
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Paula R. Pohlmann
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Jay C. Zeck
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - John L. Marshall
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Benjamin A. Weinberg
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aiwu Ruth He
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marcus S. Noel
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
6
|
Endocrine resistance and breast cancer plasticity are controlled by CoREST. Nat Struct Mol Biol 2022; 29:1122-1135. [PMID: 36344844 PMCID: PMC9707522 DOI: 10.1038/s41594-022-00856-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER+ breast cancer plasticity. In endocrine-sensitive cells, CoREST is recruited to regulatory regions co-bound to ERα and FOXA1 to regulate the estrogen pathway. In contrast, during temporal reprogramming towards a resistant state, CoREST is recruited to AP-1 sites. In reprogrammed cells, CoREST favors chromatin opening, cJUN binding to chromatin, and gene activation by controlling SWI/SNF recruitment independently of the demethylase activity of the CoREST subunit LSD1. Genetic and pharmacological CoREST inhibition reduces tumorigenesis and metastasis of endocrine-sensitive and endocrine-resistant xenograft models. Consistently, CoREST controls a gene signature involved in invasiveness in clinical breast tumors resistant to endocrine therapies. Our studies reveal CoREST functions that are co-opted to drive cellular plasticity and resistance to endocrine therapies and tumorigenesis, thus establishing CoREST as a potential therapeutic target for the treatment of advanced breast cancer.
Collapse
|
7
|
Teng Y, Yu X, Cho WC. Editorial: Emerging 3D and Animal Models in Diseases and Therapeutics. Front Mol Biosci 2022; 8:831833. [PMID: 35071331 PMCID: PMC8770850 DOI: 10.3389/fmolb.2021.831833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yong Teng
- Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health-Shreveport, Shreveport, LA, United States
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
8
|
Wang Y, Dai J, Zeng Y, Guo J, Lan J. E3 Ubiquitin Ligases in Breast Cancer Metastasis: A Systematic Review of Pathogenic Functions and Clinical Implications. Front Oncol 2021; 11:752604. [PMID: 34745984 PMCID: PMC8569917 DOI: 10.3389/fonc.2021.752604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Female breast cancer has become the most commonly occurring cancer worldwide. Although it has a good prognosis under early diagnosis and appropriate treatment, breast cancer metastasis drastically causes mortality. The process of metastasis, which includes cell epithelial–mesenchymal transition, invasion, migration, and colonization, is a multistep cascade of molecular events directed by gene mutations and altered protein expressions. Ubiquitin modification of proteins plays a common role in most of the biological processes. E3 ubiquitin ligase, the key regulator of protein ubiquitination, determines the fate of ubiquitinated proteins. E3 ubiquitin ligases target a broad spectrum of substrates. The aberrant functions of many E3 ubiquitin ligases can affect the biological behavior of cancer cells, including breast cancer metastasis. In this review, we provide an overview of these ligases, summarize the metastatic processes in which E3s are involved, and comprehensively describe the roles of E3 ubiquitin ligases. Furthermore, we classified E3 ubiquitin ligases based on their structure and analyzed them with the survival of breast cancer patients. Finally, we consider how our knowledge can be used for E3s’ potency in the therapeutic intervention or prognostic assessment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yingshuang Wang
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Dai
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqin Zeng
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Lan
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
10
|
Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells 2020; 9:cells9051110. [PMID: 32365809 PMCID: PMC7290852 DOI: 10.3390/cells9051110] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer and hence, GSK-3 is often inactivated. Moreover, GSK-3 also interacts with WNT/β-catenin signaling and β-catenin and other proteins in this pathway are targets of GSK-3. GSK-3 can modify NF-κB activity which is often expressed at high levels in cancer cells. Multiple pharmaceutical companies developed small molecule inhibitors to suppress GSK-3 activity. In addition, various natural products will modify GSK-3 activity. This review will focus on the effects of small molecule inhibitors and natural products on GSK-3 activity and provide examples where these compounds were effective in suppressing cancer growth.
Collapse
|
11
|
Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, Zheng L, Liu Z, Qiu Y. Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:29. [PMID: 32024543 PMCID: PMC7003365 DOI: 10.1186/s13046-020-1536-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
Background Drug resistance is a major obstacle to treating cancers because it desensitizes cancer cells to chemotherapy. Recently, attention has been focused on changes in the tumor immune landscape after the acquisition of drug resistance. Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell-based immunity. Evidence has shown that acquired chemoresistance is associated with increased PD-L1 expression in cancer cells. However, the underlying mechanism is still largely unknown. Methods PD-L1 expression in three drug-resistant A549/CDDP, MCF7/ADR and HepG2/ADR cell lines was detected by qRT-PCR, western blotting and flow cytometry, and a T cell proliferation assay was performed to test its functional significance. Then, the potential roles of JNK/c-Jun, histone H3 acetylation, histone deacetylase 3 (HDAC3) and the E3 ligase COP1 in the PD-L1 increase were explored through ChIP assays and gain- and loss-of-function gene studies. Furthermore, murine xenograft tumor models were used to verify the role of JNK/c-Jun and HDAC3 in PD-L1 expression in A549/CDDP cells in vivo. Finally, the correlations of PD-L1, c-Jun and HDAC3 expression in clinical cisplatin-sensitive and cisplatin-resistant non-small cell lung cancer (NSCLC) tissues were analyzed by immunohistochemistry and Pearson’s correlation coefficient. Results PD-L1 expression was significantly increased in A549/CDDP, MCF7/ADR and HepG2/ADR cells and was attributed mainly to enhanced JNK/c-Jun signaling activation. Mechanistically, decreased COP1 increased c-Jun accumulation, which subsequently inhibited HDAC3 expression and thereby enhanced histone H3 acetylation of the PD-L1 promoter. Furthermore, PD-L1 expression could be inhibited by JNK/c-Jun inhibition or HDAC3 overexpression in vivo, which could largely reverse inhibited CD3+ T cell proliferation in vitro. PD-L1 expression was significantly increased in the cisplatin-resistant clinical NSCLC samples and positively correlated with c-Jun expression but negatively correlated with HDAC3 expression. Conclusions Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis was crucial for the PD-L1 increase in drug-resistant cancer cells. Our study reveals a novel regulatory network for the PD-L1 increase in drug-resistant cancer cells and that combined PD-L1-targeting strategies could improve T cell-based immunity in drug-resistant cancers.
