1
|
Badralmaa Y, Natarajan V. Aberrant Wnt/β-catenin signaling in the mesenchymal stem cells of LZTFL1-depleted mice leads to increased adipogenesis, with implications for obesity. J Biol Chem 2025; 301:108057. [PMID: 39662832 PMCID: PMC11770550 DOI: 10.1016/j.jbc.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Obesity is one of the main clinical characteristics associated with the heterogeneous genetic disorder Bardet-Biedl syndrome (BBS). Leucine zipper transcription factor like 1 (LZTFL1) is a member of the BBS gene family. Our work showed that Lztfl1knockout (LZKO) mice display the obesity phenotype as early as 3 months of age. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into various cell types, including adipocytes. To understand the role of LZTFL1 in adipogenesis, we analyzed MSCs isolated from LZKO mouse compact bones (CB-MSCs). Compared to wildtype (WT), LZKO CB-MSCs had elongated primary cilia with tapered tips and increased levels of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor that favors adipogenesis, and nuclear glucocorticoid receptor (GR), a transcription factor involved in Pparg activation. Also, LZKO CB-MSCs had a lower level of total β-catenin, a core factor of the antiadipogenic canonical Wnt/b-catenin signaling pathway involved in limiting the nuclear localization of GR. Interaction between caveolin1 (CAV1) and LRP6, the main receptor for canonical Wnt signaling, is known to be critical for Wnt pathway activation and β-catenin stabilization. Compared to WT cells, LZKO cells had elevated total, cell-surface, and lipid-raft-associated LRP6 and reduced CAV1, strongly indicating alterations in the components of the Wnt-signaling pathway. We show that in the absence of LZTFL1, adipogenesis-restraining Wnt/β-catenin signaling is inhibited, and adipogenesis-favorable factors are stimulated in CB-MSCs, leading to enhanced adipogenesis. Evidence provided here could help in understanding the mechanism and molecular basis of obesity in LZTFL1-defective patients.
Collapse
Affiliation(s)
- Yunden Badralmaa
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
| |
Collapse
|
2
|
Zhao Z, Wang Y, Yin B, Li X, Hao R, Li Z, Li P, Han M, Ding L, Li Z, Zhu H. Defect-adaptive Stem-cell-microcarrier Construct Promotes Tissue Repair in Rabbits with Knee Cartilage Defects. Stem Cell Rev Rep 2023; 19:201-212. [PMID: 35900693 DOI: 10.1007/s12015-022-10421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/29/2023]
Abstract
Although various reconstruction techniques are available for cartilage defects, the repair effects and conveniences remain to be further improved due to the limited regenerative capacity of cartilaginous tissues and difficulties in seamlessly fulfilling irregularly shaped defects. In the current study, we explored the repair efficacy of stem cell microcarrier construct (microcarriers loaded with human chondrogenic progenitor cells or bone marrow mesenchymal stem cells) in cartilage defect models. A total of 39 healthy New Zealand white rabbits were included, and femoral trochlear cartilage defect models were established (n = 33). Stem cell microcarrier constructs were implanted into cartilage defects (n = 6), the maintenance conditions of the implanted constructs were observed on days 4, 8, and 30 post implantation (n = 3). Gross observation and pathological analysis were performed to assay the reconstitution of cartilage defects at 12 weeks post-cartilage defect repair(n = 6). The microcarriers could fill the defect model with good plasticity to integrate well with the boundary native normal cartilage. At 3 months after implantation, the defects were filled with fibrous cartilage tissues in the microcarrier without stem cells group. In the microcarrier loaded with BMSCs group, newly formed tissue with a similar appearance of boundary cartilage fulfilled the defects, but the surface was not completely smooth. Promisingly, the defects were almost completely filled with newly regenerated cartilaginous tissues, which had a smooth appearance similar to that of normal cartilage in the microcarrier loaded with CPCs group. These results suggest the feasibility of stem cell microcarrier construct in repairing cartilage defects, indicating promising clinical application prospects.
Collapse
Affiliation(s)
- Zhidong Zhao
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yuxing Wang
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Bofeng Yin
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaotong Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Ruicong Hao
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Graduate School of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiling Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Peilin Li
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Mengyue Han
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,Graduate School of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li Ding
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Air Force Medical Center, PLA, No.30 Fucheng Road, Beijing, 100142, China.
| | - Zhongli Li
- Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Graduate School of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Feng Y, Luo J, Cheng J, Xu A, Qiu D, He S, Zheng D, Jia C, Zhang Q, Lin N. A Small-Molecule Cocktails-Based Strategy in Culture of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 10:819148. [PMID: 35360405 PMCID: PMC8963903 DOI: 10.3389/fbioe.2022.819148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a variety of unique properties, such as stem cell multipotency and immune regulation, making them attractive for use in cell therapy. Before infusion therapy, MSCs are required to undergo tissue separation, purification, and expansion in vitro for a certain duration. During the process of in vitro expansion of MSCs, the influence of culture time and environment can lead to cell senescence, increased heterogeneity, and function attenuation, which limits their clinical applications. We used a cocktail of three small-molecule compounds, ACY (A-83-01, CHIR99021, and Y-27632), to increase the proliferation activity of MSCs in vitro and reduce cell senescence. ACY inhibited the increase in heterogeneity of MSCs and conserved their differentiation potential. Additionally, ACY maintained the phenotype of MSCs and upregulated the expression of immunomodulatory factors. These results suggest that ACY can effectively improve the quantity and quality of MSCs.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aimin Xu
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Dongbo Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sixiao He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayong Zheng
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Changchang Jia
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang C, Ning H, Gao J, Xue T, Zhao M, Jiang X, Zhu X, Guo X, Li H, Wang X. Disruption of hematopoiesis attenuates the osteogenic differentiation capacity of bone marrow stromal cells. Stem Cell Res Ther 2022; 13:27. [PMID: 35073981 PMCID: PMC8785551 DOI: 10.1186/s13287-022-02708-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background The homeostasis of mesenchymal stem cells (MSCs) is modulated by both their own intracellular molecules and extracellular milieu signals. Hematopoiesis in the bone marrow is maintained by niche cells, including MSCs, and it is indispensable for life. The role of MSCs in maintaining hematopoietic homeostasis has been fully elucidated. However, little is known about the mechanism by which hematopoietic cells reciprocally regulate niche cells. The present study aimed to explore the close relationship between MSCs and hematopoietic cells, which may be exploited for the development of new therapeutic strategies for related diseases. Methods In this study, we isolated cells from the offspring of Tie2Cre + and Ptenflox/flox mice. After cell isolation and culture, we investigated the effect of hematopoietic cells on MSCs using various methods, including flow cytometry, adipogenic and osteogenic differentiation analyses, quantitative PCR, western bloting, and microCT analysis. Results Our results showed that when the phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene was half-deleted in hematopoietic cells, hematopoiesis and osteogenesis were normal in young mice; the frequency of erythroid progenitor cells in the bone marrow gradually decreased and osteogenesis in the femoral epiphysis weakened as the mice grew. The heterozygous loss of Pten in hematopoietic cells leads to the attenuation of osteogenic differentiation and enhanced adipogenic differentiation of MSCs in vitro. Co-culture with normal hematopoietic cells rescued the abnormal differentiation of MSCs, and in contrast, MSCs co-cultured with heterozygous null Pten hematopoietic cells showed abnormal differentiation activity. Co-culture with erythroid progenitor cells also revealed them to play an important role in MSC differentiation. Conclusion Our data suggest that hematopoietic cells function as niche cells of MSCs to balance the differentiation activity of MSCs and may ultimately affect bone development.
Collapse
Affiliation(s)
- Changzhen Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China. .,Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Hongmei Ning
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Jiao Gao
- The Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Teng Xue
- Laboratory of Bioelectromagnetics, Beijing Institute of Radiation and Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Ming Zhao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoxia Jiang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ximin Guo
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoyan Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
5
|
Liang JW, Li PL, Wang Q, Liao S, Hu W, Zhao ZD, Li ZL, Yin BF, Mao N, Ding L, Zhu H. Ferulic acid promotes bone defect repair after radiation by maintaining the stemness of skeletal stem cells. Stem Cells Transl Med 2021; 10:1217-1231. [PMID: 33750031 PMCID: PMC8284777 DOI: 10.1002/sctm.20-0536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
The reconstruction of irradiated bone defects after settlement of skeletal tumors remains a significant challenge in clinical applications. In this study, we explored radiation‐induced skeletal stem cell (SSC) stemness impairments and rescuing effects of ferulic acid (FA) on SSCs in vitro and in vivo. The immunophenotype, cell renewal, cell proliferation, and differentiation of SSCs in vitro after irradiation were investigated. Mechanistically, the changes in tissue regeneration‐associated gene expression and MAPK pathway activation in irradiated SSCs were evaluated. The regenerative capacity of SSCs in the presence of FA in an irradiated bone defect mouse model was also investigated. We found that irradiation reduced CD140a‐ and CD105‐positive cells in skeletal tissues and mouse‐derived SSCs. Additionally, irradiation suppressed cell proliferation, colony formation, and osteogenic differentiation of SSCs. The RNA‐Seq results showed that tissue regeneration‐associated gene expression decreased, and the Western blotting results demonstrated the suppression of phosphorylated p38/MAPK and ERK/MAPK in irradiated SSCs. Notably, FA significantly rescued the radiation‐induced impairment of SSCs by activating the p38/MAPK and ERK/MAPK pathways. Moreover, the results of imaging and pathological analyses demonstrated that FA enhanced the bone repair effects of SSCs in an irradiated bone defect mouse model substantially. Importantly, inhibition of the p38/MAPK and ERK/MAPK pathways in SSCs by specific chemical inhibitors partially abolished the promotive effect of FA on SSC‐mediated bone regeneration. In summary, our findings reveal a novel function of FA in repairing irradiated bone defects by maintaining SSC stemness and suggest that the p38/MAPK and ERK/MAPK pathways contribute to SSC‐mediated tissue regeneration postradiation.
Collapse
Affiliation(s)
- Jia-Wu Liang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Pei-Lin Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qian Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Song Liao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Wei Hu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Zhi-Dong Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Zhi-Ling Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Bo-Feng Yin
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Li Ding
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Air Force Medical Center, PLA, Beijing, People's Republic of China
| | - Heng Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Experimental Hematology & Biochemistry, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Graduate School of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
6
|
Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells 2020; 12:1341-1353. [PMID: 33312402 PMCID: PMC7705465 DOI: 10.4252/wjsc.v12.i11.1341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.
