1
|
Belle JI, Wang H, Fiore A, Petrov JC, Lin YH, Feng CH, Nguyen TTM, Tung J, Campeau PM, Behrends U, Brunet T, Leszinski GS, Gros P, Langlais D, Nijnik A. MYSM1 maintains ribosomal protein gene expression in hematopoietic stem cells to prevent hematopoietic dysfunction. JCI Insight 2020; 5:125690. [PMID: 32641579 DOI: 10.1172/jci.insight.125690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Ribosomopathies are congenital disorders caused by mutations in the genes encoding ribosomal and other functionally related proteins. They are characterized by anemia, other hematopoietic and developmental abnormalities, and p53 activation. Ribosome assembly requires coordinated expression of many ribosomal protein (RP) genes; however, the regulation of RP gene expression, especially in hematopoietic stem cells (HSCs), remains poorly understood. MYSM1 is a transcriptional regulator essential for HSC function and hematopoiesis. We established that HSC dysfunction in Mysm1 deficiency is driven by p53; however, the mechanisms of p53 activation remained unclear. Here, we describe the transcriptome of Mysm1-deficient mouse HSCs and identify MYSM1 genome-wide DNA binding sites. We establish a direct role for MYSM1 in RP gene expression and show a reduction in protein synthesis in Mysm1-/- HSCs. Loss of p53 in mice fully rescues Mysm1-/- anemia phenotype but not RP gene expression, indicating that RP gene dysregulation is a direct outcome of Mysm1 deficiency and an upstream mediator of Mysm1-/- phenotypes through p53 activation. We characterize a patient with a homozygous nonsense MYSM1 gene variant, and we demonstrate reduced protein synthesis and increased p53 levels in patient hematopoietic cells. Our work provides insights into the specialized mechanisms regulating RP gene expression in HSCs and establishes a common etiology of MYSM1 deficiency and ribosomopathy syndromes.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - HanChen Wang
- Department of Physiology.,McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada
| | - Amanda Fiore
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Jessica C Petrov
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Yun Hsiao Lin
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Chu-Han Feng
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | - Jacky Tung
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Philippe M Campeau
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | | | - Theresa Brunet
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany
| | - Gloria Sarah Leszinski
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, and.,Department of Biochemistry and.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Quebec, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada.,McGill University Genome Centre, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| |
Collapse
|
2
|
Piscaglia AC. Intestinal stem cells and celiac disease. World J Stem Cells 2014; 6:213-229. [PMID: 24772248 PMCID: PMC3999779 DOI: 10.4252/wjsc.v6.i2.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/07/2014] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cells (SCs) are the key to tissue genesis and regeneration. Given their central role in homeostasis, dysfunctions of the SC compartment play a pivotal role in the development of cancers, degenerative disorders, chronic inflammatory pathologies and organ failure. The gastrointestinal tract is constantly exposed to harsh mechanical and chemical conditions and most of the epithelial cells are replaced every 3 to 5 d. According to the so-called Unitarian hypothesis, this renewal is driven by a common intestinal stem cell (ISC) residing within the crypt base at the origin of the crypt-to-villus hierarchical migratory pattern. Celiac disease (CD) can be defined as a chronic immune-mediated disease that is triggered and maintained by dietary proteins (gluten) in genetically predisposed individuals. Many advances have been achieved over the last years in understanding of the pathogenic interactions among genetic, immunological and environmental factors in CD, with a particular emphasis on intestinal barrier and gut microbiota. Conversely, little is known about ISC modulation and deregulation in active celiac disease and upon a gluten-free diet. Nonetheless, bone marrow-derived SC transplantation has become an option for celiac patients with complicated or refractory disease. This manuscript summarizes the “state of the art” regarding CD and ISCs, their niche and potential role in the development and treatment of the disease.
Collapse
|
3
|
Hazen AL, Diks SH, Wahle JA, Fuhler GM, Peppelenbosch MP, Kerr WG. Major remodelling of the murine stem cell kinome following differentiation in the hematopoietic compartment. J Proteome Res 2011; 10:3542-50. [PMID: 21648952 PMCID: PMC3151341 DOI: 10.1021/pr2001594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The changes in signal transduction associated with the acquisition of specific cell fates remain poorly understood. We performed massive parallel assessment of kinase signatures of the radiations of the hematopoietic system, including long-term repopulating hematopoietic stem cells (LT-HSC), short-term repopulating HSC (ST-HSC), immature natural killer (iNK) cells, NK cells, B cells, T cells, and myeloid cells. The LT-HSC kinome is characterized by noncanonical Wnt, Ca(2+) and classical protein kinase C (PKC)-driven signaling, which is lost upon the transition to ST-HSC, whose kinome signature prominently features receptor tyrosine kinase (RTK) activation of the Ras/MAPK signaling cassette. Further differentiation to iNK maintains signaling through this cassette but simultaneously leads to activation of a PI3K/PKB/Rac signaling, which becomes the dominant trait in the kinase signature following full differentiation toward NK cells. Differentiation along the myeloid and B cell lineages is accompanied by hyperactivation of both the Ras/MAPK and PI3K/PKB/Rac signaling cassette. T cells, however, deactivate signaling and only display residual G protein-coupled pathways. Thus, differentiation along the hematopoietic lineage is associated with major remodelling of cellular kinase signature.