Collapse
Affiliation(s)
- Haifang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chen Fu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rui He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaofeng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haixia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kui Li
- Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, 510515, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zongcai Liu
- The Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Yurong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangzhou Huayin Medical Laboratory Center Co., Ltd., Guangzhou, 510515, China.
| |
Collapse
|
12
|
Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y, Mo H, Tang Y, Fang W, Wu Z. Timeless-Stimulated miR-5188-FOXO1/β-Catenin-c-Jun Feedback Loop Promotes Stemness via Ubiquitination of β-Catenin in Breast Cancer. Mol Ther 2020; 28:313-327. [PMID: 31604679 PMCID: PMC6951841 DOI: 10.1016/j.ymthe.2019.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) play an essential role in the self-renewal of breast cancer stem cells (BCCs). Our study aimed to clarify the role of proto-oncogene c-Jun-regulated miR-5188 in breast cancer progression and its association with Timeless-mediated cancer stemness. In the present study, we showed that miR-5188 exerted an oncogenic effect by inducing breast cancer stemness, proliferation, metastasis, and chemoresistance in vitro and in vivo. The mechanistic analysis demonstrated that miR-5188 directly targeted FOXO1, which interacted with β-catenin in the cytoplasm, facilitated β-catenin degradation, and impaired the nuclear accumulation of β-catenin, thus stimulating the activation of known Wnt targets, epithelial-mesenchymal transition (EMT) markers, and key regulators of cancer stemness. Moreover, miR-5188 potentiated Wnt/β-catenin/c-Jun signaling to promote breast cancer progression. Interestingly, c-Jun enhanced miR-5188 transcription to form a positive regulatory loop, and Timeless interacted with Sp1/c-Jun to induce miR-5188 expression by promoting c-Jun-mediated transcription, which further activated miR-5188-FOXO1/β-catenin-c-Jun loop and facilitated breast cancer progression. Importantly, miR-5188 was upregulated in breast cancer and was positively correlated with poor patient prognosis. This study identifies miR-5188 as a novel oncomiR and provides a new theoretical basis for the clinical use of miR-5188 antagonists in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yujiao Zou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Junguo Bu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zelong Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Yanjuan Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Yunhui Qiu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Haiyue Mo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Yao Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China.
| | - Ziqing Wu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Menéndez-Menéndez J, Hermida-Prado F, Granda-Díaz R, González A, García-Pedrero JM, Del-Río-Ibisate N, González-González A, Cos S, Alonso-González C, Martínez-Campa C. Deciphering the Molecular Basis of Melatonin Protective Effects on Breast Cells Treated with Doxorubicin: TWIST1 a Transcription Factor Involved in EMT and Metastasis, a Novel Target of Melatonin. Cancers (Basel) 2019; 11:1011. [PMID: 31331001 PMCID: PMC6679136 DOI: 10.3390/cancers11071011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin mitigates cancer initiation, progression and metastasis through inhibition of both the synthesis of estrogens and the transcriptional activity of the estradiol-ER (Estrogen receptor) complex in the estrogen-dependent breast cancer cell line MCF-7. Moreover, melatonin improves the sensitivity of MCF-7 to chemotherapeutic agents and protects against their side effects. It has been described that melatonin potentiates the anti-proliferative effects of doxorubicin; however, the molecular changes involving gene expression and the activation/inhibition of intracellular signaling pathways remain largely unknown. Here we found that melatonin enhanced the anti-proliferative effect of doxorubicin in MCF-7 but not in MDA-MB-231 cells. Strikingly, doxorubicin treatment induced cell migration and invasion, and melatonin effectively counteracted these effects in MCF-7 but not in estrogen-independent MDA-MB-231 cells. Importantly, we describe for the first time the ability of melatonin to downregulate TWIST1 (Twist-related protein 1) in estrogen-dependent but not in estrogen-independent breast cancer cells. Combined with doxorubicin, melatonin inhibited the activation of p70S6K and modulated the expression of breast cancer, angiogenesis and clock genes. Moreover, melatonin regulates the levels of TWIST1-related microRNAs, such as miR-10a, miR-10b and miR-34a. Since TWIST1 plays a pivotal role in the epithelial to mesenchymal transition, acquisition of metastatic phenotype and angiogenesis, our results suggest that inhibition of TWIST1 by melatonin might be a crucial mechanism of overcoming resistance and improving the oncostatic potential of doxorubicin in estrogen-dependent breast cancer cells.
Collapse
Affiliation(s)
- Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Juana María García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Nagore Del-Río-Ibisate
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain.
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain.
| |
Collapse
|
14
|
Ko EJ, Oh YL, Kim HY, Eo WK, Kim H, Kim KH, Koh SB, Ock MS, Choi YH, Kim A, Choi HH, Park EJ, Cha HJ. Correlation of constitutive photomorphogenic 1 (COP1) and p27 tumor suppressor protein expression in ovarian cancer. Genes Genomics 2019; 41:879-884. [PMID: 31028655 DOI: 10.1007/s13258-019-00818-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase that regulates important target proteins for cell growth including p27. The tumor suppressor p27 negatively regulates the cell cycle by inhibiting cyclin-dependent kinase. COP1 negatively regulates p27 stability by mediating its nuclear export and degradation. OBJECTIVE Even if COP1 and p27 are tightly related and have significant roles in tumor progression, the expression patterns and relationship of both proteins in cancer have not yet been studied. METHOD We analyzed the expression patterns and relationship between COP1 and p27 using an ovarian cancer tissue microarray by dual immunofluorescence analysis. RESULTS The expression levels of COP1 and p27 proteins were not significantly different between ovarian cancer tissue and normal control tissue. Other clinical data including age, tumor type, tumor grade, and stage were not significantly related to expression of the two proteins. The co-relationship between COP1 and p27 proteins was significantly high (Pearson correlation coefficient 0.79, p = 8.65 × 10-22). CONCLUSIONS Our results demonstrate that while the expression levels of COP1 and p27 are highly correlated, they are not significantly related to cancer progression in ovarian cancer.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea.,Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Young Lim Oh
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Heung Yeol Kim
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea.,Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, Republic of Korea
| | - Suk Bong Koh
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Ari Kim
- Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Hyun Ho Choi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Eun Joo Park
- Department of Obstetrics and Gynecology, Eulji Medical Center, Eulji University, Seoul, Republic of Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
15
|
Jin F, Wu Z, Hu X, Zhang J, Gao Z, Han X, Qin J, Li C, Wang Y. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer Biol Med 2019; 16:38-54. [PMID: 31119045 PMCID: PMC6528454 DOI: 10.20892/j.issn.2095-3941.2018.0253] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective To examine the effect of pSer9-GSK-3β on breast cancer and to determine whether the underlying metabolic and immunological mechanism is associated with ROS/eIF2B and natural killer (NK) cells. Methods We employed TWS119 to inactivate GSK-3β by phosphorylating Ser9 and explored its effect on breast cancer and NK cells. The expression of GSK-3β, natural killer group 2 member D (NKG2D) ligands, eIF2B was quantified by PCR and Western blot. We measured intracellular reactive oxygen species (ROS) and mitochondrial ROS using DCFH-DA and MitoSOXTM probe, respectively, and conducted quantitative analysis of cellular respiration on 4T1 cells with mitochondrial respiratory chain complex I/III kits.
Results Our investigation revealed that TWS119 downregulated NKG2D ligands (H60a and Rae1), suppressed the cytotoxicity of NK cells, and promoted the migration of 4T1 murine breast cancer cells. Nevertheless, LY290042, which attenuates p-GSK-3β formation by inhibiting the PI3K/Akt pathway, reversed these effects. We also found that higher expression of pSer9-GSK-3β induced higher levels of ROS, and observed that abnormality of mitochondrial respiratory chain complex I/III function induced the dysfunction of GSK-3β-induced electron transport chain, naturally disturbing the ROS level. In addition, the expression of NOX3 and NOX4 was significantly up-regulated, which affected the generation of ROS and associated with the metastasis of breast cancer. Furthermore, we found that the expression of pSer535-eIF2B promoted the expression of NKG2D ligands (Mult-1 and Rae1) following by expression of pSer9-GSK-3β and generation of ROS. Conclusions The PI3K/Akt/GSK-3β/ROS/eIF2B pathway could regulate NK cell activity and sensitivity of tumor cells to NK cells, which resulted in breast cancer growth and lung metastasis. Thus, GSK-3β is a promising target of anti-tumor therapy.
