1
|
Chao YW, Lee YL, Tseng CS, Wang LUH, Hsia KC, Chen H, Fustin JM, Azeem S, Chang TT, Chen CY, Kung FC, Hsueh YP, Huang YS, Chao HW. Improved CaP Nanoparticles for Nucleic Acid and Protein Delivery to Neural Primary Cultures and Stem Cells. ACS NANO 2024; 18:4822-4839. [PMID: 38285698 PMCID: PMC10867895 DOI: 10.1021/acsnano.3c09608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Efficiently delivering exogenous materials into primary neurons and neural stem cells (NSCs) has long been a challenge in neurobiology. Existing methods have struggled with complex protocols, unreliable reproducibility, high immunogenicity, and cytotoxicity, causing a huge conundrum and hindering in-depth analyses. Here, we establish a cutting-edge method for transfecting primary neurons and NSCs, named teleofection, by a two-step process to enhance the formation of biocompatible calcium phosphate (CaP) nanoparticles. Teleofection enables both nucleic acid and protein transfection into primary neurons and NSCs, eliminating the need for specialized skills and equipment. It can easily fine-tune transfection efficiency by adjusting the incubation time and nanoparticle quantity, catering to various experimental requirements. Teleofection's versatility allows for the delivery of different cargos into the same cell culture, whether simultaneously or sequentially. This flexibility proves invaluable for long-term studies, enabling the monitoring of neural development and synapse plasticity. Moreover, teleofection ensures the consistent and robust expression of delivered genes, facilitating molecular and biochemical investigations. Teleofection represents a significant advancement in neurobiology, which has promise to transcend the limitations of current gene delivery methods. It offers a user-friendly, cost-effective, and reproducible approach for researchers, potentially revolutionizing our understanding of brain function and development.
Collapse
Affiliation(s)
- Yu-Wen Chao
- Department
of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yen-Lurk Lee
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Ching-San Tseng
- Department
of Anatomy, School of Medicine, China Medical
University, Taichung 40402, Taiwan
| | - Lily Ueh-Hsi Wang
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Kuo-Chiang Hsia
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Huatao Chen
- Department
of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key
Laboratory of Animal Biotechnology of the Ministry of Agriculture
and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jean-Michel Fustin
- The
University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester M13 9PL, U.K.
| | - Sayma Azeem
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Taiwan
International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia
Sinica, Taipei 115201, Taiwan
| | - Tzu-Tung Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Chiung-Ya Chen
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Fan-Che Kung
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Yi-Ping Hsueh
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Yi-Shuian Huang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Taiwan
International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia
Sinica, Taipei 115201, Taiwan
- Institute
of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Hsu-Wen Chao
- Department
of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department
of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
3
|
Bokara KK, Kim JH, Kim JY, Lee JE. Transfection of arginine decarboxylase gene increases the neuronal differentiation of neural progenitor cells. Stem Cell Res 2016; 17:256-265. [PMID: 27591482 DOI: 10.1016/j.scr.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022] Open
Abstract
Growing evidence suggests that the clinical use of neural progenitor cells (NPCs) is hampered by heterogeneity, poor neuronal yield and low survival rate. Recently, we reported that retrovirus-delivered human arginine decarboxylase (hADC) genes improve cell survival against oxidative insult in murine NPCs in vitro. This study investigates whether the induced expression of hADC gene in mNPCs induces any significant change in the cell fate commitment. The evaluation of induced hADC gene function was assessed by knockdown of hADC gene using specific siRNA. The hADC gene delivery triggered higher expression of N-CAM, cell adhesion molecule and MAP-2, neuronal marker. However, the hADC gene knockdown showed downregulation of N-CAM and MAP-2 expression suggesting that hADC gene delivery favors cell fate commitment of mNPCs towards neuronal lineage. Neurite outgrowth was significantly longer in the hADC infected cells. The neurotrophic signal, BDNF aided in the neuronal commitment, differentiation, and maturation of hADC-mNPCs through PI3K and ERK1/2 activation. The induction of neuron-like differentiation is believed to be regulated by the expression of GSK-3β and Wnt/β-catenin signaling pathways. Our findings suggest that hADC gene delivery favors cell fate commitment of mNPCs towards neuronal lineage, bring new advances in the field of neurogenesis and cell therapy.
Collapse
Affiliation(s)
- Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Uppal, Hyderabad 500007, India.