Collapse
Affiliation(s)
- Amy L Hazen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
4
|
Kimura 木村丹香子 A, Martin C, Robinson GW, Simone JM, Chen W, Wickre MC, O'Shea JJ, Hennighausen L. The gene encoding the hematopoietic stem cell regulator CCN3/NOV is under direct cytokine control through the transcription factors STAT5A/B. J Biol Chem 2010; 285:32704-32709. [PMID: 20720003 PMCID: PMC2963365 DOI: 10.1074/jbc.m110.141804] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/09/2010] [Indexed: 12/16/2022] Open
Abstract
Cytokines control the biology of hematopoietic stem cells (HSCs) and progenitor cells in part through the transcription factors STAT5A/B. To investigate the target genes of STAT5A/B activated by cytokines in HSCs and progenitors, we performed microarray analyses using Lineage(-) Sca-1(+) c-Kit(+) (KSL) cells in the presence and absence of STAT5A/B. Stimulation with a mixture containing IL-3, IL-6, stem cell factor, thrombopoietin, and Flt3 ligand induced Ccn3/Nov mRNA over 100-fold in WT (control) but not Stat5a/b-null KSL cells. CCN3/NOV is a positive regulator of human HSC self-renewal and development of committed blood cells. Without stimulation, the Ccn3/Nov signal level was low in control KSL cells similar to Stat5a/b-null KSL cells. To determine which cytokine activates the Ccn3/Nov gene, we analyzed Lineage(-) c-Kit(+) (KL) and 32D cells using quantitative PCR and ChIP assays. Although stimulation with a mixture lacking IL-3 prevented the induction of Ccn3/Nov in control KL cells, IL-3 alone could induce Ccn3/Nov mRNA in control KL and 32D cells. ChIP assays using 32D cells revealed IL-3-induced binding of STAT5A/B to a γ-interferon-activated sequences site in the Ccn3/Nov gene promoter. This is the first report that Ccn3/Nov is directly induced by cytokines through STAT5A/B.
Collapse
Affiliation(s)
- Akiko Kimura 木村丹香子
- From the Laboratory of Genetics and Physiology, NIDDK, Bethesda, Maryland 20892.
| | - Cyril Martin
- From the Laboratory of Genetics and Physiology, NIDDK, Bethesda, Maryland 20892
| | - Gertraud W Robinson
- From the Laboratory of Genetics and Physiology, NIDDK, Bethesda, Maryland 20892
| | - James M Simone
- Flow Cytometry Section, Office of Science and Technology, NIAMS, Bethesda, Maryland 20892
| | - Weiping Chen
- Microarray Core Facility with the Genomic Core Laboratory, NIDDK, Bethesda, Maryland 20892
| | - Mark C Wickre
- From the Laboratory of Genetics and Physiology, NIDDK, Bethesda, Maryland 20892
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Lothar Hennighausen
- From the Laboratory of Genetics and Physiology, NIDDK, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Säynäjäkangas R, Uchida T, Vainio O. Differential Gene Expression in CD45+Cells at Para-aortic Foci Stage of Chicken Haematopoiesis. Scand J Immunol 2009; 70:288-94. [DOI: 10.1111/j.1365-3083.2009.02304.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kim HS, Hwang J, Kim YH, Kim S, Lee JW, Kang HS, Kim KS, Ha JH, Chung JW, Chang KT, Ryoo ZY, Lee S. Detection of low-abundant novel transcripts in mouse hematopoietic stem cells. Mol Genet Genomics 2009; 282:363-70. [PMID: 19585147 DOI: 10.1007/s00438-009-0469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/23/2009] [Indexed: 11/26/2022]
Abstract
Gene expression profiles of hematopoietic stem cells (HSCs) provide clues for understanding molecular mechanisms of HSC behavior, including self-renewal and differentiation. We took advantage of serial analysis of gene expression (SAGE) to identify medium- and low-abundant transcripts expressed in HSCs/hematopoietic progenitor cells (HPCs). Among a total of 31,380 unique transcripts, 17,326 (55%) correspond to known genes and, 14,054 (45%) are low-copy transcripts that have no matches to currently known genes. Among the former class, 3,899 (23%) were alternatively spliced transcripts and 3,754 (22%) represent anti-sense transcripts from known genes. Mapping of the SAGE tags to the mouse genome showed that differences in gene expression exist among chromosomes. In addition, comparison of the HSCs/HPCs SAGE data to that of myeloid progenitor cells revealed that massive genetic reprogramming occurs in hematopoietic cell differentiation. Our results demonstrate a previously unrecognized complexity of gene expression in HSCs/HPCs, and indicate the need for further efforts to fully identify and characterize the transcripts expressed in this cell type.