Collapse
Affiliation(s)
- Fengjiao Jin
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhaozhen Wu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiao Hu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jiahui Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zihe Gao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiao Han
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chen Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin 300071, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Ignatz-Hoover JJ, Wang V, Mackowski NM, Roe AJ, Ghansah IK, Ueda M, Lazarus HM, de Lima M, Paietta E, Fernandez H, Cripe L, Tallman M, Wald DN. Aberrant GSK3β nuclear localization promotes AML growth and drug resistance. Blood Adv 2018; 2:2890-2903. [PMID: 30385433 PMCID: PMC6234355 DOI: 10.1182/bloodadvances.2018016006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease with poor patient survival. As targetable mutations in AML are rare, novel oncogenic mechanisms are needed to define new therapeutic targets. We identified AML cells that exhibit an aberrant pool of nuclear glycogen synthase kinase 3β (GSK3β). This nuclear fraction drives AML growth and drug resistance. Nuclear, but not cytoplasmic, GSK3β enhances AML colony formation and AML growth in mouse models. Nuclear GSK3β drives AML partially by promoting nuclear localization of the NF-κB subunit, p65. Finally, nuclear GSK3β localization has clinical significance as it strongly correlates to worse patient survival (n = 86; hazard ratio = 2.2; P < .01) and mediates drug resistance in cell and animal models. Nuclear localization of GSK3β may define a novel oncogenic mechanism in AML and represent a new therapeutic target.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Resistance, Neoplasm
- Female
- Glycogen Synthase Kinase 3 beta/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid-Lymphoid Leukemia Protein/metabolism
- NF-kappa B/metabolism
- Oncogene Proteins, Fusion/metabolism
- Proportional Hazards Models
- Survival Rate
- Transplantation, Heterologous
- Up-Regulation
Collapse
Affiliation(s)
| | - Victoria Wang
- Eastern Cooperative Oncology Group-American College of Radiology Imaging Network (ECOG-ACRIN) Biostatistics Center, Dana-Farber Cancer Institute, Boston, MA
| | | | - Anne J Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Isaac K Ghansah
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Masumi Ueda
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Hillard M Lazarus
- Department of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH
| | - Marcos de Lima
- Department of Hematology and Oncology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH
| | | | - Hugo Fernandez
- Department of Blood and Marrow Transplant, Moffitt Cancer Center, Tampa, FL
| | - Larry Cripe
- Department of Medicine, Indiana University, Indianapolis, IN
| | - Martin Tallman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH
| |
Collapse
|
17
|
miR-589 promotes gastric cancer aggressiveness by a LIFR-PI3K/AKT-c-Jun regulatory feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:152. [PMID: 30012200 PMCID: PMC6048856 DOI: 10.1186/s13046-018-0821-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Background As novel biomarkers for various cancers, microRNAs negatively regulate genes expression via promoting mRNA degradation and suppressing mRNA translation. miR-589 has been reported to be deregulated in several human cancer types. However, its biological role has not been functionally characterized in gastric cancer. Here, we aim to investigate the biological effect of miR-589 on gastric cancer and to reveal the possible mechanism. Methods Real-time PCR was performed to evaluate the expression of miR-589 in 34 paired normal and stomach tumor specimens, as well as gastric cell lines. Functional assays, such as wound healing, transwell assays and in vivo assays, were used to detect the biological effect of miR-589 and LIFR. We determined the role of miR-589 in gastric cancer tumorigenesis in vivo using xenograft nude models. Dual-luciferase report assays and Chromatin immunoprecipitation (ChIP) assay were performed for target evaluation, and the relationships were confirmed by western blot assay. Result MiR-589 expression was significantly higher in tumor tissues and gastric cancer cells than those in matched normal tissues and gastric epithelial cells, respectively. Clinically, overexpression of miR-589 is associated with tumor metastasis, invasion and poor prognosis of GC patients. Gain- and loss-of function experiments showed that miR-589 promoted cell migration, metastasis and invasion in vitro and lung metastasis in vivo. Mechanistically, we found that miR-589 directly targeted LIFR to activate PI3K/AKT/c-Jun signaling. Meanwhile, c-Jun bound to the promoter region of miR-589 and activated its transcription. Thus miR-589 regulated its expression in a feedback loop that promoted cell migration, metastasis and invasion. Conclusion Our study identified miR-589, as an oncogene, markedly induced cell metastasis and invasion via an atypical miR-589-LIFR-PI3K/AKT-c-Jun feedback loop, which suggested miR-589 as a potential biomarker and/or therapeutic target for the gastric cancer management. Electronic supplementary material The online version of this article (10.1186/s13046-018-0821-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Zhou ZX, Zhang ZP, Tao ZZ, Tan TZ. miR-632 Promotes Laryngeal Carcinoma Cell Proliferation, Migration, and Invasion Through Negative Regulation of GSK3β. Oncol Res 2018; 28:21-31. [PMID: 29562960 PMCID: PMC7851529 DOI: 10.3727/096504018x15213142076069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Laryngeal cancer, one of the most common head and neck malignancies, is an aggressive neoplasm. Increasing evidence has demonstrated that microRNAs (miRNAs) exert important roles in oncogenesis and progression of diverse types of human cancers. miR-632, a tumor-related miRNA, has been reported to be dysregulated and implicated in human malignancies; however, its biological role in laryngeal carcinoma remains to be elucidated. The present study aimed at exploring the role of miR-632 in laryngeal cancer and clarifying the potential molecular mechanisms involved. In the current study, miR-632 was found to be significantly upregulated both in laryngeal cancer tissues and laryngeal cancer cell lines. Functional studies demonstrated that miR-632 accelerated cell proliferation and colony formation, facilitated cell migration and invasion, and enhanced the expression of cell proliferation-associated proteins, cyclin D1 and c-myc. Notably, miR-632 could directly bind to the 3′-untranslated region (3′-UTR) of glycogen synthase kinase 3β (GSK3β) to suppress its expression in laryngeal cancer cells. Mechanical studies revealed that miR-632 promoted laryngeal cancer cell proliferation, migration, and invasion through negative modulation of GSK3β. Pearson’s correlation analysis revealed that miR-632 expression was inversely correlated with GSK3β mRNA expression in laryngeal cancer tissues. Taken together, our findings suggest that miR-632 functions as an oncogene in laryngeal cancer and may be used as a novel therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Zhong-Xin Zhou
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan UniversityWuhan, HubeiP.R. China
| | - Zu-Ping Zhang
- Department of Otorhinolaryngology, Liaocheng People's HospitalLiaocheng, ShandongP.R. China
| | - Ze-Zhang Tao
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan UniversityWuhan, HubeiP.R. China
| | - Ting-Zhao Tan
- Department of Oncology, Liaocheng Tumor HospitalLiaocheng, ShandongP.R. China
| |
Collapse
|
19
|
Ka WH, Cho SK, Chun BN, Byun SY, Ahn JC. The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines. Breast Cancer 2018. [PMID: 29516369 DOI: 10.1007/s12282-018-0849-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) mediates cell survival, growth, and development, and interacts with the tumor suppressor protein p53 to induce its ubiquitination and degradation. Recent studies reported that COP1 overexpression is associated with increased cell proliferation, transformation, and disease progression in a variety of cancer types. In this study, we investigated whether COP1 regulates p53-mediated cell cycle arrest and apoptosis in human breast cancer cell lines. METHODS We downregulated COP1 expression using lentiviral particles expressing short hairpin RNA (shRNA) targeting COP1 and measured the effects of the knockdown in three different breast cancer cell lines. RESULTS COP1 silencing resulted in p53 activation, which induced the expression of p21 and p53-upregulated modulator of apoptosis (PUMA) expression, and reduced the levels of cyclin-dependent kinase 2 (CDK2). Notably, knockdown of COP1 was associated with cell cycle arrest during the G0/G1 phase. CONCLUSIONS The COP1-mediated degradation of p53 regulates cancer cell growth and apoptosis. Our results indicate that COP1 regulates human breast cancer cell proliferation and apoptosis in a p53-dependent manner. These findings suggest that COP1 might be a promising potential target for breast cancer-related gene therapy.