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. J Funct Biomater 2015; 6:259-76. [PMID: 25918990 PMCID: PMC4493511 DOI: 10.3390/jfb6020259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022] Open
Abstract
Genetically engineered neural stem cell (NSC) transplants offer a key strategy to augment neural repair by releasing therapeutic biomolecules into injury sites. Genetic modification of NSCs is heavily reliant on viral vectors but cytotoxic effects have prompted development of non-viral alternatives, such as magnetic nanoparticle (MNPs). NSCs are propagated in laboratories as either 3-D suspension “neurospheres” or 2-D adherent “monolayers”. MNPs deployed with oscillating magnetic fields (“magnetofection technology”) mediate effective gene transfer to neurospheres but the efficacy of this approach for monolayers is unknown. It is important to address this issue as oscillating magnetic fields dramatically enhance MNP-based transfection in transplant cells (e.g., astrocytes and oligodendrocyte precursors) propagated as monolayers. We report for the first time that oscillating magnetic fields enhanced MNP-based transfection with reporter and functional (basic fibroblast growth factor; FGF2) genes in monolayer cultures yielding high transfection versus neurospheres. Transfected NSCs showed high viability and could re-form neurospheres, which is important as neurospheres yield higher post-transplantation viability versus monolayer cells. Our results demonstrate that the combination of oscillating magnetic fields and a monolayer format yields the highest efficacy for MNP-mediated gene transfer to NSCs, offering a viable non-viral alternative for genetic modification of this important neural cell transplant population.
Collapse
|
5
|
Mellott AJ, Devarajan K, Shinogle HE, Moore DS, Talata Z, Laurence JS, Forrest ML, Noji S, Tanaka E, Staecker H, Detamore MS. Nonviral Reprogramming of Human Wharton's Jelly Cells Reveals Differences Between ATOH1 Homologues. Tissue Eng Part A 2015; 21:1795-809. [PMID: 25760435 DOI: 10.1089/ten.tea.2014.0340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor atonal homolog 1 (ATOH1) has multiple homologues that are functionally conserved across species and is responsible for the generation of sensory hair cells. To evaluate potential functional differences between homologues, human and mouse ATOH1 (HATH1 and MATH-1, respectively) were nonvirally delivered to human Wharton's jelly cells (hWJCs) for the first time. Delivery of HATH1 to hWJCs demonstrated superior expression of inner ear hair cell markers and characteristics than delivery of MATH-1. Inhibition of HES1 and HES5 signaling further increased the atonal effect. Transfection of hWJCs with HATH1 DNA, HES1 siRNA, and HES5 siRNA displayed positive identification of key hair cell and support cell markers found in the cochlea, as well as a variety of cell shapes, sizes, and features not native to hair cells, suggesting the need for further examination of other cell types induced by HATH1 expression. In the first side-by-side evaluation of HATH1 and MATH-1 in human cells, substantial differences were observed, suggesting that the two atonal homologues may not be interchangeable in human cells, and artificial expression of HATH1 in hWJCs requires further study. In the future, this line of research may lead to engineered systems that would allow for evaluation of drug ototoxicity or potentially even direct therapeutic use.
Collapse
Affiliation(s)
- Adam J Mellott
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas
| | | | - Heather E Shinogle
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - David S Moore
- 3Microscopy and Analytical Imaging Lab, University of Kansas, Lawrence, Kansas
| | - Zsolt Talata
- 4Department of Mathematics, University of Kansas, Lawrence, Kansas
| | - Jennifer S Laurence
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - M Laird Forrest
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,5Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | - Sumihare Noji
- 6Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Minami-Jyosanjima-cho, Tokushima, Japan
| | - Eiji Tanaka
- 7Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Hinrich Staecker
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,8Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael S Detamore
- 1Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.,9Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
6
|
Rumpel R, Hohmann M, Klein A, Wesemann M, Baumgärtner W, Ratzka A, Grothe C. Transplantation of fetal ventral mesencephalic progenitor cells overexpressing high molecular weight fibroblast growth factor 2 isoforms in 6-hydroxydopamine lesioned rats. Neuroscience 2015; 286:293-307. [DOI: 10.1016/j.neuroscience.2014.11.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
7
|
Hohmann M, Rumpel R, Fischer M, Donert M, Ratzka A, Klein A, Wesemann M, Effenberg A, Fahlke C, Grothe C. Electrophysiological Characterization of eGFP-Labeled Intrastriatal Dopamine Grafts. Cell Transplant 2014; 24:1451-67. [PMID: 25199117 DOI: 10.3727/096368914x683034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Substitution of degenerated dopaminergic (DA) neurons by intrastriatally transplanted ventral mesencephalon (VM)-derived progenitor cells has been shown to improve motor functions in parkinsonian patients and animal models, whereas investigations of electrophysiological properties of the grafted DA neurons have been rarely performed. Here we show electrophysiological properties of grafted VM progenitor cells at different time intervals up to 12 weeks after transplantation measured in acute brain slices using eGFP-Flag transfection to identify the graft. We were able to classify typical DA neurons according to the biphasic progression (voltage "sag") to hyperpolarizing current injections. Two types of DA-like neurons were classified. Whereas type 1 neurons were characterized by delayed action potentials after hyperpolarization and irregular spontaneous firing, type 2 neurons displayed burst firing after hyperpolarization, spontaneous bursts, and regular firing. Comparison to identified DA neurons in vitro indicates a high integration of the intrastriatally grafted neurons, since in vitro cultures displayed regular firing spontaneously, whereas grafted identified DA neurons showed irregular firing. Additionally, type 1 and type 2 neurons exhibited a slight increase in the spontaneous firing frequency over time intervals after grafting, which might reflect a progressive integration of the grafted DA neurons. Our results provide evidence of the differentiation of grafted VM progenitor cells into mature integrated DA neurons, which are shown to replace the missing DA neurons functionally early after grafting.