Collapse
Affiliation(s)
- Albert Anastasio
- Department of Orthopedic Surgery, Duke University Health System, Durham, NC 27710, United States
| | - Marina Gergues
- Department of Medicine, Hematology/Oncology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Michael S Lebhar
- School of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers School of Biomedical Health Science, Newark, NJ 07103, United States
| | - Joseph Fernandez-Moure
- Department of Surgery, Division of Trauma, Acute, and Critical Care Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
7
|
Huang X, Cheng B, Song W, Wang L, Zhang Y, Hou Y, Song Y, Kong L. Superior CKIP-1 sensitivity of orofacial bone-derived mesenchymal stem cells in proliferation and osteogenic differentiation compared to long bone-derived mesenchymal stem cells. Mol Med Rep 2020; 22:1169-1178. [PMID: 32626993 PMCID: PMC7339610 DOI: 10.3892/mmr.2020.11239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Maxillofacial bone defects caused by multiple factors, including congenital deformations and tumors, have become a research focus in the field of oral medicine. Bone tissue engineering is increasingly regarded as a potential approach for maxillofacial bone repair. Mesenchymal stem cells (MSCs) with different origins display various biological characteristics. The aim of the present study was to investigate the effects of casein kinase‑2 interaction protein‑1 (CKIP‑1) on MSCs, including femoral bone marrow‑derived MSCs (BMMSCs) and orofacial bone‑derived MSCs (OMSCs), isolated from the femoral and orofacial bones of wild‑type (WT) and CKIP‑1 knockout (KO) mice. MSCs were isolated using collagenase II and the main biological characteristics, including proliferation, apoptosis and osteogenic differentiation, were investigated. Subcutaneous transplantation of MSCs in mice was also performed to assess ectopic bone formation. MTT and clone formation assay results indicated that cell proliferation in the KO group was increased compared with the WT group, and OMSCs exhibited significantly increased levels of proliferation compared with BMMSCs. However, the proportion of apoptotic cells was not significantly different between CKIP‑1 KO OMSCs and BMMSCs. Furthermore, it was revealed that osteogenic differentiation was increased in CKIP‑1 KO MSCs compared with WT MSCs, particularly in OMSCs. Consistent with the in vitro results, enhanced ectopic bone formation was observed in CKIP‑1 KO mice compared with WT mice, particularly in OMSCs compared with BMMSCs. In conclusion, the present results indicated that OMSCs may have a superior sensitivity to CKIP‑1 in promoting osteogenesis compared with BMMSCs; therefore, CKIP‑1 KO in OMSCs may serve as an efficient strategy for maxillofacial bone repair.
Collapse
Affiliation(s)
- Xin Huang
- School of Stomatology of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bingkun Cheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Le Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanyuan Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Hou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong 266001, P.R. China
| | - Liang Kong
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
Li X, Ding L, Wang Y, Li Z, Wang Q, Zhao Z, Zhao S, Wang H, Wu C, Mao N, Zhu H. Skeletal stem cell-mediated suppression on inflammatory osteoclastogenesis occurs via concerted action of cell adhesion molecules and osteoprotegerin. Stem Cells Transl Med 2019; 9:261-272. [PMID: 31774632 PMCID: PMC6988769 DOI: 10.1002/sctm.19-0300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
In the current study, we investigated how skeletal stem cells (SSCs) modulate inflammatory osteoclast (OC) formation and bone resorption. Notably, we found that intercellular adhesion molecule‐1 (ICAM‐1), vascular cell adhesion molecule‐1 (VCAM‐1), and osteoprotegerin (OPG) play a synergistic role in SSC‐mediated suppression of inflammatory osteoclastogenesis. The effect of SSCs on inflammatory osteoclastogenesis was investigated using a lipopolysaccharide‐induced mouse osteolysis model in vivo and human osteoarthritis synovial fluid (OASF) in vitro. OC formation was determined by tartrate‐resistant acid phosphatase staining. Bone resorption was evaluated by microcomputerized tomography, serum C‐terminal telopeptide assay, and pit formation assay. The expression of ICAM‐1, VCAM‐1, and OPG in SSCs and their contribution to the suppression of osteoclastogenesis were determined by flow cytometry or enzyme linked immunosorbent assay. Gene modification, neutralization antibodies, and tumor necrosis factor‐α knockout mice were used to further explore the mechanism. The results demonstrated that SSCs remarkably inhibited inflammatory osteoclastogenesis in vivo and in vitro. Mechanistically, inflammatory OASF stimulated ICAM‐1 and VCAM‐1 expression as well as OPG secretion by SSCs. In addition, ICAM‐1 and VCAM‐1 recruited CD11b+ OC progenitors to proximity with SSCs, which strengthened the inhibitory effects of SSC‐derived OPG on osteoclastogenesis. Furthermore, it was revealed that tumor necrosis factor α is closely involved in the suppressive effects. In summary, SSCs express a higher level of ICAM‐1 and VCAM‐1 and produce more OPG in inflammatory microenvironments, which are sufficient to inhibit osteoclastogenesis in a “capture and educate” manner. These results may represent a synergistic mechanism to prevent bone erosion during joint inflammation by SSCs.
Collapse
Affiliation(s)
- Xin Li
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
- Beijing Institute of Basic Medical SciencesBeijingPeople's Republic of China
- Air Force Medical Center, PLABeijingPeople's Republic of China
- Jizhong Energy Xingtai MIG General HospitalXingtaiPeople's Republic of China
| | - Li Ding
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
- Air Force Medical Center, PLABeijingPeople's Republic of China
| | - Yu‐Xing Wang
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
- People's Liberation Army General HospitalBeijingPeople's Republic of China
| | - Zhong‐Li Li
- People's Liberation Army General HospitalBeijingPeople's Republic of China
| | - Qian Wang
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
- People's Liberation Army General HospitalBeijingPeople's Republic of China
| | - Zhi‐Dong Zhao
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
- People's Liberation Army General HospitalBeijingPeople's Republic of China
| | - Sen Zhao
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
- People's Liberation Army General HospitalBeijingPeople's Republic of China
| | - Hua Wang
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
| | - Chu‐Tse Wu
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
| | - Ning Mao
- Beijing Institute of Basic Medical SciencesBeijingPeople's Republic of China
| | - Heng Zhu
- Beijing Institute of Radiation MedicineBeijingPeople's Republic of China
- Beijing Institute of Basic Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
9
|
Li X, Zheng Y, Hou L, Zhou Z, Huang Y, Zhang Y, Jia L, Li W. Exosomes derived from maxillary BMSCs enhanced the osteogenesis in iliac BMSCs. Oral Dis 2019; 26:131-144. [PMID: 31541596 DOI: 10.1111/odi.13202] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaobei Li
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
| | - Yunfei Zheng
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
| | - Liyu Hou
- Department of Stomatology Shenzhen People’s Hospital Shenzhen China
| | - Zhibo Zhou
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing China
| | - Yiping Huang
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
| | - Yixin Zhang
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing China
- Central Laboratory Peking University School and Hospital of Stomatology Beijing China
| | - Weiran Li
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
| |
Collapse
|
10
|
Lu D, Ma T, Zhou X, Jiang Y, Han Y, Li H. B Lymphocytes Are the Target of Mesenchymal Stem Cells Immunoregulatory Effect in a Murine Graft-versus-Host Disease Model. Cell Transplant 2019; 28:1279-1288. [PMID: 31257911 PMCID: PMC6767898 DOI: 10.1177/0963689719860127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is growing clinical interest in the utilization of mesenchymal stem cells (MSCs) in the management of acute graft-versus-host disease (aGvHD), yet the effect of major histocompatibility complexes (MHCs) on B lymphocytes in this process has been less well documented. Working in an MHC fully mismatched murine aGvHD model, we found that MSC co-transfer significantly prolonged the survival time of the recipients. More interestingly, analysis on immunophenotypic profiles of posttransplant splenocytes showed that surface expression of CD69 (an early activation marker) and CD86 (a costimulatory molecule) was suppressed predominantly on donor derived B lymphocytes by MSC infusion. Additionally, mRNA level of interleukin-4, a potent B lymphocyte stimulator, was strikingly reduced from MSC-treated mice, while interleukin-10, the regulatory B lymphocytes inductor, was increased; these may underlie the lesser activation of B lymphocytes. In consistence, depletion of B lymphocytes in the transfusion inoculum further prolonged the survival time of aGvHD mice regardless of MSC administration. Therefore, B lymphocytes played an important role in the development of aGvHD, and they are targets in MSC-regulated immune response cascade in vivo. This study may provide a mechanistic clue for the treatment of human clinical aGvHD.