Collapse
Affiliation(s)
- Won Hye Ka
- WJ R&D Center, WOOJUNG BSC, Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
- Applied Biotechnology Department, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byung Nyun Chun
- WJ R&D Center, WOOJUNG BSC, Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | - Sang Yo Byun
- Applied Biotechnology Department, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Jong Cheol Ahn
- WJ R&D Center, WOOJUNG BSC, Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea.
| |
Collapse
|
20
|
Xie X, Tang SC, Cai Y, Pi W, Deng L, Wu G, Chavanieu A, Teng Y. Suppression of breast cancer metastasis through the inactivation of ADP-ribosylation factor 1. Oncotarget 2018; 7:58111-58120. [PMID: 27517156 PMCID: PMC5295416 DOI: 10.18632/oncotarget.11185] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022] Open
Abstract
Metastasis is the major cause of cancer-related death in breast cancer patients, which is controlled by specific sets of genes. Targeting these genes may provide a means to delay cancer progression and allow local treatment to be more effective. We report for the first time that ADP-ribosylation factor 1 (ARF1) is the most amplified gene in ARF gene family in breast cancer, and high-level amplification of ARF1 is associated with increased mRNA expression and poor outcomes of patients with breast cancer. Knockdown of ARF1 leads to significant suppression of migration and invasion in breast cancer cells. Using the orthotopic xenograft model in NSG mice, we demonstrate that loss of ARF1 expression in breast cancer cells inhibits pulmonary metastasis. The zebrafish-metastasis model confirms that the ARF1 gene depletion suppresses breast cancer cells to metastatic disseminate throughout fish body, indicating that ARF1 is a very compelling target to limit metastasis. ARF1 function largely dependents on its activation and LM11, a cell-active inhibitor that specifically inhibits ARF1 activation through targeting the ARF1-GDP/ARNO complex at the Golgi, significantly impairs metastatic capability of breast cancer cell in zebrafish. These findings underline the importance of ARF1 in promoting metastasis and suggest that LM11 that inhibits ARF1 activation may represent a potential therapeutic approach to prevent or treat breast cancer metastasis.
Collapse
Affiliation(s)
- Xiayang Xie
- Department of Oral Biology, Augusta University, Augusta, GA, USA.,Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, USA
| | - Shou-Ching Tang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Yafei Cai
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Wenhu Pi
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Libin Deng
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Alain Chavanieu
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, France
| | - Yong Teng
- Department of Oral Biology, Augusta University, Augusta, GA, USA.,Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
21
|
Moscetti I, Bizzarri AR, Cannistraro S. Imaging and kinetics of the bimolecular complex formed by the tumor suppressor p53 with ubiquitin ligase COP1 as studied by atomic force microscopy and surface plasmon resonance. Int J Nanomedicine 2018; 13:251-259. [PMID: 29379285 PMCID: PMC5757491 DOI: 10.2147/ijn.s152214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53 plays an important role in the safeguard of the genome but it is frequently downregulated mainly by E3 ubiquitin ligases among which COP1 plays an important role. The overexpression of COP1 has been reported to occur in several tumors and may be indicative of its overall oncogenic effect, which in turn might be originated by a direct interaction of COP1 with p53. Such an interaction may constitute a rewarding target for anticancer drug design strategies; therefore, a deeper understanding of its underlying molecular mechanism and kinetics is needed. The formation of a single p53–COP1 bimolecular complex was visualized by atomic force microscopy imaging on a mica substrate. The kinetic characterization of the complex, performed by atomic force spectroscopy and surface plasmon resonance, provided a KD value of ∼10−8 M and a relative long lifetime in the order of minutes, both at the single-molecule level and in bulk solution. The surprisingly high affinity value and low dissociation rate of the p53–COP1 bimolecular complex, which is even stronger than the p53–MDM2 complex, should be considered a benchmark for designing, development and optimization of suitable drugs able to antagonize the complex formation with the aim of preventing the inhibitory effect of COP1 on the p53 oncosuppressive function.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Biophysics and Nanoscience Centre, Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, Department of Ecology and Biology, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
22
|
Ubiquitin-Specific Protease USP6 Regulates the Stability of the c-Jun Protein. Mol Cell Biol 2017; 38:MCB.00320-17. [PMID: 29061731 DOI: 10.1128/mcb.00320-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023] Open
Abstract
The c-Jun gene encodes a transcription factor that has been implicated in many physiological and pathological processes. c-Jun is a highly unstable protein that is degraded through a ubiquitination/proteasome-dependent mechanism. However, the deubiquitinating enzyme (DUB) that regulates the stability of the c-Jun protein requires further investigation. Here, by screening a DUB expression library, we identified ubiquitin-specific protease 6 (USP6) and showed that it regulates the stability of the c-Jun protein in a manner depending on its enzyme activity. USP6 interacts with c-Jun and antagonizes its ubiquitination. USP6 overexpression upregulates the activity of the downstream signaling pathway mediated by c-Jun/AP-1 and promotes cell invasion. Moreover, many aberrant genes that are upregulated in USP6 translocated nodular fasciitis are great potential targets regulated by c-Jun. Based on our data, USP6 is an enzyme that deubiquitinates c-Jun and regulates its downstream cellular functions.