Collapse
Affiliation(s)
- Meltem Hohmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Song WT, Zeng Q, Xia XB, Xia K, Pan Q. Atoh7 promotes retinal Müller cell differentiation into retinal ganglion cells. Cytotechnology 2014; 68:267-77. [PMID: 25108422 DOI: 10.1007/s10616-014-9777-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022] Open
Abstract
Glaucoma is one of the leading eye diseases due to the death of retinal ganglion cells. Increasing evidence suggests that retinal Müller cells exhibit the characteristics of retinal progenitor cells and can differentiate to neurons in injured retinas under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to promote the differentiation of retinal Müller cells into ganglion cells by introducing Atoh7 into the stem cells dedifferentiated from retinal Müller cells. Rat retinal Müller cells were isolated and dedifferentiated into stem cells, which were transfected with PEGFP-N1 or PEGFP-N1-Atoh7 vector, and then further induced to differentiate into ganglion cells. The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of control transfected or untransfected cells. In summary, Atoh7 promotes the differentiation of retinal Müller cells into retinal ganglion cells. This may open a new avenue for gene therapy of glaucoma by promoting optic nerve regeneration.
Collapse
Affiliation(s)
- Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kun Xia
- State Key Lab of Medical Genetics of China, Central South University, Changsha, China
| | - Qian Pan
- State Key Lab of Medical Genetics of China, Central South University, Changsha, China
| |
Collapse
|
9
|
Madeira C, Rodrigues CAV, Reis MSC, Ferreira FFCG, Correia RESM, Diogo MM, Cabral JMS. Nonviral Gene Delivery to Neural Stem Cells with Minicircles by Microporation. Biomacromolecules 2013; 14:1379-87. [DOI: 10.1021/bm400015b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Catarina Madeira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Mónica S. C. Reis
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Filipa F. C. G. Ferreira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Raquel E. S. M. Correia
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Maria M. Diogo
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
10
|
Kim W, Kim JH, Kong SY, Park MH, Sohn UD, Kim HJ. Comparison of ectopic gene expression methods in rat neural stem cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:23-30. [PMID: 23439859 PMCID: PMC3579101 DOI: 10.4196/kjpp.2013.17.1.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
Abstract
Neural stem cells (NSCs) have the ability to proliferate and differentiate into various types of cells that compose the nervous system. To study functions of genes in stem cell biology, genes or siRNAs need to be transfected. However, it is difficult to transfect ectopic genes into NSCs. Thus to identify the suitable method to achieve high transfection efficiency, we compared lipid transfection, electroporation, nucleofection and retroviral transduction. Among the methods that we tested, we found that nucleofection and retroviral transduction showed significantly increased transfection efficiency. In addition, with retroviral transduction of Ngn2 that is known to induce neurogenesis in various types of cells, we observed facilitated final cell division in rat NSCs. These data suggest that nucleofection and retroviral transduction provide high efficiency of gene delivery system to study functions of genes in rat NSCs.
Collapse
Affiliation(s)
- Woosuk Kim
- Laboratory of Stem Cell and Molecular Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 2012; 16:2592-610. [PMID: 22863662 PMCID: PMC4118228 DOI: 10.1111/j.1582-4934.2012.01607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed.
Collapse
|
12
|
Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 2012; 41:446-68. [PMID: 23099792 DOI: 10.1007/s10439-012-0678-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.