Collapse
Affiliation(s)
- Di Lu
- Department of Plastic and Reconstructive Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing, China
| | - Tian Ma
- Department of Plastic and Reconstructive Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - XiangBin Zhou
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China.,Department of Stomatology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - YanMing Jiang
- Department of Ophthalmology, Rocket Force General Hospital, Beijing, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing, China
| |
Collapse
|
11
|
Lu D, Liao Y, Zhu SH, Chen QC, Xie DM, Liao JJ, Feng X, Jiang MH, He W. Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction. Stem Cell Res Ther 2019; 10:127. [PMID: 31029167 PMCID: PMC6487029 DOI: 10.1186/s13287-019-1217-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bone-derived mesenchymal stem cell (BMSC) transplantation has been reported to be effective for the treatment of ischemic heart disease, but whether BMSCs are the optimal cell type remains under debate. Increasing numbers of studies have shown that Nestin, an intermediate filament protein, is a potential marker for MSCs, which raises the question of whether Nestin+ cells in BMSCs may play a more crucial role in myocardial repair. METHODS Nestin+ cells were isolated using flow cytometry by gating for CD45- Ter119- CD31- cells from the compact bone of Nestin-GFP transgenic mice, expressing GFP driven by the Nestin promoter. Colony-forming and proliferative curve assays were conducted to determine the proliferative capacity of these cells, while qRT-PCR was used to analyze the mRNA levels of relative chemokines and growth factors. Cardiac endothelial cell (CEC) recruitment was assessed via a transwell assay. Moreover, permanent ligation of the left anterior descending (LAD) coronary artery was performed to establish an acute myocardial infarction (AMI) mouse model. After cell transplantation, conventional echocardiography was conducted 1 and 4 weeks post-MI, and hearts were harvested for hematoxylin-and-eosin (HE) staining and immunofluorescence staining 1 week post-MI. Further evaluation of paracrine factor levels and administration of a neutralizing antibody (TIMP-1, TIMP-2, and CXCL12) or a CXCR4 antagonist (AMD3100) in MI hearts were performed to elucidate the mechanism involved in the chemotactic effect of Nestin+ BMSCs in vivo. RESULTS Compared with Nestin- BMSCs, a greater proliferative capacity of Nestin+ BMSCs was observed, which further exhibited moderately high expression of chemokines instead of growth factors. More CEC recruitment in the Nestin+ BMSC-cocultured group was observed in vitro, while this effect was obviously abolished after treatment with neutralizing antibodies against TIMP-1, TIMP-2, or CXCL12, and more importantly, blocking the CXCL12/CXCR4 axis with a AMD3100 significantly reduced the chemotactic effect of Nestin+ BMSCs. After transplantation into mice exposed to myocardial infarction (MI), Nestin+ BMSC-treated mice showed significantly improved survival and left ventricular function compared with Nestin- BMSC-treated mice. Moreover, endogenous CECs were markedly increased, and chemokine levels were significantly higher, in the infarcted border zone with Nestin+ BMSC treatment. Meanwhile, neutralization of each TIMP-1, TIMP-2, or CXCL12 in vivo could reduce the left ventricular function at 1 and 4 weeks post-MI; importantly, the combined use of these three neutralizing antibodies could make a higher significance on cardiac function. Finally, blocking the CXCL12/CXCR4 axis with AMD3100 significantly reduced the left ventricular function and greatly inhibited Nestin+ BMSC-induced CEC chemotaxis in vivo. CONCLUSIONS These results suggest that Nestin+ BMSC transplantation can improve cardiac function in an AMI model by recruiting resident CECs to the infarcted border region via the CXCL12/CXCR4 chemokine pathway. And we demonstrated that Nestin+BMSC-secreted TIMP-1/2 enhances CXCL12(SDF1α)/CXCR4 axis-driven migration of endogenous Sca-1+ endothelial cells in ischemic heart post-AMI. Taken together, our results show that Nestin is a useful marker for the identification of functional BMSCs and indicate that Nestin+ BMSCs could be a better therapeutic candidate for cardiac repair.
Collapse
Affiliation(s)
- Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yan Liao
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shuang-Hua Zhu
- Department of Cardiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qiao-Chao Chen
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Dong-Mei Xie
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jian-Jun Liao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mei Hua Jiang
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
12
|
Adhikari R, Chen C, Waters E, West FD, Kim WK. Isolation and Differentiation of Mesenchymal Stem Cells From Broiler Chicken Compact Bones. Front Physiol 2019; 9:1892. [PMID: 30723419 PMCID: PMC6350342 DOI: 10.3389/fphys.2018.01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Chicken mesenchymal stem cells (MSCs) can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways and to identify unique bioactive nutrients and molecules which can promote or inhibit these pathways. MSCs could also be used as a model to study various developmental, physiological, and therapeutic processes in avian and other species. MSCs are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. MSCs have been isolated from numerous sources including human, mouse, rabbit, and chicken with potential clinical and agricultural applications. MSCs from chicken compact bones have not been isolated and characterized yet. In this study, MSCs were isolated from compact bones of the femur and tibia of day-old male broiler chicks to investigate the biological characteristics of the isolated cells. Isolated cells took 8–10 days to expand, demonstrated a monolayer growth pattern and were plastic adherent. Putative MSCs were spindle-shaped with elongated ends and showed rapid proliferation. MSCs demonstrated osteoblastic, adipocytic, and myogenic differentiation when induced with specific differentiation media. Cell surface markers for MSCs such as CD90, CD105, CD73, CD44 were detected positive and CD31, CD34, and CD45 cells were detected negative by PCR assay. The results suggest that MSCs isolated from broiler compact bones (cBMSCs) possess similar biological characteristics as MSCs isolated from other chicken tissue sources.
Collapse
Affiliation(s)
- Roshan Adhikari
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Elizabeth Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Lu M, Guo S, Hong F, Zhang Y, Yuan L, Ma C, Ma J. Pax2 is essential for proliferation and osteogenic differentiation of mouse mesenchymal stem cells via Runx2. Exp Cell Res 2018; 371:342-352. [DOI: 10.1016/j.yexcr.2018.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
|
14
|
Liu H, Jiao Y, Zhou W, Bai S, Feng Z, Dong Y, Liu Q, Feng X, Zhao Y. Endothelial progenitor cells improve the therapeutic effect of mesenchymal stem cell sheets on irradiated bone defect repair in a rat model. J Transl Med 2018; 16:137. [PMID: 29788957 PMCID: PMC5964689 DOI: 10.1186/s12967-018-1517-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background The reconstruction of bone defects is often impaired by radiotherapy since bone quality is compromised by radiation. This study aims to investigate the therapeutic efficacy of the composite cell sheets-bone marrow mesenchymal stem cell (BMSC) sheets cocultured with endothelial progenitor cells (EPCs)-in the healing of irradiated bone defects and the biological effects of EPCs on the osteogenic properties of BMSC sheets. Methods BMSCs and EPCs were isolated from rat bone marrow. BMSCs were used to form cell sheets by the vitamin C inducing method. EPCs were seeded on BMSC sheets to make EPCs–BMSC sheets. Osteogenesis of EPCs–BMSC sheets and BMSC sheets were tested. In vitro osteogenesis tests included ALP, Alizarin Red S, Sirius Red staining, qRT-PCR and Western blot analysis after 3 and 7 days of osteogenic incubation. Subcutaneous osteogenesis was tested by H&E staining and immunohistochemical staining 8 weeks after transplantation. EPCs–BMSC sheets and BMSC sheets were used in the 3 mm defects of non-irradiated and irradiated rat tibias. Micro-CT and histological analysis were used to test the healing of bone defects 4 and 8 weeks after transplantation. Results EPCs–BMSC sheets showed enhanced osteogenic differentiation in vitro with increased expression of osteoblastic markers and osteogenesis related staining compared with BMSC sheets. In subcutaneous osteogenesis test, EPCs–BMSC sheets formed larger areas of new bone and blood vessels. The EPCs–BMSC group had the highest volume of newly formed bone in the defect area of irradiated tibias. Conclusions EPCs improved the osteogenic differentiation of BMSC Sheets and enhanced the ectopic bone formation. EPCs–BMSC sheets promoted bone healing in irradiated rat tibias. EPCs–BMSC sheets are potentially useful in the reconstruction of bone defect after radiotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-018-1517-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, 100700, China
| | - Wei Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhihong Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoke Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Zhang H, Li ZL, Su XZ, Ding L, Li J, Zhu H. Subchondral bone derived mesenchymal stem cells display enhanced osteo-chondrogenic differentiation, self-renewal and proliferation potentials. Exp Anim 2018. [PMID: 29515059 PMCID: PMC6083032 DOI: 10.1538/expanim.17-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rabbit mesenchymal stem cells (MSCs) are important seed cells in regenerative medicine research, particularly in translational research. In the current study, we showed that rabbit subchondral bone is a reliable source of MSCs. First, we harvested subchondral bone (SCB) from the rabbit knee-joint and initiated the MSC culture by cultivating enzyme-treated SCB. Adherent fibroblast-like cells that outgrew from SCB fulfill the common immuno-phenotypic criteria for defining MSCs, but with low contamination of CD45+ hematopoietic cells. Interestingly, differentiated SCB-MSCs expressed osteogenic and chondrogenic markers at significantly higher levels than those in bone marrow cell suspension-derived MSCs (BMS-MSCs) (P<0.05). No differences in the expression of adipogenic markers between SCB-MSC and BMS-MSC (P>0.05) were observed. Moreover, the results of the colony forming unit-fibroblast assay and sphere formation assay demonstrated that the SCB-MSCs had increased self-renewal potential. SCB-MSCs expressed higher levels of the stemness markers Nanog, OCT4, and Sox-2 compared to in BMS-MSCs (P<0.05). Furthermore, the results of both the CCK-8-based assay and CFSE dilution assay showed that SCB-MSCs exhibited enhanced proliferative capacity. In addition, SCB-MSCs exhibited higher phosphorylation of extracellular signal-related kinase/mitogen-activated protein kinase signaling, which is closely related to MSC proliferation. In conclusion, we identified SCB-MSCs as a novel stem cell population that met the requirements of MSCs; the unique properties of SCB-MSC are important for the potential treatment of tissue damage resulting from disease and trauma.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China.,Department of Cell Biology, Institute of Basic Medical Sciences, No. 27 Tai Ping Road, Haidian District, Beijing 100850, P.R. China
| | - Zhong-Li Li
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China
| | - Xiang-Zheng Su
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China
| | - Li Ding
- Department of Hematology, General Hospital of Air Forces, PLA, No. 30 Fu Cheng Road, Haidian District, Beijing 100142, P.R. China
| | - Ji Li
- Department of Orthopedics, Sports Medicine Center, People's Liberation Army General Hospital, No. 28 Fu Xing Road, Haidian District, Beijing 100853, P.R. China
| | - Heng Zhu
- Department of Cell Biology, Institute of Basic Medical Sciences, No. 27 Tai Ping Road, Haidian District, Beijing 100850, P.R. China
| |
Collapse
|
16
|
Li H, Gu ZK, Li XS, Hou CM, Tang PH, Mao N. Functional and Phenotypic Alteration of Intrasplenic Lymphocytes Affected by Mesenchymal Stem Cells in a Murine Allosplenocyte Transfusion Model. Cell Transplant 2017; 16:85-95. [DOI: 10.3727/000000007783464470] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous data have demonstrated that mesenchymal stem cells (MSCs) can exert immunomodulatory activity in vitro, in which of the process nearly all kinds of immune cell subsets are involved. However, there is still a paucity of information about whether and why MSCs inhibit the ongoing immune responses in vivo. Working in a murine splenocyte transfusion model across the major histocompatibility barrier (C57BL/6 → BALB/c, H2b → H2d), we have found that MSC coinfusion prolongs the mean survival time (MST) of the recipient mice in a dose-dependent manner and reduces graft-versus-host-associated histopathology in comparison to the allosplenocyte transfusion controls. In vivo eGFP tracing with polymerase chain reaction analysis revealed that grafted MSCs could migrate and settle into the lungs, spleen, liver, intestine, and skin shortly after administration. Further investigations into the functional characteristics of intrasplenic lymphocytes showed that their proliferation and cytotoxic activity against P815 cells (H2d) were significantly restrained by MSC cotransfer. FACS analysis demonstrated that MSC infusion not only increased the proportion of CD4+ subset but also decreased that of CD8+ cells at the belated observation points, resulting in the increase of the ratio of CD4+/CD8+ cells. Also, in contrast to the slight increase of the proportion of CD4+CD25+ T regulatory cells (Tregs) in MSC cotransfer mice, the ratio of Tregs/CD8+ cells was dramatically elevated. Furthermore, RT-PCR analysis on the cytokine array of IL-2, IL-4, IL-12, TNF-α, and TGF-β in recipient splenocytes implied the Th1 to Th2 polarization. Therefore, it is deducible that alteration in the proportions of different T-lymphocyte subsets may be one of the main mechanisms by which grafted MSCs suppress the ongoing immune responses in vivo. The study here might provide some new clues for the design of therapeutic approaches for MSC transplantation.