Collapse
|
23
|
Liu S, Guo C, Wang J, Wang B, Qi H, Sun MZ. ANXA11 regulates the tumorigenesis, lymph node metastasis and 5-fluorouracil sensitivity of murine hepatocarcinoma Hca-P cells by targeting c-Jun. Oncotarget 2017; 7:16297-310. [PMID: 26908448 PMCID: PMC4941315 DOI: 10.18632/oncotarget.7484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/09/2016] [Indexed: 02/05/2023] Open
Abstract
Annexin A11 (Anxa11) is associated with various cancers. Using a pair of syngeneic murine hepatocarcinoma cells, Hca-P with ~25% and Hca-F with ~75% lymph node metastatic (LNM) potentials, we demonstrated Anxa11 involvement in hepatocarcinoma lymphatic metastasis. Here, ANXA11 acted as a suppressor for the tumorigenicity, LNM and 5-FU resistance of Hca-P via c-Jun. We constructed monoclonal Hca-P cell line with stable ANXA11 knockdown. Although Bax and Bcl-2 levels increased in shRNA-Anxa11-transfected Hca-P, ANXA11 downregulation showed no clear effect on Hca-P apoptosis. ANXA11 downregulation promoted in vitro migration and invasion capacities of Hca-P. In situ adhesion potential of Hca-P cells toward LN was significantly enhanced following ANXA11 downregulation. Consistently, ANXA11 downregulation promoted the in vivo tumor growth and LNM capacities of Hca-P cells. ANXA11 knockdown enhanced the chemoresistance of Hca-P cells specifically toward 5-FU instead of cisplatin. Its downregulation increased c-Jun (pSer73) and decreased c-Jun (pSer243) levels in Hca-P. c-Jun (pSer243) downregulation seemed to be only correlated with ANXA11 knockdown without the connection to 5-FU treatment. Interestingly, compared with scramble-Hca-P cells, the levels of c-Jun and c-Jun (pSer73) in shRNA-Anxa11-Hca-P cells were upregulated in the presences of 0.1 and 1.0 mg/L 5-FU. The levels changes from c-Jun and c-Jun (pSer73) in Hca-P cells showed a more obvious tendency with the combination of ANXA11 knockdown and 5-FU treatment. ANXA11 level regulates LNM and 5-FU resistance of Hca-P via c-Jun pathway. It might play an important role in hepatocarcinoma cell malignancy and be a therapeutic target for hepatocarcinoma.
Collapse
Affiliation(s)
- Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Jiasheng Wang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Bo Wang
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Houbao Qi
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
24
|
Li J, Lai Y, Ma J, Liu Y, Bi J, Zhang L, Chen L, Yao C, Lv W, Chang G, Wang S, Ouyang M, Wang W. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC Cancer 2017; 17:745. [PMID: 29126392 PMCID: PMC5681773 DOI: 10.1186/s12885-017-3674-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the malignancy with the worst outcome among all breast cancer subtypes. We reported that ETV1 is a significant oncogene in TNBC tumourigenesis. Consequently, investigating the critical regulatory microRNAs (miRNAs) of ETV1 may be beneficial for TNBC targeted therapy. Methods We performed in situ hybridization (ISH) and immunohistochemistry (IHC) to detect the location of miR-17-5p and ETV1 in TNBC patient samples, respectively. miR-17-5p expression in TNBC tissues and cell lines was assessed by quantitative real-time PCR (qRT-PCR). ETV1 expression was evaluated by qRT-PCR, western blotting and IHC. Cell Counting Kit-8 (CCK-8), colony formation, Transwell and wound closure assays were utilized to determine the TNBC cell proliferation and migration capabilities. In vivo tumour metastatic assays were performed in a zebra fish model. Results The abundance of miR-17-5p was significantly decreased in TNBC cell lines and clinical TNBC tissues. The miR-17-5p expression levels were closely correlated with tumour size (P < 0.05) and TNM stage (P < 0.05). By contrast, the expression of ETV1 was significantly up-regulated in TNBC cell lines and tissues. There is an inverse correlation between the expression status of miR-17-5p and ETV1 (r = −0.28, P = 3.88 × 10−3). Luciferase reporter assay confirmed that ETV1 was a direct target of miR-17-5p. Forced expression of miR-17-5p in MDA-MB-231 or BT549 cells significantly decreased ETV1 expression and suppressed cell proliferation, migration in vitro and tumour metastasis in vivo. However, rescuing the expression of ETV1 in the presence of miR-17-5p significantly recovered the cell phenotype. High miR-17-5p expression was associated with a significantly favourable prognosis, in either the ETV1-positive or ETV1-negative groups (log-rank test, P < 0.001; P < 0.001). Both univariate and multivariate analyses showed that miR-17-5p and ETV1 were independent risk factors in the prognosis of TNBC patient. Conclusions Our data indicate that miR-17-5p acts as a tumour suppressor in TNBC by targeting ETV1, and a low-abundance of miR-17-5p may be involved in the pathogenesis of TNBC. These findings indicate that miR-17-5p may be a therapeutic target for TNBC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3674-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.,Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yuanhui Lai
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.,Department of Vascular, Thyroid and Breast Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, 183 East Huangpu Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jieyi Ma
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yue Liu
- Centre for Cellular & Structural biology, School of Pharmaceutical Sciences of Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou, Guangdong, People's Republic of China
| | - Jiong Bi
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Longjuan Zhang
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lianzhou Chen
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chen Yao
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Weiming Lv
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Guangqi Chang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shenming Wang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mao Ouyang
- Department of Clinical Laboratory, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Wenjian Wang
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China. .,Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
25
|
Chengye W, Yu T, Ping S, Deguang S, Keyun W, Yan W, Rixin Z, Rui L, Zhenming G, Mingliang Y, Liming W. Metformin reverses bFGF-induced epithelial-mesenchymal transition in HCC cells. Oncotarget 2017; 8:104247-104257. [PMID: 29262637 PMCID: PMC5732803 DOI: 10.18632/oncotarget.22200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Metformin had exerted important inhibitory effects in multiple cancers. However, the correlation between metformin and hepatocellular carcinoma (HCC) metastasis, and the relevant mechanisms are still unclear. By quantitative proteomics analysis technique, we found metformin could suppress FGF signalling significantly. In FGF signalling basic fibroblast growth factor (bFGF) is a crucial member, it initially binds to its receptors, the complex of bFGF and receptors activate FGF signallings, and promote many cancers progressions. When treating HCC cell lines HepG2 and Huh7 with bFGF, we observed the cells exhibited epithelial mesenchymal transition (EMT) and these cells metastasis potential was enhanced dramaticlly. However, when treating with metformin and bFGF together, EMT and metastasis induced by bFGF could be inhibited in these cells. Furthermore, bFGF could activate AKT/GSK-3β signalling, sequentially decrease the interaction between GSK-3β and Twist1 and decrease ubiquitination of Twist1 leading to Twist1 degradation reducing. While metformin could repress the bFGF-mediated activation in AKT/GSK-3β signalling, inhibition on interaction between GSK-3β and Twist1, enhancement of Twist1 stability. Taken together, our findings suggested that metformin had prominent negative effects on bFGF-induced EMT and metastasis in HCC cells.