Collapse
|
13
|
Ratzka A, Kalve I, Özer M, Nobre A, Wesemann M, Jungnickel J, Köster-Patzlaff C, Baron O, Grothe C. The colayer method as an efficient way to genetically modify mesencephalic progenitor cells transplanted into 6-OHDA rat model of Parkinson's disease. Cell Transplant 2011; 21:749-62. [PMID: 21929871 DOI: 10.3727/096368911x586774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Exogenous cell replacement represents a potent treatment option for Parkinson's disease. However, the low survival rate of transplanted dopaminergic neurons (DA) calls for methodological improvements. Here we evaluated a method to combine transient genetic modification of neuronal progenitor cells with an optimized cell culture protocol prior to intrastriatal transplantation into 6-hydroxydopamine (6-OHDA) unilateral lesioned rats. Plasmid-based delivery of brain-derived neurotrophic factor (BDNF) increases the number of DA neurons, identified by tyrosine hydroxylase immunoreactivity (TH-ir), by 25% in vitro, compared to enhanced green fluorescence protein (EGFP)-transfected controls. However, the nucleofection itself, especially the cell detachment and reseeding procedure, decreases the TH-ir neuron number to 40% compared with nontransfected control cultures. To circumvent this drawback we established the colayer method, which contains a mix of nucleofected cells reseeded on top of an adherent sister culture in a ratio 1:3. In this setup TH-ir neuron number remains high and could be further increased by 25% after BDNF transfection. Comparison of both cell culture procedures (standard and colayer) after intrastriatal transplantation revealed a similar DA neuron survival as seen in vitro. Two weeks after grafting TH-ir neuron number was strongly reduced in animals receiving the standard EGFP-transfected cells (271 ± 62) compared to 1,723 ± 199 TH-ir neurons in the colayer group. In contrast to the in vitro results, no differences in the number of grafted TH-ir neurons were observed between BDNF, EGFP, and nontransfected colayer groups, neither 2 nor 13 weeks after transplantation. Likewise, amphetamine and apomorphine-induced rotational behavior improved similarly over time in all groups. Nevertheless, the colayer protocol provides an efficient way for neurotrophic factor release by transplanted progenitor cells and will help to study the effects of candidate factors on survival and integration of transplanted DA neurons.
Collapse
Affiliation(s)
- Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Enhanced collateral growth by double transplantation of gene-nucleofected fibroblasts in ischemic hindlimb of rats. PLoS One 2011; 6:e19192. [PMID: 21547081 PMCID: PMC3081850 DOI: 10.1371/journal.pone.0019192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/22/2011] [Indexed: 11/26/2022] Open
Abstract
Background Induction of neovascularization by releasing therapeutic growth factors is a promising application of cell-based gene therapy to treat ischemia-related problems. In the present study, we have developed a new strategy based on nucleofection with alternative solution and cuvette to promote collateral growth and re-establishment of circulation in ischemic limbs using double transplantation of gene nucleofected primary cultures of fibroblasts, which were isolated from rat receiving such therapy. Methods and Results Rat dermal fibroblasts were nucleofected ex vivo to release bFGF or VEGF165 in a hindlimb ischemia model in vivo. After femoral artery ligation, gene-modified cells were injected intramuscularly. One week post injection, local confined plasmid expression and transient distributions of the plasmids in other organs were detected by quantitative PCR. Quantitative micro-CT analyses showed improvements of vascularization in the ischemic zone (No. of collateral vessels via micro CT: 6.8±2.3 vs. 10.1±2.6; p<0.05). Moreover, improved collateral proliferation (BrdU incorporation: 0.48±0.05 vs. 0.57±0.05; p<0.05) and increase in blood perfusion (microspheres ratio: gastrocnemius: 0.41±0.10 vs. 0.50±0.11; p<0.05; soleus ratio: soleus: 0.42±0.08 vs. 0.60±0.08; p<0.01) in the lower hindlimb were also observed. Conclusions These results demonstrate the feasibility and effectiveness of double transplantation of gene nucleofected primary fibroblasts in producing growth factors and promoting the formation of collateral circulation in ischemic hindlimb, suggesting that isolation and preparation of gene nucleofected cells from individual accepting gene therapy may be an alternative strategy for treating limb ischemia related diseases.