Collapse
Affiliation(s)
- Hong Li
- Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zi-Kuan Gu
- Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiu-Sen Li
- Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chun-Mei Hou
- Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Pei-Hsien Tang
- Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ning Mao
- Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
17
|
James AW, Shen J, Tsuei R, Nguyen A, Khadarian K, Meyers CA, Pan HC, Li W, Kwak JH, Asatrian G, Culiat CT, Lee M, Ting K, Zhang X, Soo C. NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair. JCI Insight 2017; 2:92573. [PMID: 28614787 PMCID: PMC5470886 DOI: 10.1172/jci.insight.92573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
NELL-1 is a secreted, osteogenic protein first discovered to control ossification of the cranial skeleton. Recently, NELL-1 has been implicated in bone maintenance. However, the cellular determinants of NELL-1's bone-forming effects are still unknown. Here, recombinant human NELL-1 (rhNELL-1) implantation was examined in a clinically relevant nonhuman primate lumbar spinal fusion model. Prolonged rhNELL-1 protein release was achieved using an apatite-coated β-tricalcium phosphate carrier, resulting in a local influx of stem cell antigen-1-positive (Sca-1+) mesenchymal progenitor cells (MPCs), and complete osseous fusion across all samples (100% spinal fusion rate). Murine studies revealed that Nell-1 haploinsufficiency results in marked reductions in the numbers of Sca-1+CD45-CD31- bone marrow MPCs associated with low bone mass. Conversely, rhNELL-1 systemic administration in mice showed a marked anabolic effect accompanied by increased numbers of Sca-1+CD45-CD31- bone marrow MPCs. Mechanistically, rhNELL-1 induces Sca-1 transcription among MPCs, in a process requiring intact Wnt/β-catenin signaling. In summary, NELL-1 effectively induces bone formation across small and large animal models either via local implantation or intravenous delivery. NELL-1 induces an expansion of a bone marrow subset of MPCs with Sca-1 expression. These findings provide compelling justification for the clinical translation of a NELL-1-based therapy for local or systemic bone formation.
Collapse
Affiliation(s)
- Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Jia Shen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Rebecca Tsuei
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Alan Nguyen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Kevork Khadarian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hsin Chuan Pan
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Weiming Li
- Department of Orthopedics, The First Clinical Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin H Kwak
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | | | - Min Lee
- Section of Biomaterials, School of Dentistry, UCLA, Los Angeles, California, USA
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA.,Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
18
|
He D, Wang RX, Mao JP, Xiao B, Chen DF, Tian W. Three-dimensional spheroid culture promotes the stemness maintenance of cranial stem cells by activating PI3K/AKT and suppressing NF-κB pathways. Biochem Biophys Res Commun 2017; 488:528-533. [PMID: 28522297 DOI: 10.1016/j.bbrc.2017.05.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/14/2017] [Indexed: 12/11/2022]
Abstract
Multipotent stem cells are one of the most powerful tools available for the bone regeneration. However, owing to various limitations, including a lack of tissue-specific stem cell identification, reconstruction of large cranial bone defects remains challenging. In the current study, we isolated a population of Sca-1+CD105+CD140a+ stem cells from adult mouse calvarium and cultured them as three-dimensional spheroids. Although these cells shared similar surface antigens when grown in either monolayers or spheroids, the cranial stem cells grown in spheroids possessed enhanced multipotency and proliferation capacity. In addition, the cranial stem cells in spheroids were found to express high levels of the self-renewal transcription factors Nanog, Oct-4, and Sox-2. Mechanistically, we found that three-dimensional spheroid culture suppressed NF-κB pathways, but activated the PI3K/AKT pathway in cranial stem cells. More importantly, activation of NF-κB pathways or specific inhibition of the PI3K/AKT pathway partially impaired spheroid formation and suppressed expression of self-renewal transcription factors. In summary, these findings reveal a novel effect of spheroid culture in promoting the maintenance of cranial stem cell stemness and indicate that NF-κB and PI3K/AKT pathways might be involved in the stemness maintenance.
Collapse
Affiliation(s)
- Da He
- Department of Spine Surgery, Bei Jing JiShuiTan Hospital, Beijing, China
| | - Ren-Xian Wang
- Department of Bone Tissue Engineering, Bei Jing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Jian-Ping Mao
- Department of Spine Surgery, Bei Jing JiShuiTan Hospital, Beijing, China
| | - Bin Xiao
- Department of Spine Surgery, Bei Jing JiShuiTan Hospital, Beijing, China
| | - Da-Fu Chen
- Department of Bone Tissue Engineering, Bei Jing Research Institute of Traumatology and Orthopaedics, Beijing, China.
| | - Wei Tian
- Department of Spine Surgery, Bei Jing JiShuiTan Hospital, Beijing, China.
| |
Collapse
|
19
|
Sivanathan KN, Gronthos S, Grey ST, Rojas-Canales D, Coates PT. Immunodepletion and Hypoxia Preconditioning of Mouse Compact Bone Cells as a Novel Protocol to Isolate Highly Immunosuppressive Mesenchymal Stem Cells. Stem Cells Dev 2017; 26:512-527. [PMID: 27998209 DOI: 10.1089/scd.2016.0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Compact bones (CB) are major reservoirs of mouse mesenchymal stem cells (mMSC). Here, we established a protocol to isolate MSC from CB and tested their immunosuppressive potential. Collagenase type II digestion of BM-flushed CB from C57B/6 mice was performed to liberate mMSC precursors from bone surfaces to establish nondepleted mMSC. CB cells were also immunodepleted based on the expression of CD45 (leukocytes) and TER119 (erythroid cells) to eliminate hematopoietic cells. CD45-TER119- CB cells were subsequently used to generate depleted mMSC. CB nondepleted and depleted mMSC progenitors were cultured under hypoxic conditions to establish primary mMSC cultures. CB depleted mMSC compared to nondepleted mMSC showed greater cell numbers at subculturing and had increased functional ability to differentiate into adipocytes and osteoblasts. CB depleted mMSC had high purity and expressed key mMSC markers (>85% Sca-1, CD29, CD90) with no mature hematopoietic contaminating cells (<5% CD45, CD11b) when subcultured to passage 5 (P5). Nondepleted mMSC cultures, however, were less pure and heterogenous with <72% Sca-1+, CD29+, and CD90+ cells at early passages (P1 or P2), along with high percentages of contaminating CD11b+ (35.6%) and CD45+ (39.2%) cells that persisted in culture long term. Depleted and nondepleted mMSC nevertheless exhibited similar potency to suppress total (CD3+), CD4+ and CD8+ T cell proliferation, in a dendritic cell allostimulatory one-way mixed lymphocyte reaction. CB depleted mMSC, pretreated with proinflammatory cytokines IFN-γ, TNF-α, and IL-17A, showed superior suppression of CD8+ T cell, but not CD4+ T cell proliferation, relative to untreated-mMSC. In conclusion, CB depleted mMSC established under hypoxic conditions and treated with selective cytokines represent a novel source of potent immunosuppressive MSC. As these cells have enhanced immune modulatory function, they may represent a superior product for use in clinical allotransplantation.
Collapse
Affiliation(s)
- Kisha Nandini Sivanathan
- 1 School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia .,2 Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital , Adelaide, Australia
| | - Stan Gronthos
- 3 South Australian Health and Medical Research Institute , Adelaide, Australia .,4 Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia
| | - Shane T Grey
- 5 Transplantation Immunology Group, Garvan Institute of Medical Research , Sydney, Australia
| | - Darling Rojas-Canales
- 1 School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia .,2 Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital , Adelaide, Australia
| | - Patrick T Coates
- 1 School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia .,2 Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital , Adelaide, Australia .,6 Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital , Adelaide, Australia
| |
Collapse
|
20
|
Chiu HY, Lin CH, Hsu CY, Yu J, Hsieh CH, Shyu WC. IGF1R + Dental Pulp Stem Cells Enhanced Neuroplasticity in Hypoxia-Ischemia Model. Mol Neurobiol 2016; 54:8225-8241. [PMID: 27914008 DOI: 10.1007/s12035-016-0210-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Until now, the surface markers of multipotent mesenchymal stem cells (MSCs) had not been fully identified. Here, we found that the IGF1 receptor (IGF1R), regarded as a pluripotent marker of embryonic stem cells (ESCs), was also expressed in human dental pulp derived-mesenchymal stem cells (hDSCs), which displayed a potential for both self-renewal and multipotency. hDSC-secreted IGF1 interacted with IGF1R through an autocrine signaling pathway to maintain this self-renewal and proliferation potential. Stereotaxic implantation of immunosorted IGF1R+ hDSCs in rats with neonatal hypoxia-ischemia (NHI) promoted neuroplasticity, improving the neurological outcome by increasing expression of the anti-apoptotic protein Bcl-2, which enhanced both neurogenesis and angiogenesis. In addition, treatment with IGF1R+ hDSCs significantly modulated neurite regeneration and anti-inflammation in vivo in NHI rats and in vitro in primary cortical cultures under oxygen/glucose deprivation. Autocrine regulatory expression of IGF1R contributed to maintaining the self-renewal capacity of hDSCs. Furthermore, implantation of IGF1R+ hDSCs increased neuroplasticity with neurite regeneration and immunomodulation in and the NHI rat model.