Collapse
Affiliation(s)
- Wang Chengye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Tian Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Shao Ping
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Sun Deguang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Wang Keyun
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wang Yan
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhang Rixin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Liang Rui
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Gao Zhenming
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| | - Ye Mingliang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wang Liming
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China
| |
Collapse
|
26
|
Gao S, Li S, Duan X, Gu Z, Ma Z, Yuan X, Feng X, Wang H. Inhibition of glycogen synthase kinase 3 beta (GSK3β) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol Carcinog 2017; 56:2301-2316. [PMID: 28574599 DOI: 10.1002/mc.22685] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/13/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
Abstract
Although GSK3β has been reported to have contrasting effects on the progression of different tumors, it's possible functions in esophageal squamous cell carcinoma (ESCC) and the related molecular mechanisms remain unknown. Here, we investigated the expression, function, and molecular mechanism of GSK3β in the development of ESCC in vitro and in vivo. Though the expression of total GSK3β was significantly increased, the phosphorylated (inactivated) form of GSK3β (Ser9) was concurrently decreased in the cancerous tissues of patients with ESCC compared with controls, suggesting that GSK3β activity was enhanced in cancerous tissues. Further pathological data analysis revealed that higher GSK3β expression was associated with poorer differentiation, higher metastasis rates, and worse prognosis of ESCC. These results were confirmed in different ESCC cell lines using a pharmacological inhibitor and specific siRNA to block GSK3β. Using a cancer phospho-antibody array, we found that STAT3 is a target of GSK3β. GSK3 inhibition reduced STAT3 phosphorylation, and overexpression of constitutively active GSK3β had the opposite effect. Moreover, STAT3 inhibition mimicked the effects of GSK3β inhibition on ESCC cell migration and viability, while overexpression of a plasmid encoding mutant STAT3 (Y705F) abrogated these effects, and these results were further substantiated by clinicopathological data. In addition, a GSK3 inhibitor (LiCl) and/or STAT3 inhibitor (WP-1066) efficiently suppressed the growth of ESCC cells in a xenograft tumor model. Altogether, these results reveal that higher GSK3β expression promotes ESCC progression through STAT3 in vitro and in vivo, and GSK3β-STAT3 signaling could be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Shuoguo Li
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Zhikun Ma
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiaoshan Feng
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
27
|
Zebrafish as a model to evaluate peptide-related cancer therapies. Amino Acids 2017; 49:1907-1913. [DOI: 10.1007/s00726-017-2388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
|
28
|
Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. Proc Natl Acad Sci U S A 2017; 114:3539-3544. [PMID: 28292892 DOI: 10.1073/pnas.1700850114] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) has been known to mediate key signaling factors for degradation via the ubiquitin/26S proteasome pathway in both plants and animals. Here, we report a noncanonical function of Arabidopsis COP1, the central repressor of photomorphogenesis, in the form of a COP1/ SUPPRESSOR of phyA-105 (SPA) complex. We show that the COP1/SPA complex associates with and stabilizes PHYTOCHROME INTERACTING FACTOR 3 (PIF3) to repress photomorphogenesis in the dark. We identify the GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) as a kinase of PIF3, which induces PIF3 degradation via 26S proteasome during skotomorphogenesis. Mutations on two typical BIN2 phosphorylation motifs of PIF3 lead to a strong stabilization of the protein in the dark. We further show that the COP1/SPA complex promotes PIF3 stability by repressing BIN2 activity. Intriguingly, without affecting BIN2 expression, the COP1/SPA complex modulates BIN2 activity through interfering with BIN2-PIF3 interaction, thereby inhibiting BIN2-mediated PIF3 phosphorylation and degradation. Taken together, our results suggest another paradigm for COP1/SPA complex action in the precise control of skotomorphogenesis.
Collapse
|
29
|
Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Int J Mol Sci 2017; 18:ijms18020442. [PMID: 28218667 PMCID: PMC5343976 DOI: 10.3390/ijms18020442] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The ubiquitination pathway and proteasomal degradation machinery dominantly regulate p53 tumor suppressor protein stability, localization, and functions in both normal and cancerous cells. Selective E3 ubiquitin ligases dominantly regulate protein levels and activities of p53 in a large range of physiological conditions and in response to cellular changes induced by exogenous and endogenous stresses. The regulation of p53’s functions by E3 ubiquitin ligases is a complex process that can lead to positive or negative regulation of p53 protein in a context- and cell type-dependent manner. Accessory proteins bind and modulate E3 ubiquitin ligases, adding yet another layer of regulatory control for p53 and its downstream functions. This review provides a comprehensive understanding of p53 regulation by selective E3 ubiquitin ligases and their potential to be considered as a new class of biomarkers and therapeutic targets in diverse types of cancers.
Collapse
|
30
|
The Ubiquitin Ligase COP1 Promotes Glioma Cell Proliferation by Preferentially Downregulating Tumor Suppressor p53. Mol Neurobiol 2016; 54:5008-5016. [DOI: 10.1007/s12035-016-0033-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
|
31
|
Sanchez-Barcelo EJ, Mediavilla MD, Vriend J, Reiter RJ. Constitutive photomorphogenesis protein 1 (COP1) and COP9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin. J Pineal Res 2016; 61:41-51. [PMID: 27121162 DOI: 10.1111/jpi.12340] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
The ubiquitin proteasome system has been proposed as a possible mechanism involved in the multiple actions of melatonin. COP1 (constitutive photomorphogenesis protein 1), a RING finger-type ubiquitin E3 ligase formerly identified in Arabidopsis, is a central switch for the transition from plant growth underground in darkness (etiolation) to growth under light exposure (photomorphogenesis). In darkness, COP1 binds to photomorphogenic transcription factors driving its degradation via the 26S proteasome; blue light, detected by cryptochromes, and red and far-red light detected by phytochromes, negatively regulate COP1. Homologues of plant COP1 containing all the structural features present in Arabidopsis as well as E3 ubiquitin ligase activity have been identified in mice and humans. Substrates for mammalian (m) COP1 include p53, AP-1 and c-Jun, p27(Kip1) , ETV1, MVP, 14-3-3σ, C/EBPα, MTA1, PEA3, ACC, TORC2 and FOXO1. This mCOP1 target suggests functions related to tumorigenesis, gluconeogenesis, and lipid metabolism. The role of mCOP1 in tumorigenesis (either as a tumor promoter or tumor suppressor), as well as in glucose metabolism (inhibition of gluconeogenesis) and lipid metabolism (inhibition of fatty acid synthesis), has been previously demonstrated. COP1, along with numerous other ubiquitin ligases, is regulated by the COP9 signalosome; this protein complex is associated with the oxidative stress sensor Keap1 and the deubiquitinase USP15. The objective of this review was to provide new information on the possible role of COP1 and COP9 as melatonin targets. The hypothesis is based on common functional aspects of melatonin and COP1 and COP9, including their dependence on light, regulation of the metabolism, and their control of tumor growth.