Collapse
|
15
|
Pickard MR, Barraud P, Chari DM. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 2011; 32:2274-84. [PMID: 21193228 DOI: 10.1016/j.biomaterials.2010.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/01/2010] [Indexed: 01/18/2023]
Abstract
Multipotent neural precursor/stem cells (NPCs) are a major transplant population with key properties to promote repair in several neuropathological conditions. Magnetic nanoparticle (MNP)-based vector systems, in turn, offer a combination of key benefits for cell therapies including (i) safety (ii) delivery of therapeutic biomolecules (DNA/siRNA) enhanceable by 'magnetofection' approaches (iii) magnetic cell targeting of MNP-labelled cells to injury sites and (iv) non-invasive imaging of MNP-labelled transplant populations for cell tracking. However, the applications of the versatile MNP platform for NPC transplantation therapies have received limited attention so far. We have evaluated the potential of MNP vectors for gene transfer to NPCs using a neurosphere culture model system; we also assessed repeat transfection ("multifection") and repeat transfection plus applied magnetic field ("magneto-multifection") strategies [to enhance transfection efficiency]. We show for the first time that MNPs can safely mediate single/combinatorial gene delivery to NPCs. Multifection approaches significantly enhanced transfection with negligible toxicity; no adverse effects were observed on stem cell proliferation/differentiation. "Multifected" NPCs survived and differentiated in 3D neural tissue arrays post-transplantation. Our findings demonstrate that MNPs offer a simple and robust alternative to the viral vector systems currently used widely to transfect neural stem cells in neurobiology/neural transplantation research.
Collapse
Affiliation(s)
- Mark R Pickard
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | | | | |
Collapse
|
16
|
Astrocytic Responses to DNA Delivery Using Nucleofection. Neurochem Res 2010; 35:1771-9. [DOI: 10.1007/s11064-010-0243-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2010] [Indexed: 01/10/2023]
|
17
|
Esser AT, Smith KC, Gowrishankar T, Vasilkoski Z, Weaver JC. Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 2010; 98:2506-14. [PMID: 20513394 PMCID: PMC2877354 DOI: 10.1016/j.bpj.2010.02.035] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/22/2010] [Accepted: 02/12/2010] [Indexed: 01/04/2023] Open
Abstract
Conventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that contains representative organelles (nucleus, endoplasmic reticulum, mitochondria) and includes a dynamic EP model, which describes formation, expansion, contraction, and destruction for the plasma and all organelle membranes. We show that conventional EP provides transient electrical pathways into the cell, sufficient to create significant intracellular fields. This emerging intracellular electrical field is a secondary effect due to EP and can cause transmembrane voltages at the organelles, which are large enough and long enough to gate organelle channels, and even sufficient, at some field strengths, for the poration of organelle membranes. This suggests an alternative to nanosecond pulsed electric fields for intracellular manipulations.
Collapse
Affiliation(s)
- Axel T. Esser
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kyle C. Smith
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - T.R. Gowrishankar
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zlatko Vasilkoski
- Dana Research Center, Northeastern University, Boston, Massachusetts
| | - James C. Weaver
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
18
|
Nobre A, Kalve I, Cesnulevicius K, Ragancokova D, Rangancokova D, Ratzka A, Halfer N, Wesemann M, Krampfl K, Claus P, Grothe C. Characterization and differentiation potential of rat ventral mesencephalic neuronal progenitor cells immortalized with SV40 large T antigen. Cell Tissue Res 2010; 340:29-43. [PMID: 20177706 DOI: 10.1007/s00441-010-0933-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/19/2010] [Indexed: 01/01/2023]
Abstract
Neuronal progenitor cells (NPCs) possess high potential for use in regenerative medicine. To overcome their limited mitotic competence, various immortalization strategies have been applied that allow their prolonged maintenance and expansion in vitro. Such immortalized cells can be used for the design and discovery of new cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. We immortalized rat ventral mesencephalic NPCs by using SV40 large T antigen (SV40Tag). All cell clones displayed a two- to three-fold higher proliferation rate compared with the primary cells. In order to induce dopaminergic differentiation of generated cell clones, both glial-derived neurotrophic factor and di-butyryl cyclic adenosine monophosphate were applied. Treated cells were then characterized regarding the expression of dopaminergic lineage markers, differentiation of various cell populations, calcium imaging in the presence of kainate, and immunohistochemistry after intrastriatal transplantation. Treated cells displayed morphological maturation, and calcium imaging revealed neuronal properties in the presence of kainate. These cells also expressed low mRNA levels of the dopamine transporter and tyrosine hydroxylase (TH), although no TH-immunopositive neurons were found. Intrastriatal transplantation into the neurotoxin-lesioned rats did not induce further differentiation. As an alternative approach, we silenced SV40Tag with short interfering RNA, but this was not sufficient to trigger differentiation into dopaminergic neurons. Nevertheless, neuronal and glial cells were detected as shown by beta-tubulin type III and glial fibrillary acidic protein staining, respectively. SV40Tag cells are suitable for carrying out controlled genetic modifications as shown by overexpression of enhanced green fluorescence protein after efficient non-viral transfection.