Collapse
Affiliation(s)
- Hsiao-Yu Chiu
- Children's Hospital, China Medical University and Hospital, Taichung, Taiwan.,Translational Medicine Doctoral Degree Program, China Medical University, Taichung, Taiwan
| | - Chen-Huan Lin
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440
| | - Chung Y Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
21
|
Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Sci Rep 2016; 6:32595. [PMID: 27586516 PMCID: PMC5009335 DOI: 10.1038/srep32595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)–expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R+ hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R+ hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways.
Collapse
|
22
|
Lin F, Zhang W, Xue D, Zhu T, Li J, Chen E, Yao X, Pan Z. Signaling pathways involved in the effects of HMGB1 on mesenchymal stem cell migration and osteoblastic differentiation. Int J Mol Med 2016; 37:789-97. [PMID: 26846297 DOI: 10.3892/ijmm.2016.2479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
High mobility group box 1 (HMGB1) epxression has been found in the inflammatory microenvironment of fractures. It is well known that HMGB1 acts as a chemoattractant for mesenchymal stem cells (MSCs); however, the effects of HMGB1 on MSC migration and osteoblastic differentiation, and the signaling pathways involved in these effects, have not yet been elucidated. In this study, we aimed to investigate these effects, as well as the signaling mechanisms involved, using in vitro models. We found that HMGB1, in varying concentrations, promoted the osteoblastic differentiation of MSCs, the synthesis of receptor for advanced glycation end products (RAGE) and Toll-like receptor (TLR)2/4, and the activation of the p38 mitogen-activated protein kinase (MAPK) and nuclear factor‑κB (NF‑κB) signaling pathways. Subsequently, we cultured the MSCs in the appropriate concentration of HMGB1, and determined the signaling pathways involved in the effects of HMGB1 on MSC migration and differentiation, using receptor neutralizing antibodies and signaling pathway inhibitors. From the results of this study, we concluded that HMGB1 promotes MSC migration through the activation of the p38 MAPK signaling pathway, and also promotes MSC differentiation by binding to TLR2/4 and activating the p38 MAPK signaling pathway. These findings elucidate the mechanisms underlying the effects of HMGB1 in the fracture microenvironment, which may provide a theoretical basis for the development of improved clinical treatments for fractures.
Collapse
Affiliation(s)
- Feng Lin
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Ting Zhu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jin Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xueyu Yao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
23
|
McHaffie S, Chau YY. Isolation and Colony Formation of Murine Bone and Bone Marrow Cells. Methods Mol Biol 2016; 1467:73-80. [PMID: 27417960 DOI: 10.1007/978-1-4939-4023-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adult homeostasis is dependent on normal Wt1 expression. Loss of Wt1 expression in adult mice causes rapid loss of the mesenchymal tissues, fat and bone, amongst other phenotypes. Bone and bone marrow mesenchymal stromal cells can be studied by cell isolation and expansion. The stemness of these cells can then be characterized by carrying out a colony-forming unit-fibroblast assay and observing clonogenic capabilities.
Collapse
Affiliation(s)
- Sophie McHaffie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - You-Ying Chau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
- British Heart Foundation Centrefor Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
24
|
van der Garde M, van Pel M, Millán Rivero JE, de Graaf-Dijkstra A, Slot MC, Kleinveld Y, Watt SM, Roelofs H, Zwaginga JJ. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34(+) Transplants. Stem Cells Dev 2015; 24:2649-59. [PMID: 26414086 DOI: 10.1089/scd.2015.0138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cotransplantation of CD34(+) hematopoietic stem and progenitor cells (HSPCs) with mesenchymal stromal cells (MSCs) enhances HSPC engraftment. For these applications, MSCs are mostly obtained from bone marrow (BM). However, MSCs can also be isolated from the Wharton's jelly (WJ) of the human umbilical cord. This source, regarded to be a waste product, enables a relatively low-cost MSC acquisition without any burden to the donor. In this study, we evaluated the ability of WJ MSCs to enhance HSPC engraftment. First, we compared cultured human WJ MSCs with human BM-derived MSCs (BM MSCs) for in vitro marker expression, immunomodulatory capacity, and differentiation into three mesenchymal lineages. Although we confirmed that WJ MSCs have a more restricted differentiation capacity, both WJ MSCs and BM MSCs expressed similar levels of surface markers and exhibited similar immune inhibitory capacities. Most importantly, cotransplantation of either WJ MSCs or BM MSCs with CB CD34(+) cells into NOD SCID mice showed similar enhanced recovery of human platelets and CD45(+) cells in the peripheral blood and a 3-fold higher engraftment in the BM, blood, and spleen 6 weeks after transplantation when compared to transplantation of CD34(+) cells alone. Upon coincubation, both MSC sources increased the expression of adhesion molecules on CD34(+) cells, although stromal cell-derived factor-1 (SDF-1)-induced migration of CD34(+) cells remained unaltered. Interestingly, there was an increase in CFU-GEMM when CB CD34(+) cells were cultured on monolayers of WJ MSCs in the presence of exogenous thrombopoietin, and an increase in BFU-E when BM MSCs replaced WJ MSCs in such cultures. Our results suggest that WJ MSC is likely to be a practical alternative for BM MSC to enhance CB CD34(+) cell engraftment.
Collapse
Affiliation(s)
- Mark van der Garde
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands .,2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands .,3 Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , and NHS Blood and Transplant Oxford, Oxford, United Kingdom
| | - Melissa van Pel
- 2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| | - Jose Eduardo Millán Rivero
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands .,2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| | - Alice de Graaf-Dijkstra
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands
| | - Manon C Slot
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands
| | - Yoshiko Kleinveld
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands
| | - Suzanne M Watt
- 3 Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , and NHS Blood and Transplant Oxford, Oxford, United Kingdom
| | - Helene Roelofs
- 2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| | - Jaap Jan Zwaginga
- 1 Jon J van Rood Center for Clinical Transfusion Research , Sanquin Blood Supply Foundation, Leiden, the Netherlands .,2 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|
25
|
He T, Chi G, Tian B, Tang T, Dai K. Lentivirus transduced interleukin-1 receptor antagonist gene expression in murine bone marrow-derived mesenchymal stem cells in vitro. Mol Med Rep 2015; 12:4063-4070. [PMID: 26130370 PMCID: PMC4526042 DOI: 10.3892/mmr.2015.4003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 03/12/2015] [Indexed: 11/21/2022] Open
Abstract
Genetically modified mesenchymal stem cells have been used in attempts to increase the expression of interleukin-1 receptor antagonist (IL-1Ra); however, the attempts thus far have been unsuccessful. The aim of the present study was to investigate whether the lentivirus transduced IL-1Ra gene was able to be stably expressed in murine bone marrow-derived mesenchymal stem cells (mBMSCs) in vitro. In the present study, third generation lentiviral (Lv) vectors transducing the IL-1Ra/green fluorescent protein (copGFP) gene were constructed and transfected into mBMSCs to establish the Lv.IL-1Ra.copGFP/mBMSCs, which were evaluated using fluorescence microscopy, flow cytometry, cell viability analysis using a cell counting kit-8 kit, Trypan blue staining and an MTT growth kinetics assay. The expression of IL-1Ra was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that the Lv.IL-1Ra/copGFP vector was successfully constructed. The mBMSCs exhibited a short proliferation life, however they had good growth kinetics at an early stage and improved viability following efficient transduction of the IL-1Ra gene. IL-1Ra was overexpressed following transfection of mBMSCs. In conclusion, lentiviral vector transduced mBMSCs were able to efficiently express exogenous Il-1Ra under certain conditions and had a marked capacity for proliferation.
Collapse
Affiliation(s)
- Tao He
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Guanghao Chi
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Bo Tian
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tingting Tang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Kerong Dai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
26
|
Davis JP, Salmon M, Pope NH, Lu G, Su G, Sharma AK, Ailawadi G, Upchurch GR. Attenuation of aortic aneurysms with stem cells from different genders. J Surg Res 2015; 199:249-58. [PMID: 25958166 DOI: 10.1016/j.jss.2015.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND No medical therapies are yet available to slow abdominal aortic aneurysm (AAA) growth. This study sought to investigate the effect of different genders of bone marrow-derived mesenchymal stem cells (MSC) on AAA growth in a murine AAA model. Given the decreased rate of AAA in women, it is hypothesized that female MSC would attenuate AAA growth more so than male MSC. MATERIALS AND METHODS Aortas of 8-10-wk-old male C57Bl/6 mice were perfused with purified porcine pancreatic elastase to induce AAA formation. Bone marrow-derived MSC from male and female mice were dosed via tail vein injection (3 million cells per dose, 500 μL of volume per injection) on postaortic perfusion days 1, 3, and 5. Aortas were harvested after 14 d. RESULTS Mean aortic dilation in the elastase group was 121 ± 5.2% (mean ± standard error of the mean), while male MSC inhibited AAA growth (87.8 ± 6.9%, P = 0.008) compared with that of elastase. Female MSC showed the most marked attenuation of AAA growth (75.2 ± 8.3% P = 0.0004). Proinflammatory cytokines tumor necrosis factor α, interleukin 1β, and monocyte chemotactic protein-1 (MCP-1) were only decreased in tissues treated with female MSC (P = 0.017, P = 0.001, and P < 0.0001, respectively, when compared with elastase). CONCLUSIONS These data exhibit that female MSC more strongly attenuate AAA growth in the murine model. Furthermore, female MSC and male MSC inhibit proinflammatory cytokines at varying levels. The effects of MSC on aortic tissue offer a promising insight into biologic therapies for future medical treatment of AAAs in humans.