Collapse
Affiliation(s)
- Hyeng-Soo Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Piscaglia AC, Novi M, Campanale M, Gasbarrini A. Stem cell-based therapy in gastroenterology and hepatology. MINIM INVASIV THER 2008; 17:100-18. [PMID: 18465445 DOI: 10.1080/13645700801969980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protagonists of a new scientific era, stem cells are promising tools on which regenerative medicine relies for the treatment of human pathologies. Stem cells can be obtained from various sources, including embryos, fetal tissues, umbilical cord blood, and also terminally differentiated organs. Once forced to expand and differentiate into functional progenies, stem cells may become suitable for cell replacement and tissue engineering. The manipulation and/or stimulation of adult stem cells seems to be particularly promising, as it could improve the endogenous regenerative potential without risks of rejection and overcome the ethical and political issues related to embryonic stem cell research. Stem cells are already leaving the bench and reaching the bedside, despite an incomplete knowledge of the genetic control program driving their fate and plasticity. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy and acute or chronic hepatopaties. Nonetheless, critical aspects need to be further addressed, including the long-term safety, tolerability and efficacy of cell-based treatments, as well as their carcinogenic potential. Aim of this review is to summarize the state-of-the-arts on gastrointestinal and hepatic stem cells and on stem cell-based therapies in gastroenterology and hepatology, highlighting both the benefits and the potential risks of these new tools for the treatment and prevention of human diseases.
Collapse
Affiliation(s)
- Anna Chiara Piscaglia
- Gastrointestinal and Hepatic Stem Cell Research Group (G.H.S.C.) , Department of Internal Medicine and Gastroenterology, Gemelli Hospital, Catholic University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
8
|
|
9
|
Zayas J, Spassov DS, Nachtman RG, Jurecic R. Murine hematopoietic stem cells and multipotent progenitors express truncated intracellular form of c-kit receptor. Stem Cells Dev 2008; 17:343-53. [PMID: 18447649 PMCID: PMC3072793 DOI: 10.1089/scd.2007.0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The c-kit receptor plays a vital role in self-renewal and differentiation of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). We have discovered that besides c-kit, the murine multipotent HSC/MPP-like cell line EML expresses the transcript and protein for a truncated intracellular form of c-kit receptor, called tr-kit. Notably, the tr-kit transcript and protein levels were down-regulated during cytokine-induced differentiation of the HSC/MPP-like cell line EML into myeloerythroid lineages. These findings prompted us to analyze tr-kit expression in purified murine fetal liver and bone marrow cell populations containing long-term repopulating (LTR) HSCs, short-term repopulating (STR) HSCs, MPPs, lineage-committed progenitors, and immature blood cells. Remarkably, these studies have revealed that in contrast to more widespread expression of c-kit, tr-kit is transcribed solely in cell populations enriched for LTR-HSCs, STR-HSCs, and MPPs. On the other hand, cell populations in which HSCs and MPPs are either present at a much lower frequency or are absent altogether, cells representing more advanced stages of differentiation into lymphoid and myeloid lineages do not express tr-kit. The observation that tr-kit is co-expressed with c-kit only in more primitive HSC- and MPP-enriched cell populations raises an exciting possibility that tr-kit functions either as a new component of the stem cell factor (SCF)/c-kit pathway or is involved in a novel signaling pathway, present exclusively in HSC and MPPs. Taken together, these findings necessitate functional characterization of tr-kit and analysis of its potential role in the self-renewal, proliferation, and/or differentiation of HSC and multipotent progenitors.
Collapse
Affiliation(s)
- Jennifer Zayas
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
10
|
Adachi K, Soeta-Saneyoshi C, Sagara H, Iwakura Y. Crucial role of Bysl in mammalian preimplantation development as an integral factor for 40S ribosome biogenesis. Mol Cell Biol 2007; 27:2202-14. [PMID: 17242206 PMCID: PMC1820511 DOI: 10.1128/mcb.01908-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/15/2006] [Accepted: 01/04/2007] [Indexed: 02/03/2023] Open
Abstract
Blastocyst formation during mammalian preimplantation development is a unique developmental process that involves lineage segregation between the inner cell mass and the trophectoderm. To elucidate the molecular mechanisms underlying blastocyst formation, we have functionally screened a subset of preimplantation embryo-associated transcripts by using small interfering RNA (siRNA) and identified Bysl (bystin-like) as an essential gene for this process. The development of embryos injected with Bysl siRNA was arrested just prior to blastocyst formation, resulting in a defect in trophectoderm differentiation. Silencing of Bysl by using an episomal short hairpin RNA expression vector inhibited proliferation of embryonic stem cells. Exogenously expressed Bysl tagged with a fluorescent protein was concentrated in the nucleolus with a diffuse nucleoplasmic distribution. Furthermore, the loss of Bysl function by using RNA interference or dominant negative mutants caused defects in 40S ribosomal subunit biogenesis. These findings provide evidence for a crucial role of Bysl as an integral factor for ribosome biogenesis and suggest a critical dependence of blastocyst formation on active translation machinery.
Collapse
Affiliation(s)
- Kenjiro Adachi
- Institute of Medical Science, University of Tokyo, Minato-ku, Toyko 108-8639, Japan
| | | | | | | |
Collapse
|