Collapse
Affiliation(s)
- André Nobre
- Institute of Neuroanatomy, Hannover Medical School, 30625, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Yalvac ME, Ramazanoglu M, Gumru OZ, Sahin F, Palotás A, Rizvanov AA. Comparison and Optimisation of Transfection of Human Dental Follicle Cells, a Novel Source of Stem Cells, with Different Chemical Methods and Electro-poration. Neurochem Res 2009; 34:1272-7. [DOI: 10.1007/s11064-008-9905-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2008] [Indexed: 01/23/2023]
|
21
|
Hasadsri L, Kreuter J, Hattori H, Iwasaki T, George JM. Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem 2009; 284:6972-81. [PMID: 19129199 DOI: 10.1074/jbc.m805956200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An efficient route for delivering specific proteins and peptides into neurons could greatly accelerate the development of therapies for various diseases, especially those involving intracellular defects such as Parkinson disease. Here we report the novel use of polybutylcyanoacrylate nanoparticles for delivery of intact, functional proteins into neurons and neuronal cell lines. Uptake of these particles is primarily dependent on endocytosis via the low density lipoprotein receptor. The nanoparticles are rapidly turned over and display minimal toxicity to cultured neurons. Delivery of three different functional cargo proteins is demonstrated. When primary neuronal cultures are treated with recombinant Escherichia coli beta-galactosidase as nanoparticle cargo, persistent enzyme activity is measured beyond the period of nanoparticle degradation. Delivery of the small GTPase rhoG induces neurite outgrowth and differentiation in PC12 cells. Finally, a monoclonal antibody directed against synuclein is capable of interacting with endogenous alpha-synuclein in cultured neurons following delivery via nanoparticles. Polybutylcyanoacrylate nanoparticles are thus useful for intracellular protein delivery in vitro and have potential as carriers of therapeutic proteins for treatment of neuronal disorders in vivo.
Collapse
Affiliation(s)
- Linda Hasadsri
- Department of Cell and Developmental Biology, College of Medicine, Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
The lack of disease-modifying treatments currently available for not just some but most neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and even stroke, helps explain increasing interest in cell-based therapies. One key aim of such treatment is to replace neurons or glia lost as a result of the disease, with a view to the cells integrating functionally within the host tissue in order to reconstruct neural circuitry. Clinical trials using primary human fetal tissue as a cell source commenced in Parkinson's disease (PD) in the 1980s; currently, comparable neural transplantation trials in Huntington's disease are underway. Disappointing results of later controlled trials in PD illustrated not least the vital importance of methodological issues relating to the structure and implementation of clinical trials, and these issues will be considered here in more depth.
Collapse
|
23
|
Wang YH, Ho ML, Chang JK, Chu HC, Lai SC, Wang GJ. Microporation is a valuable transfection method for gene expression in human adipose tissue-derived stem cells. Mol Ther 2008; 17:302-8. [PMID: 19066595 DOI: 10.1038/mt.2008.267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cells are a promising resource for gene therapy. Adipose tissue-derived stem cells (ADSCs) offer advantages because of their abundance and ease of isolation. However, it is difficult to transduce genes into ADSCs by common transfection methods, especially nonviral methods. We report here the use of a new electroporation method, termed "microporation," to transduce plasmids into human ADSCs (hADSCs). We determined optimal conditions that led to efficient transfection of >76.1% of the microporated hADSCs with only minimal cell damage or cytotoxicity. We demonstrated the expression of both enhanced green fluorescent protein (EGFP) and luciferase from different promoters in microporated hADSCs. More important, the microporated hADSCs retained their multipotency and reporter gene expression was maintained for >2 weeks in vitro and in vivo. We further showed that a Tet-ON-inducible gene expression system could be microporated into hADSCs and that this system was functional following transplantation of the microporated cells into nude mice. Taken together, our data demonstrate that microporation allows a highly efficient transfection of hADSCs, without impairing their stem cell properties.