Collapse
Affiliation(s)
- John P Davis
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Morgan Salmon
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nicolas H Pope
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Guanyi Lu
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gang Su
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ashish K Sharma
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gorav Ailawadi
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gilbert R Upchurch
- Division of Vascular and Endovascular Surgery and Cardiothoracic Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
27
|
Comparisons of mouse mesenchymal stem cells in primary adherent culture of compact bone fragments and whole bone marrow. Stem Cells Int 2015; 2015:708906. [PMID: 25821472 PMCID: PMC4363588 DOI: 10.1155/2015/708906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 12/16/2022] Open
Abstract
The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment culture was based on the fact that BMSCs were assembled in compact bones. Thus, the procedure included flushing bone marrow out of bone cavity and culturing the fragments without any collagenase digestion. The cell yield from cultured fragments was slightly less than that from cultured bone marrow using the same bone quantity. However, the trypsinized cells from cultured fragments exhibited significantly higher proliferation and were accompanied with more CD90 and CD44 expressions and less CD45 expression. The osteogenic and adipogenic differentiation capacity of cells from cultured fragments were better than those of cells from bone marrow. The directly adherent culture of compact bone is suitable for mouse BMSC isolation, and more BMSCs with potentially improved proliferation capacity can be obtained in the primary culture.
Collapse
|
28
|
Li H, Jiang YM, Sun YF, Li P, Dang RJ, Ning HM, Li YH, Zhang YJ, Jiang XX, Guo XM, Wen N, Han Y, Mao N, Chen H, Zhang Y. CCR7 expressing mesenchymal stem cells potently inhibit graft-versus-host disease by spoiling the fourth supplemental Billingham's tenet. PLoS One 2014; 9:e115720. [PMID: 25549354 PMCID: PMC4280136 DOI: 10.1371/journal.pone.0115720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 12/01/2014] [Indexed: 01/01/2023] Open
Abstract
The clinical acute graft-versus-host disease (GvHD)-therapy of mesenchymal stem cells (MSCs) is not as satisfactory as expected. Secondary lymphoid organs (SLOs) are the major niches serve to initiate immune responses or induce tolerance. Our previous study showed that CCR7 guide murine MSC line C3H10T1/2 migrating to SLOs. In this study, CCR7 gene was engineered into murine MSCs by lentivirus transfection system (MSCs/CCR7). The immunomodulatory mechanism of MSCs/CCR7 was further investigated. Provoked by inflammatory cytokines, MSCs/CCR7 increased the secretion of nitric oxide and calmed down the T cell immune response in vitro. Immunofluorescent staining results showed that transfused MSCs/CCR7 can migrate to and relocate at the appropriate T cell-rich zones within SLOs in vivo. MSCs/CCR7 displayed enhanced effect in prolonging the survival and alleviating the clinical scores of the GvHD mice than normal MSCs. Owing to the critical relocation sites, MSCs/CCR7 co-infusion potently made the T cells in SLOs more naïve like, thus control T cells trafficking from SLOs to the target organs. Through spoiling the fourth supplemental Billingham’s tenet, MSCs/CCR7 potently inhibited the development of GvHD. The study here provides a novel therapeutic strategy of MSCs/CCR7 infusion at a low dosage to give potent immunomodulatory effect for clinical immune disease therapy.
Collapse
Affiliation(s)
- Hong Li
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| | - Yan-Ming Jiang
- Department of Ophthalmology, The Second Artillery General Hospital, Beijing 100088, People’s Republic of China
| | - Yan-Feng Sun
- Department of Pediatrics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China
| | - Ping Li
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui-Jie Dang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
| | - Yu-Hang Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
| | - Ying-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Xia Jiang
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Xi-Min Guo
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ning Mao
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| | - Yi Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| |
Collapse
|
29
|
Li D, Zhu H, Liang C, Li W, Xing G, Ma L, Ding L, Zhang Y, He F, Zhang L. CKIP-1 suppresses the adipogenesis of mesenchymal stem cells by enhancing HDAC1-associated repression of C/EBPα. J Mol Cell Biol 2014; 6:368-79. [PMID: 25240053 DOI: 10.1093/jmcb/mju034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are considered as the developmental origin of multiple lineage cells including osteocytes, adipocytes, and muscle cells. Previous studies demonstrated that the PH domain-containing protein CKIP-1 plays an important role in the development of osteoblasts and cardiomyocytes. However, whether CKIP-1 is involved in the generation of adipocytes as well as the MSC differentiation remains unknown. Here we show that CKIP-1 is a novel regulator of MSCs differentiating into adipocytes. MSCs derived from CKIP-1-deficient mice display enhanced adipogenesis upon induction. Further analysis showed that CKIP-1 interacts with the histone deacetylase HDAC1 in the nucleus and inhibits the transcription of CCAAT/enhancer-binding protein α (C/EBPα), which is a crucial adipogenic transcription factor. Ectopic expression of CKIP-1 in a MSC-like cell line C3H/10T1/2 reduced the generation of adipocytes due to suppression of adipogenic factors, including C/EBPα. Moreover, CKIP-1-deficient mice showed an increase in body weight and white adipose tissue gains when fed on a high-fat diet. Collectively, these results suggest that CKIP-1 is a novel inhibitor of MSC-originated adipogenesis by enhancing HDAC1-associated repression of C/EBPα.
Collapse
Affiliation(s)
- Dahu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heng Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chao Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Wenbo Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Guichun Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Lanzhi Ma
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100850, China
| | - Lujing Ding
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100850, China
| | - Yi Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
30
|
Jiang X, Liu C, Hao J, Guo D, Guo J, Yao J, Jiang K, Cui Z, Zhu L, Sun W, Lin L, Liang J. CD4(+)CD25 (+) regulatory T cells are not required for mesenchymal stem cell function in fully MHC-mismatched mouse cardiac transplantation. Cell Tissue Res 2014; 358:503-14. [PMID: 25103227 DOI: 10.1007/s00441-014-1956-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 07/01/2014] [Indexed: 01/12/2023]
Abstract
Although the immunomodulative properties of mesenchymal stem cells (MSCs) open up attractive possibilities in solid-organ transplantation, information concerning the optimal dose, route, timing of administration, major histocompatibility complex (MHC)-restriction and relevant mechanisms is currently lacking. Therefore, better characterization of MSC immunoregulatory activity and elucidation of its mechanisms are crucial. In this study, we confirmed that MSCs did not elicit proliferation by allogeneic CD4(+) T cells, suggesting that MSCs were not immunogenic. By using C57BL/6 mouse MSCs as donor-derived or recipient-derived or as third-party MSCs, we discovered that MSCs suppressed CD4(+) T cell proliferation and prolonged mouse cardiac allograft survival in a dose-dependent and non-MHC-restricted manner. We also found that intraperitoneal administration favored survival prolongation, although this prolongation was weaker than that via the intravenous route. Only infusion at earlier time points favored survival prolongation. Depletion of CD4(+)CD25(+) T cells did not affect the immunosuppression of MSCs on CD4(+) T cells. Moreover, MSCs did not induce regulatory T cells. The in vivo data revealed that MSCs did not increase the percentage of CD4(+)CD25(+) T cells and FoxP3 expression. More importantly, we demonstrated for the first time that depletion of CD4(+)CD25(+) T cells did not hinder MSC-induced survival prolongation, indicating that CD4(+)CD25(+) regulatory T cells were not essential for the prolongation of MSC-mediated allograft survival.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Department of Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, Liaoning Province, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li F, Zhao SZ. Mesenchymal stem cells: Potential role in corneal wound repair and transplantation. World J Stem Cells 2014; 6:296-304. [PMID: 25126379 PMCID: PMC4131271 DOI: 10.4252/wjsc.v6.i3.296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/06/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain problematic. Mesenchymal stem cells (MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In addition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoimmune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation.
Collapse
|
32
|
Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. Int Immunopharmacol 2014; 20:101-9. [PMID: 24613203 DOI: 10.1016/j.intimp.2014.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (P<0.001). Intravenous administration of mCB-MSC significantly reduced these histopathological changes in both distal and proximal airways (P<0.001). We showed that GFP-labeled MSCs were located in the lungs of OVA group 2weeks after intravenous induction. mCB-MSCs also significantly promoted Treg response in ovalbumin-treated mice (OVA+MSC group) (P<0.037). Our studies revealed that mCB-MSCs migrated to lung tissue and suppressed histopathological changes in murine model of asthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma.
Collapse
|
33
|
|
34
|
Hall SRR, Tsoyi K, Ith B, Padera RF, Lederer JA, Wang Z, Liu X, Perrella MA. Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells 2013; 31:397-407. [PMID: 23132816 DOI: 10.1002/stem.1270] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/08/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
Abstract
The use of mesenchymal stromal cells (MSCs) for treatment of bacterial infections, including systemic processes like sepsis, is an evolving field of investigation. This study was designed to investigate the potential use of MSCs, harvested from compact bone, and their interactions with the innate immune system, during polymicrobial sepsis induced by cecal ligation and puncture (CLP). We also wanted to elucidate the role of endogenous heme oxygenase (HO)-1 in MSCs during a systemic bacterial infection. MSCs harvested from the bones of HO-1 deficient (-/-) and wild-type (+/+) mice improved the survival of HO-1(-/-) and HO-1(+/+) recipient mice when administered after the onset of polymicrobial sepsis induced by CLP, compared with the administration of fibroblast control cells. The MSCs, originating from compact bone in mice, enhanced the ability of neutrophils to phagocytize bacteria in vitro and in vivo and to promote bacterial clearance in the peritoneum and blood after CLP. Moreover, after depleting neutrophils in recipient mice, the beneficial effects of MSCs were entirely lost, demonstrating the importance of neutrophils for this MSC response. MSCs also decreased multiple organ injury in susceptible HO-1(-/-) mice, when administered after the onset of sepsis. Taken together, these data demonstrate that the beneficial effects of treatment with MSCs after the onset of polymicrobial sepsis is not dependent on endogenous HO-1 expression, and that neutrophils are crucial for this therapeutic response.