Collapse
Affiliation(s)
| | - Maria D Mediavilla
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
32
|
Ta L, Xuan C, Xing N, Zhu X. COP1 is downregulated in renal cell carcinoma (RCC) and inhibits the migration of RCC ACHN cells in vitro. Mol Med Rep 2016; 14:1371-8. [DOI: 10.3892/mmr.2016.5373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/09/2016] [Indexed: 11/06/2022] Open
|
33
|
Lukey MJ, Greene KS, Erickson JW, Wilson KF, Cerione RA. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. Nat Commun 2016; 7:11321. [PMID: 27089238 PMCID: PMC4837472 DOI: 10.1038/ncomms11321] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/14/2016] [Indexed: 01/26/2023] Open
Abstract
Many transformed cells exhibit altered glucose metabolism and increased utilization of glutamine for anabolic and bioenergetic processes. These metabolic adaptations, which accompany tumorigenesis, are driven by oncogenic signals. Here we report that the transcription factor c-Jun, product of the proto-oncogene JUN, is a key regulator of mitochondrial glutaminase (GLS) levels. Activation of c-Jun downstream of oncogenic Rho GTPase signalling leads to elevated GLS gene expression and glutaminase activity. In human breast cancer cells, GLS protein levels and sensitivity to GLS inhibition correlate strongly with c-Jun levels. We show that c-Jun directly binds to the GLS promoter region, and is sufficient to increase gene expression. Furthermore, ectopic overexpression of c-Jun renders breast cancer cells dependent on GLS activity. These findings reveal a role for c-Jun as a driver of cancer cell metabolic reprogramming, and suggest that cancers overexpressing JUN may be especially sensitive to GLS-targeted therapies. Cancer cells have previously been shown to be addicted to glutamine and glutaminase enzyme activity. Here, the authors show that overexpression of the JUN proto-oncogene in breast cancer cells regulates glutaminase expression and is sufficient to confer sensitivity to glutaminase-targeted therapy.
Collapse
Affiliation(s)
- Michael J Lukey
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Kai Su Greene
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Jon W Erickson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Kristin F Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
34
|
Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun 2016; 7:11154. [PMID: 27040177 PMCID: PMC4822012 DOI: 10.1038/ncomms11154] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Natural killer cells from acute myeloid leukaemia patients (AML-NK) show a dramatic impairment in cytotoxic activity. The exact reasons for this dysfunction are not fully understood. Here we show that the glycogen synthase kinase beta (GSK3β) expression is elevated in AML-NK cells. Interestingly, GSK3 overexpression in normal NK cells impairs their ability to kill AML cells, while genetic or pharmacological GSK3 inactivation enhances their cytotoxic activity. Mechanistic studies reveal that the increased cytotoxic activity correlates with an increase in AML-NK cell conjugates. GSK3 inhibition promotes the conjugate formation by upregulating LFA expression on NK cells and by inducing ICAM-1 expression on AML cells. The latter is mediated by increased NF-κB activation in response to TNF-α production by NK cells. Finally, GSK3-inhibited NK cells show significant efficacy in human AML mouse models. Overall, our work provides mechanistic insights into the AML-NK dysfunction and a potential NK cell therapy strategy. Natural killer cells of acute myeloid leukaemia patients lack cytotoxic activity. Here the authors show that these cells have elevated GSK3β, and that its inhibition prolongs survival of mice transplanted with human AML and stimulates NK cytotoxicity via increased adhesion of NK cells to their targets.
Collapse
|
35
|
Qiao Y, Zhang X, Zhang Y, Wang Y, Xu Y, Liu X, Sun F, Wang J. High Glucose Stimulates Tumorigenesis in Hepatocellular Carcinoma Cells Through AGER-Dependent O-GlcNAcylation of c-Jun. Diabetes 2016; 65:619-32. [PMID: 26825459 DOI: 10.2337/db15-1057] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/24/2015] [Indexed: 11/13/2022]
Abstract
Epidemiologic studies suggest that hepatocellular carcinoma (HCC) has a strong relationship with diabetes. However, the underlying molecular mechanisms still remain unclear. Here, we demonstrated that high glucose (HG), one of the main characteristics of diabetes, was capable of accelerating tumorigenesis in HCC cells. Advanced glycosylation end product-specific receptor (AGER) was identified as a stimulator during this process. Mechanistically, AGER activated a hexosamine biosynthetic pathway, leading to enhanced O-GlcNAcylation of target proteins. Notably, AGER was capable of increasing activity and stability of proto-oncoprotein c-Jun via O-GlcNAcylation of this protein at Ser73. Interestingly, c-Jun can conversely enhance AGER transcription. Thereby, a positive autoregulatory feedback loop that stimulates diabetic HCC was established. Finally, we found that AG490, an inhibitor of Janus kinase, has the ability to impair AGER expression and its functions in HCC cells. In conclusion, AGER and its functions to stimulate O-GlcNAcylation are important during liver tumorigenesis, when high blood glucose levels are inadequately controlled.
Collapse
Affiliation(s)
- Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yulan Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yanfeng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangfan Liu
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China Tongji University Advanced Institute of Translational Medicine, Shanghai, China
| |
Collapse
|
36
|
The promise of zebrafish as a chemical screening tool in cancer therapy. Future Med Chem 2015; 7:1395-405. [DOI: 10.4155/fmc.15.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cancer progression in zebrafish recapitulates many aspects of human cancer and as a result, zebrafish have been gaining popularity for their potential use in basic and translational cancer research. Human cancer can be modeled in zebrafish by induction using chemical mutagens, xenotransplantation or by genetic manipulation. Chemical screens based on zebrafish cancer models offer a rapid, powerful and inexpensive means of evaluating the potential of suppression or prevention on cancer. The identification of small molecules through such screens will serve as ideal entry points for novel chemical therapies for cancer treatment. This article outlines advances that have been made within the growing field of zebrafish cancer models and presents their advantages for chemical drug screening.
Collapse
|
37
|
Ye Y, Chao XJ, Wu JF, Cheng BCY, Su T, Fu XQ, Li T, Guo H, Tse AKW, Kwan HY, Du J, Chou GX, Yu ZL. ERK/GSK3β signaling is involved in atractylenolide I-induced apoptosis and cell cycle arrest in melanoma cells. Oncol Rep 2015; 34:1543-8. [PMID: 26151480 DOI: 10.3892/or.2015.4111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 11/05/2022] Open
Abstract
Novel agents need to be developed to overcome the limitations of the current melanoma therapeutics. Atractylenolide I (AT-I) is a sesquiterpene compound isolated from atractylodis macrocephalae rhizoma. Previous findings demonstrated that AT-I exhibited cytotoxic action in melanoma cells. However, the molecular mechanisms of AT‑1's anti-melanoma properties remain to be elucidated. In the present study, the cell cycle-arrest and apoptosis-promoting effects as well as the ERK/GSK3β signaling-related mechanism of action of AT-I were examined. B16 melanoma cells were treated with various concentrations of AT-1 (50, 75 and 100 µM) for 48 or 72 h. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression levels were detected by western blot analysis. AT-I treatment induced G1 phase arrest, which was accompanied by increased p21 and decreased CDK2 protein expression levels. Apoptosis was observed after AT-I treatment for 72 h, which was accompanied by activated caspase‑3 and ‑8. AT-I treatment significantly decreased phospho-ERK, phospho-GSK3β, c-Jun and increased p53 protein expression levels. Lithium chloride (LiCl, 5 mM), a GSK3β inhibitor, treatment alone did not increase the apoptosis of B16 cells, while pretreatment with LiCl markedly reversed AT-I-induced apoptosis. Additionally, AT-I-induced G1 phase arrest was partially reversed by LiCl pretreatment. In conclusion, ERK/GSK3β signaling was involved in the apoptotic and G1 phase arrest effects of AT-I in melanoma cells.