Collapse
Affiliation(s)
- Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Dieterlen MT, Wegner F, Schwarz SC, Milosevic J, Schneider B, Busch M, Römuss U, Brandt A, Storch A, Schwarz J. Non-viral gene transfer by nucleofection allows stable gene expression in human neural progenitor cells. J Neurosci Methods 2008; 178:15-23. [PMID: 19059435 DOI: 10.1016/j.jneumeth.2008.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 02/06/2023]
Abstract
Human neural progenitor cells (hNPCs) are a promising source to treat various neurodegenerative diseases. Potential applications are to use such cells for reprogramming to induce pluripotent stem cells or for secretion of proteins into the brain. These applications usually involve expression of heterologously expressed genes which is difficult to achieve in hNPCs. We tested several protocols for non-viral gene transfer and different promoters. Nucleofection and the cytomegalovirus enhancer/chicken beta-actin promoter allowed expression of foreign genes in hNPCs for up to 6 months. Treatment with the antibiotic G418 enabled us to select stably transfected cells which were subcloned and continued to express the NPC marker nestin. Differentiation of stably nucleofected hNPCs revealed that multipotency was maintained following long-term expansion of subcloned hNPCs. After differentiation for 3 weeks in vitro or in vivo following striatal transplantations transfected hNPCs expressed voltage-gated sodium channels suggesting the development of functional properties during neuronal maturation. In conclusion, stably nucleofected hNPCs can be isolated, subcloned, and expanded for up to 6 months without loss of their differentiation potential. These data provide a basis for future studies using hNPCs to investigate the neuronal differentiation in vivo after transplantation, the feasibility as a vector for gene (protein) therapy, and the induction of pluripotent stem cells.
Collapse
Affiliation(s)
- Maja-Theresa Dieterlen
- Department of Neurology, University of Leipzig, Liebigstrasse 22a, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Keravala A, Ormerod BK, Palmer TD, Calos MP. Long-term transgene expression in mouse neural progenitor cells modified with phiC31 integrase. J Neurosci Methods 2008; 173:299-305. [PMID: 18606184 PMCID: PMC2615000 DOI: 10.1016/j.jneumeth.2008.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/27/2022]
Abstract
Stem cells can potentially be utilized in combined gene/cell therapies for neural diseases. We examined the ability of the non-viral phiC31 integrase system to promote stable transgene expression in mouse neural progenitor cells (mNPCs). phiC31 integrase catalyzes the sequence-specific integration of attB-containing plasmids into pseudo attP sites in mammalian genomes, to produce long-term transgene expression. We achieved gene transfer by co-nucleofection of a plasmid carrying the luciferase marker gene and an attB site and a plasmid expressing integrase in mNPCs that had been generated in a neurosphere preparation. Luciferase expression was quantified in live cells for 8 weeks, revealing persistence of gene expression. Sequence-specific integration at a preferred pseudo attP site in the mouse genome was detected by using PCR. Furthermore, sustained transgene expression was demonstrated in genetically modified NPCs that were cultured in conditions that promoted either growth or differentiation into neurons and astrocytes. Our results demonstrate that the phiC31 integrase system produces stable transgene expression in adult mNPCs and their progeny and may be useful in strategies for combating neurodegenerative disorders.
Collapse
Affiliation(s)
- Annahita Keravala
- Department of Genetics, Stanford University School of Medicine, Stanford. CA 94305
| | - Brandi K. Ormerod
- Department of Neuroscience, Stanford University School of Medicine, Stanford. CA 94305
| | - Theo D. Palmer
- Department of Neuroscience, Stanford University School of Medicine, Stanford. CA 94305
| | - Michele P. Calos
- Department of Genetics, Stanford University School of Medicine, Stanford. CA 94305
| |
Collapse
|
26
|
Haile Y, Berski S, Dräger G, Nobre A, Stummeyer K, Gerardy-Schahn R, Grothe C. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials 2008; 29:1880-91. [DOI: 10.1016/j.biomaterials.2007.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 12/22/2007] [Indexed: 01/08/2023]
|
27
|
Abstract
PURPOSE OF REVIEW To review recent developments in the application of stem cells for transplantation therapies in neurodegenerative diseases. RECENT FINDINGS Stem cell transplantation has the potential to improve function by replacing cells lost to the disease and reconstructing elements of neural circuitry or by providing support for host cells (e.g. by secretion of trophic factors). Other mechanisms, such as modulation of the immune system by bone marrow stem cell transplantation, pertinent to conditions such as multiple sclerosis, are emerging as therapies but will not be discussed here. There have been substantial advances in our understanding of stem cell biology and some recent important advances in controlling their differentiated phenotype. Using stem cells to provide trophic support places less stringent requirements on the cells and this is the area in which many of the first clinical studies are taking place. SUMMARY There are real prospects of stem cell technology having a place in clinical management of neurodegenerative conditions, but directing the differentiation of stem cells towards the appropriate neural phenotype remains a challenge. This is a relatively new and rapidly evolving area, and caution should be applied when advising patients.