Collapse
Affiliation(s)
- Sean R R Hall
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
YANG JIANYE, ZHU ZHAOHUI, WANG HONGFEI, LI FEIFEI, DU XINLING, MA RUNLINZ. Trop2 regulates the proliferation and differentiation of murine compact-bone derived MSCs. Int J Oncol 2013; 43:859-67. [DOI: 10.3892/ijo.2013.1987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/03/2013] [Indexed: 11/05/2022] Open
|
36
|
Liu X, Zhou C, Li Y, Ji Y, Xu G, Wang X, Yan J. SDF-1 promotes endochondral bone repair during fracture healing at the traumatic brain injury condition. PLoS One 2013; 8:e54077. [PMID: 23349789 PMCID: PMC3551938 DOI: 10.1371/journal.pone.0054077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/06/2012] [Indexed: 02/07/2023] Open
Abstract
Purposes The objective of this study was to investigate the role of stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, on bone healing and whether SDF-1 contributes to accelerating bone repair in traumatic brain injury (TBI)/fracture model. Materials and Methods Real-time polymerase chain reaction and immunohistochemical analysis were used to detect the expression of SDF-1 during the repair of femoral bone in TBI/fracture model. The TBI/fracture model was treated with anti–SDF-1 neutralizing antibody or AMD3100, an antagonist for CXCR4, and evaluated by histomorphometry. In vitro and in vivo migration assays were used to evaluate the functional effect of SDF-1 on primary mesenchymal stem cells. Results The expression of SDF1 and CXCR4 messenger RNA was increased during the bone healing in TBI/fracture model but was less increased in fracture only model. High expression of SDF-1 protein was observed in the surrounding tissue of the damaged bone. Treated with anti–SDF-1 antibody or AMD3100 could inhibit new bone formation. SDF-1 increased mesenchymal stem cell chemotaxis in vitro in a dose-dependent manner. The in vivo migration study demonstrated that mesenchymal stem cells recruited by SDF-1 participate in endochondral bone repair. Conclusion The SDF-1/CXCR4 axis plays a crucial role in the accelerating fracture healing under the condition of TBI and contributes to endochondral bone repair.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, P.R. China
| | - Changlong Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, P.R. China
| | - Yanjing Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, P.R. China
| | - Ye Ji
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, P.R. China
| | - Gongping Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, P.R. China
| | - Xintao Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, P.R. China
| | - Jinglong Yan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, P.R. China
- * E-mail:
| |
Collapse
|
37
|
Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP, Zwaginga JJ. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 2013; 108:25-53. [PMID: 24152971 PMCID: PMC3842875 DOI: 10.1093/bmb/ldt031] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Blood vessel formation is fundamental to development, while its dysregulation can contribute to serious disease. Expectations are that hundreds of millions of individuals will benefit from therapeutic developments in vascular biology. MSCs are central to the three main vascular repair mechanisms. SOURCES OF DATA Key recent published literature and ClinicalTrials.gov. AREAS OF AGREEMENT MSCs are heterogeneous, containing multi-lineage stem and partly differentiated progenitor cells, and are easily expandable ex vivo. There is no single marker defining native MSCs in vivo. Their phenotype is strongly determined by their specific microenvironment. Bone marrow MSCs have skeletal stem cell properties. Having a perivascular/vascular location, they contribute to vascular formation and function and might be harnessed to regenerate a blood supply to injured tissues. AREAS OF CONTROVERSY These include MSC origin, phenotype and location in vivo and their ability to differentiate into functional cardiomyocytes and endothelial cells or act as vascular stem cells. In addition their efficacy, safety and potency in clinical trials in relation to cell source, dose, delivery route, passage and timing of administration, but probably even more on the local preconditioning and the mechanisms by which they exert their effects. GROWING POINTS Understanding the origin and the regenerative environment of MSCs, and manipulating their homing properties, proliferative ability and functionality through drug discovery and reprogramming strategies are important for their efficacy in vascular repair for regenerative medicine therapies and tissue engineering approaches. AREAS TIMELY FOR DEVELOPING RESEARCH Characterization of MSCs' in vivo origins and biological properties in relation to their localization within tissue niches, reprogramming strategies and newer imaging/bioengineering approaches.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Combined transfection of the three transcriptional factors, PDX-1, NeuroD1, and MafA, causes differentiation of bone marrow mesenchymal stem cells into insulin-producing cells. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:672013. [PMID: 22761608 PMCID: PMC3385644 DOI: 10.1155/2012/672013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/01/2012] [Accepted: 04/30/2012] [Indexed: 01/09/2023]
Abstract
Aims. The goal of cell transcription for treatment of diabetes is to generate surrogate β-cells from an appropriate cell line. However, the induced replacement cells have showed less physiological function in producing insulin compared with normal β-cells. Methods. Here, we report a procedure for induction of insulin-producing cells (IPCs) from bone marrow murine mesenchymal stem cells (BM-mMSCs). These BM-mMSCs have the potential to differentiate into insulin-producing cells when a combination of PDX-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation-1), and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A) genes are transfected into them and expressed in these cells. Results. Insulin biosynthesis and secretion were induced in mMSCs into which these three genes have been transfected and expressed. The amount of induced insulin in the mMSCs which have been transfected with the three genes together is significantly higher than in those mMSCs that were only transfected with one or two of these three genes. Transplantation of the transfected cells into mice with streptozotocin-induced diabetes results in insulin expression and the reversal of the glucose challenge. Conclusions. These findings suggest major implications for cell replacement strategies in generation of surrogate β-cells for the treatment of diabetes.
Collapse
|
39
|
Li D, Liang C, Xu L, Tian C, Xing G, He F, Zhang L. Murine calvaria-derived progenitor cells express high levels of osterix and lose their adipogenic capacity. Biochem Biophys Res Commun 2012; 422:311-5. [PMID: 22583897 DOI: 10.1016/j.bbrc.2012.04.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 04/29/2012] [Indexed: 11/15/2022]
Abstract
Though the mouse is the most widely used biomedical animal model, it is difficult to isolate murine mesenchymal stem cells (MSCs) from the bone marrow because of contamination by hematopoietic cells. The murine compact bone tissue of long bones is considered a novel and reliable source of MSCs with low hematopoietic cell contamination. We investigated whether the murine compact bone of the calvaria would be a promising source of MSCs due to its low bone marrow content. We isolated cells from both long bones and the calvaria using the same method. Although they shared morphological features and surface antigens similar to those of long bone-derived MSCs, the calvaria-derived cells highly expressed the osteogenic transcription factor osterix, lost their adipogenic capacity and gained a higher osteogenic capacity. These findings suggest that the cells that migrated from the calvaria were progenitor cells rather than MSCs and that the differentiation fate of mesenchymal stem/progenitor cells existing in different murine compact bone deposits is already committed.
Collapse
Affiliation(s)
- Dahu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Dickinson H, Milton P, Jenkin G. The isolation and characterization of putative mesenchymal stem cells from the spiny mouse. Cytotechnology 2012; 64:591-9. [PMID: 22367020 DOI: 10.1007/s10616-012-9443-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/14/2012] [Indexed: 11/26/2022] Open
Abstract
The bone marrow represents the most common source from which to isolate mesenchymal stem cells (MSCs). MSCs are capable of differentiating into tissues of the three primary lineages and have the potential to enhance repair in damaged organs through the principals of regenerative medicine. Given the ease with which MSCs may be isolated from different species the aim of this study was to isolate and characterize putative bone marrow derived MSCs from the spiny mouse, Acomys cahirinus. MSCs were isolated from the spiny mouse in a traditional manner, and based on plastic adherence, morphology, colony forming unit-fibroblast assays and functional assessment (adipogenic, osteogenic and chondrogenic differentiation potential) a population of putative mesenchymal stem cells from the compact bone of the spiny mouse have been isolated and characterized. Such methodological approaches overcome the lack of species-specific antibodies for the spiny mouse and could be employed for other species where the cost of generating species-specific antibodies is not warranted.
Collapse
Affiliation(s)
- Hayley Dickinson
- Monash Immunology and Stem Cell Laboratories (MISCL), Melbourne, VIC, Australia,
| | | | | |
Collapse
|
41
|
Oh DY, Cui P, Hosseini H, Mosse J, Toh BH, Chan J. Potently immunosuppressive 5-fluorouracil-resistant mesenchymal stromal cells completely remit an experimental autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2012; 188:2207-17. [PMID: 22291191 DOI: 10.4049/jimmunol.1101040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We treated mice with 5-fluorouracil (5-FU) to isolate a quiescent and undifferentiated mesenchymal stromal cell (MSC) population from the bone marrow. We examined these 5-FU-resistant MSCs (5-FU-MSCs) free from hematopoietic components for CFU fibroblasts (CFU-Fs) and assessed their immunosuppressive potential in vitro and in vivo. We differentiated fibroblastic CFU-Fs (Fibro-CFU-Fs) from mixed CFU-Fs, based on the absence of in situ expression of CD11b and CD45 hematopoietic markers, as well as on their differentiation capacity. Fibro-CFU-Fs were associated with increased numbers of large-sized Fibro-CFU-Fs (≥9 mm(2)) that displayed enhanced capacity for differentiation into adipogenic and osteogenic mesenchymal lineages. Administration of these 5-FU-resistant CD11b(-)CD45(-) MSCs 6 d after myelin oligodendrocyte glycoprotein (MOG) immunization completely remitted MOG-induced experimental autoimmune encephalomyelitis after initial development of mild disease. The remission was accompanied by reduced CNS cellular infiltration and demyelination, as well as a significant reduction in anti-MOG Ab and splenocyte proliferation to MOG. MOG-stimulated splenocytes from these mice showed elevated levels of Th2 cytokines (IL-4, IL-5, and IL-6) and decreased IL-17. Compared with untreated MSCs, 5-FU-MSCs demonstrated potent immunosuppression of Con A-stimulated splenocytes in vitro, even at a 1:320 MSC/splenocyte ratio. Immunosuppression was accompanied by elevated IL-1ra, IL-10, and PGE(2). Blocking IL-1ra, IL-10, and PGE(2), but not IL-6, heme oxygenase-1, and NO, attenuated 5-FU-MSC-induced immunosuppression. Together, our findings suggested that immunosuppression by 5-FU-MSC is mediated by a combination of elevated IL-1ra, IL-10, and PGE(2), anti-inflammatory Th2 cytokines, and decreased IL-17. Our findings suggested that 5-FU treatment identifies a population of potently immunosuppressive 5-FU-MSCs that have the potential to be exploited to remit autoimmune diseases.