Collapse
Affiliation(s)
- Yan Ye
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Xiao-Juan Chao
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Jin-Feng Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Brian Chi-Yan Cheng
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Hiu-Yee Kwan
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Juan Du
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Gui-Xin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| |
Collapse
|
38
|
Ouyang M, Wang H, Ma J, Lü W, Li J, Yao C, Chang G, Bi J, Wang S, Wang W. COP1, the negative regulator of ETV1, influences prognosis in triple-negative breast cancer. BMC Cancer 2015; 15:132. [PMID: 25884720 PMCID: PMC4381371 DOI: 10.1186/s12885-015-1151-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ETS variant 1 (ETV1) and E3 ubiquitin ligase constitutive photomorphogenetic 1 (COP1) have been proposed to be a pair of oncogene and tumor suppressor. However, the co-existing status of ETV1 and COP1 in triple-negative breast cancer (TNBC) and their predictive role in determining the patient's outcome are uncertain. METHODS We examined the abundance of COP1 and ETV1 proteins and their clinicopathologic significance in archival TNBC tissues from 105 patients by tissue microarray. The potential function link between COP1 and ETV1 was observed in MDA-MB-231 cells by cell proliferation, invasion and migration assays. RESULTS ETV1 expression was higher in TNBC tissues compared to normal tissues, while COP1 was lower. ETV1 expression was negatively associated with COP1 abundance in TNBCs. Overexpression of COP1 led to significant reduction of ETV1 in MDA-MB-231 cells, and suppressed the cells migration and invasion. Rescue of ETV1 expression in the presence of COP1 notably regained the cells behaviors. ETV1-positive group was associated with a markedly poor overall survival. Meanwhile, we had observed favourable prognosis in COP1-positive cases for the first time. Multivariate analysis showed that COP1 together with ETV1 were independent risk factors in the prognosis of TNBC patients. CONCLUSIONS COP1 might be a tumor suppressor by negative regulating ETV1 in patients with TNBCs. COP1 and ETV1 are a pair of independent predictors of prognosis for TNBC cases. Thus, targeting them might be a potential strategy for personalized TNBC treatment.
Collapse
Affiliation(s)
- Mao Ouyang
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China. .,Department of Clinical Laboratory, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Hua Wang
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jieyi Ma
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Weiming Lü
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jie Li
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Chen Yao
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Guangqi Chang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiong Bi
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Shenming Wang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Wenjian Wang
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
39
|
Combined phosphoproteomics and bioinformatics strategy in deciphering drug resistant related pathways in triple negative breast cancer. INTERNATIONAL JOURNAL OF PROTEOMICS 2014; 2014:390781. [PMID: 25478227 PMCID: PMC4247952 DOI: 10.1155/2014/390781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 11/17/2022]
Abstract
Because of the absence of a clear therapeutic target for triple negative breast cancer (TNBC), conventional chemotherapy is the only available systemic treatment option for these patients. Despite chemotherapy treatment, TNBC patients still have worse prognosis when compared with other breast cancer patients. The study is to investigate unique phosphorylated proteins expressed in chemoresistant TNBC cell lines. In the current study, twelve TNBC cell lines were subjected to drug sensitivity assays against chemotherapy drugs docetaxel, doxorubicin, gemcitabine, and cisplatin. Based on their half maximal inhibitory concentrations, four resistant and two sensitive cell lines were selected for further analysis. The phosphopeptides from these cells were enriched with TiO2 beads and fractionated using strong cation exchange. 1,645 phosphoprotein groups and 9,585 unique phosphopeptides were identified by a high throughput LC-MS/MS system LTQ-Orbitrap. The phosphopeptides were further filtered with Ascore system and 1,340 phosphoprotein groups, 2,760 unique phosphopeptides, and 4,549 unique phosphosites were identified. Our study suggested that differentially phosphorylated Cdk5, PML, AP-1, and HSF-1 might work together to promote vimentin induced epithelial to mesenchymal transition (EMT) in the drug resistant cells. EGFR and HGF were also shown to be involved in this process.
Collapse
|
40
|
Extracellular signal-regulated kinase signaling regulates the opposing roles of JUN family transcription factors at ETS/AP-1 sites and in cell migration. Mol Cell Biol 2014; 35:88-100. [PMID: 25332240 DOI: 10.1128/mcb.00982-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
JUN transcription factors bind DNA as part of the AP-1 complex, regulate many cellular processes, and play a key role in oncogenesis. The three JUN proteins (c-JUN, JUNB, and JUND) can have both redundant and unique functions depending on the biological phenotype and cell type assayed. Mechanisms that allow this dynamic switching between overlapping and distinct functions are unclear. Here we demonstrate that JUND has a role in prostate cell migration that is the opposite of c-JUN's and JUNB's. RNA sequencing reveals that opposing regulation by c-JUN and JUND defines a subset of AP-1 target genes with cell migration roles. cis-regulatory elements for only this subset of targets were enriched for ETS factor binding, indicating a specificity mechanism. Interestingly, the function of c-JUN and JUND in prostate cell migration switched when we compared cells with an inactive versus an active RAS/extracellular signal-regulated kinase (ERK) signaling pathway. We show that this switch is due to phosphorylation and activation of JUND by ERK. Thus, the ETS/AP-1 sequence defines a unique gene expression program regulated by the relative levels of JUN proteins and RAS/ERK signaling. This work provides a rationale for how transcription factors can have distinct roles depending on the signaling status and the biological function in question.
Collapse
|
41
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
42
|
Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi H, Kim J, Huang S. SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia 2014; 16:279-90.e1-5. [PMID: 24746361 DOI: 10.1016/j.neo.2014.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs have added a new dimension to our understanding of tumorigenesis and associated processes like epithelial-to-mesenchymal transition (EMT). Here, we show that miR-375 is elevated in epithelial-like breast cancer cells, and ectopic miR-375 expression suppresses EMT in mesenchymal-like breast cancer cells. We identified short stature homeobox 2 (SHOX2) as a miR-375 target, and miR-375-mediated suppression in EMT was reversed by forced SHOX2 expression. Ectopic SHOX2 expression can induce EMT in epithelial-like breast cancer cells, whereas SHOX2 knockdown diminishes EMT traits in mesenchymal-like breast cancer cells, demonstrating SHOX2 as an EMT inducer. We show that SHOX2 acts as a transcription factor to upregulate transforming growth factor β receptor I (TβR-I) expression, and TβR-I inhibitor LY364947 abolishes EMT elicited by ectopic SHOX2 expression, suggesting that transforming growth factor β signaling is essential for SHOX2-induced EMT. Manipulating SHOX2 abundance in breast cancer cells impact in vitro invasion and in vivo dissemination. Analysis of breast tumor microarray database revealed that high SHOX2 expression significantly correlates with poor patient survival. Our study supports a critical role of SHOX2 in breast tumorigenicity.
Collapse
Affiliation(s)
- Sungguan Hong
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Hyangsoon Noh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yong Teng
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jing Shao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Hina Rehmani
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Han-Fei Ding
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Zheng Dong
- Department of Anatomy and Cell Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System and E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huidong Shi
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jaejik Kim
- Department of Biostatistics, Georgia Regents University, Augusta, GA, USA
| | - Shuang Huang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA; Research Center for Traditional Chinese Medicine Complexity System and E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
43
|
Mathias JR, Zhang Z, Saxena MT, Mumm JS. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish 2014; 11:85-97. [PMID: 24428354 DOI: 10.1089/zeb.2013.0937] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.
Collapse
|