Collapse
Affiliation(s)
- Ding Yuan Oh
- Centre for Inflammatory Disease, Monash University, Melbourne, Victoria 3163, Australia
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Kuzma-Kuzniarska M, Rak-Raszewska A, Kenny S, Edgar D, Wilm B, Fuente Mora C, Davies JA, Murray P. Integration potential of mouse and human bone marrow-derived mesenchymal stem cells. Differentiation 2011; 83:128-37. [PMID: 22364880 DOI: 10.1016/j.diff.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a multipotent cell population which has been described to exert renoprotective and regenerative effects in experimental models of kidney injury. Several lines of evidence indicate that MSCs also have the ability to contribute to nephrogenesis, suggesting that the cells can be employed in stem cell-based applications aimed at de novo renal tissue generation. In this study we re-evaluate the capacity of mouse and human bone marrow-derived MSCs to contribute to the development of renal tissue using a novel method of embryonic kidney culture. Although MSCs show expression of some genes involved in renal development, their contribution to nephrogenesis is very limited in comparison to other stem cell types tested. Furthermore, we found that both mouse and human MSCs have a detrimental effect on the ex vivo development of mouse embryonic kidney, this effect being mediated through a paracrine action. Stimulation with conditioned medium from a mouse renal progenitor population increases the ability of mouse MSCs to integrate into developing renal tissue and prevents the negative effects on kidney development, but does not appear to enhance their ability to undergo nephrogenesis.
Collapse
|
44
|
Wu H, Lu W, Mahato RI. Mesenchymal stem cells as a gene delivery vehicle for successful islet transplantation. Pharm Res 2011; 28:2098-109. [PMID: 21499838 PMCID: PMC3152657 DOI: 10.1007/s11095-011-0434-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/14/2011] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the efficacy of human bone marrow-derived mesenchymal stem cells (hBMSCs) as gene delivery vehicles to simultaneously express human hepatocyte growth factor (HGF) and interleukin 1 receptor antagonist (IL-1Ra) to improve the outcome of islet transplantation. METHODS Morphology and islet-binding affinity of hBMSCs were checked by microscope. The expression of target genes and endogenous genes was determined by ELISA. Protection of islets by hBMSCs was evaluated in vitro by Calcein-AM/Propidium Iodide staining and in vivo by allogeneic islet transplantation study. Function and revascularization of islets was evaluated by immune fluorescence study. RESULTS Non-donor-specific hBMSCs showed strong binding affinity to human islets and protected viability and function. Transduction of hBMSCs with adenovirus encoding human HGF and human IL-1Ra (Adv-hHGF-hIL-1Ra) prior to co-culturing with islets further protected from apoptotic cell death, helped maintain 3D structures and morphology, and enhanced insulin secretion. Transplantation of human islets reconstituted with Adv-hHGF-hIL-1Ra transduced hBMSCs under the kidney capsule of streptozotocin-induced diabetic non-obese diabetic/severe combined immunodeficient (NOD-SCID) mice reversed diabetes by reducing blood glucose levels to ≤ 200 mg/dL for up to 15 weeks and reduced the number of islets required to achieving normoglycemia. Blood glucose levels of mice transplanted with islets alone reversed to ≥ 500 mg/dL 4 weeks post-transplantation. CONCLUSIONS Results indentified hBMSCs as effective gene delivery vehicles to improve the outcome of islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S. Manassas, RM 224, Memphis, Tennessee 38103-3308, USA
| | | | | |
Collapse
|
45
|
Ahmadbeigi N, Soleimani M, Gheisari Y, Vasei M, Amanpour S, Bagherizadeh I, Shariati SAM, Azadmanesh K, Amini S, Shafiee A, Arabkari V, Nardi NB. Dormant phase and multinuclear cells: two key phenomena in early culture of murine bone marrow mesenchymal stem cells. Stem Cells Dev 2011; 20:1337-1347. [PMID: 21083430 DOI: 10.1089/scd.2010.0266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Special features of mesenchymal stem cells (MSCs) have made them a popular tool in cell therapy and tissue engineering. Although mouse animal models and murine MSCs are common tools in this field, our understanding of the effect of in vitro expansion on the behavior of these cells is poor and controversial. In addition, in comparison to human, isolation of MSCs from mouse has been reported to be more difficult and some unexplained features such as heterogeneity and slow growth rate in the culture of these cells have been observed. Here we followed mouse bone marrow MSCs for >1 year after isolation and examined the effect of expansion on changes in morphology, growth kinetics, plasticity, and chromosomal structure during in vitro culture. Shortly after isolation, the growth rate of the cells decreased until they stopped dividing and entered a dormant state. In this state the size of the cells increased and they became multinuclear. These large multinuclear cells then gave origin to small mononuclear cells, which after a while resumed proliferation and could be expanded immortally. The immortal cells had diminished plasticity and were aneuploid but could not form tumors in nude mice. These results suggest that mouse bone marrow MSCs bear several modifications when expanded in vitro, and therefore, the interpretation of the data obtained with these cells should be done more cautiously.
Collapse
Affiliation(s)
- Naser Ahmadbeigi
- Department of Stem Cell Biology and Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells. Theriogenology 2011; 75:1381-99. [DOI: 10.1016/j.theriogenology.2010.11.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/17/2022]
|
47
|
Gothard D, Tare RS, Mitchell PD, Dawson JI, Oreffo ROC. In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration. LAB ON A CHIP 2011; 11:1206-1220. [PMID: 21350777 DOI: 10.1039/c0lc00575d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Skeletal stem cells (SSCs) show great capacity for bone and cartilage repair however, current in vitro cultures are heterogeneous displaying a hierarchy of differentiation potential. SSCs represent the diminutive true multipotent stem cell fraction of bone marrow mononuclear cell (BMMNC) populations. Endeavours to isolate SSCs have generated a multitude of separation methodologies. SSCs were first identified and isolated by their ability to adhere to culture plastic. Once isolated, further separation is achieved via culture in selective or conditioned media (CM). Indeed, preferential SSC growth has been demonstrated through selective in vitro culture conditions. Other approaches have utilised cell morphology (size and shape) as selection criteria. Studies have also targeted SSCs based on their preferential adhesion to specified compounds, individually or in combination, on both macro and microscale platforms. Nevertheless, most of these methods which represent macroscale function with relatively high throughput, yield insufficient purity. Consequently, research has sought to downsize isolation methodologies to the microscale for single cell analysis. The central approach is identification of the requisite cell populations of SSC-specific surface markers that can be targeted for isolation by either positive or negative selection. SELEX and phage display technology provide apt means to sift through substantial numbers of candidate markers. In contrast, single cell analysis is the paramount advantage of microfluidics, a relatively new field for cell biology. Here cells can be separated under continuous or discontinuous flow according to intrinsic phenotypic and physicochemical properties. The combination of macroscale quantity with microscale specificity to generate robust high-throughput (HT) technology for pure SSC sorting, isolation and enrichment offers significant implications therein for skeletal regenerative strategies as a consequence of lab on chip derived methodology.
Collapse
Affiliation(s)
- David Gothard
- Bone and Joint Research Group, Developmental Origins of Health and Disease, University of Southampton School of Medicine, Institute of Developmental Sciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, England.
| | | | | | | | | |
Collapse
|
48
|
Lu Y, Jin X, Chen Y, Li S, Yuan Y, Mai G, Tian B, Long D, Zhang J, Zeng L, Li Y, Cheng J. Mesenchymal stem cells protect islets from hypoxia/reoxygenation-induced injury. Cell Biochem Funct 2011; 28:637-43. [PMID: 21061411 DOI: 10.1002/cbf.1701] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hypoxia/reoxygenation (H/R)-induced injury is the key factor associated with islet graft dysfunction. This study aims to examine the effect of mesenchymal stem cells (MSCs) on islet survival and insulin secretion under H/R conditions. Islets from rats were isolated, purified, cultured with or without MSCs, and exposed to hypoxia (O(2) ≤ 1%) for 8 h and reoxygenation for 24 and 48 h, respectively. Islet function was evaluated by measuring basal and glucose-stimulated insulin secretion (GSIS). Apoptotic islet cells were quantified using Annexin V-FITC. Anti-apoptotic effects were confirmed by mRNA expression analysis of hypoxia-resistant molecules, HIF-1α, HO-1, and COX-2, using semi-quantitative retrieval polymerase chain reaction (RT-PCR). Insulin expression in the implanted islets was detected by immunohistological analysis. The main results show that the stimulation index (SI) of GSIS was maintained at higher levels in islets co-cultured with MSCs. The MSCs protected the islets from H/R-induced injury by decreasing the apoptotic cell ratio and increasing HIF-1α, HO-1, and COX-2 mRNA expression. Seven days after islet transplantation, insulin expression in the MSC-islets group significantly differed from that of the islets-alone group. We proposed that MSCs could promote anti-apoptotic gene expression by enhancing their resistance to H/R-induced apoptosis and dysfunction. This study provides an experimental basis for therapeutic strategies based on enhancing islet function.
Collapse
Affiliation(s)
- Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tolar J, Villeneuve P, Keating A. Mesenchymal stromal cells for graft-versus-host disease. Hum Gene Ther 2011; 22:257-62. [PMID: 21288086 DOI: 10.1089/hum.2011.1104] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been shown to mediate immune responses in vitro and in vivo. These observations have led to clinical trials of MSC administration to ameliorate acute graft-versus-host disease (GVHD), the most serious complication arising after allogeneic hematopoietic cell transplantation. Clinical data suggest a benefit in approximately two-thirds of patients with steroid-resistant acute GVHD. Preliminary studies have been reported on the use of MSCs to treat de novo acute GVHD, for prophylaxis of the condition, and more recently, in the management of chronic GVHD. Although preclinical data inferred a possible role of MSCs in affecting GVHD mechanisms, more robust animal models became available only after numerous clinical trials with these cells had been undertaken. Further clinical trials, the development of more appropriate animal models and an effective means of tracking and imaging the introduced cells in real time in patients, are required to better define their role in this important area of medicine.
Collapse
Affiliation(s)
- Jakub Tolar
- Division of Hematology-Oncology, Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
50
|
De Bari C, Kurth TB, Augello A. Mesenchymal stem cells from development to postnatal joint homeostasis, aging, and disease. ACTA ACUST UNITED AC 2010; 90:257-71. [DOI: 10.1002/bdrc.20189] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|