Collapse
Affiliation(s)
- Anne E Rosser
- Department of Neurology, School of Medicine, Cardiff University, Heath Park, UK.
| | | | | |
Collapse
|
28
|
Müller-Hartmann H, Faust N, Kazinski M, Kretzschmar T. High-throughput transfection and engineering of primary cells and cultured cell lines – an invaluable tool for research as well as drug development. Expert Opin Drug Discov 2007; 2:1453-65. [DOI: 10.1517/17460441.2.11.1453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Esser AT, Smith KC, Gowrishankar TR, Weaver JC. Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue. Technol Cancer Res Treat 2007; 6:261-74. [PMID: 17668933 DOI: 10.1177/153303460700600402] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Local and drug-free tissue treatment by irreversible electroporation (IRE) involves the creation of aqueous pores in a cell's plasma membrane (PM) and leads to non-thermal cell death by necrosis. To investigate explicit pore-based effects we use two-dimensional system models with different spatial scales. The first is a multicellular system model (spatial scale 100 mum) that has irregularly shaped cells, and quantitatively describes dynamic (creation and destruction, evolution in pore size) pore behavior at the PM. The second is a tissue model (spatial scale 200 mm) that is constructed from a unit cell and uses the asymptotic (fixed pore size) electroporation model. Both system models show that significant redistribution of fields and currents occurs through transient PM pores. Pore histograms for the multicellular model demonstrate the simultaneous presence of small and large pores during IRE pulses. The associated significant increase of PM permeability may prove to be essential to understanding how cell death by necrosis occurs. The averaged tissue conductivity in both models increases during IRE pulses because of electroporation. This leads to greater electrical dissipation (heating) and, thus, to larger temperature increases than suggested by tissue models with passive and static electrical properties.
Collapse
Affiliation(s)
- Axel T Esser
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-318, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
30
|
Opitz T, Scheffler B, Steinfarz B, Schmandt T, Brüstle O. Electrophysiological evaluation of engrafted stem cell-derived neurons. Nat Protoc 2007; 2:1603-13. [PMID: 17585301 DOI: 10.1038/nprot.2007.230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in the neural stem cell field have provided a wealth of methods for generating large amounts of purified neuronal precursor cells. It has become a question of paramount importance to determine whether these cells integrate and interact with established neural circuitry after engraftment. In principle, neurons have to fulfill three basic functions: receive incoming signals via synapses, compute and forward processed information to other neurons or effector cells. It is anticipated that functionally integrating stem cell-derived donor neurons perform accordingly. Here we provide protocols for the efficient electrophysiological evaluation of engrafted cells and highlight current limitations thereof.
Collapse
Affiliation(s)
- Thoralf Opitz
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn and Hertie Foundation, Bonn, Germany
| | | | | | | | | |
Collapse
|
31
|
A Cre-lox approach for transient transgene expression in neural precursor cells and long-term tracking of their progeny in vitro and in vivo. BMC DEVELOPMENTAL BIOLOGY 2007; 7:45. [PMID: 17504531 PMCID: PMC1885435 DOI: 10.1186/1471-213x-7-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/15/2007] [Indexed: 11/11/2022]
Abstract
Background Neural precursor cells (NPCs) can be isolated from various regions of the postnatal central nervous system (CNS). Manipulation of gene expression in these cells offers a promising strategy to manipulate their fate both in vitro and in vivo. In this study, we developed a technique that allows the transient manipulation of single/multiple gene expression in NPCs in vitro, and the long-term tracking of their progeny both in vitro and in vivo. Results In order to combine the advantages of transient transfection with the long-term tracking of the transfected cells progeny, we developed a new approach based on the cre-lox technology. We first established a fast and reliable protocol to isolate and culture NPCs as monolayer, from the spinal cord of neonatal transgenic Rosa26-YFP cre-reporter mice. These cells could be reliably transfected with single/multiple plasmids by nucleofection. Nucleofection with mono- or bicistronic plasmids containing the Cre recombinase gene resulted in efficient recombination and the long-term expression of the YFP-reporter gene. The transient cre-expression was non-toxic for the transfected cells and did not alter their intrinsic properties. Finally, we demonstrated that cre-transfected cells could be transplanted into the adult brain, where they maintained YFP expression permitting long-term tracking of their migration and differentiation. Conclusion This approach allows single/multiple genes to be manipulated in NPCs, while at the same time allowing long-term tracking of the transfected cells progeny to be analyzed both in vitro and in vivo.
Collapse
|
32
|
Grothe C, Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. ACTA ACUST UNITED AC 2007; 54:80-91. [PMID: 17229467 DOI: 10.1016/j.brainresrev.2006.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 12/24/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is a physiological relevant neurotrophic factor in the nigrostriatal system and hence a promising candidate for the establishment of alternative therapeutic strategies in Parkinson's disease. FGF-2 and its high-affinity receptors (FGFR) display an expression in the developing, postnatal, and adult substantia nigra (SN) and in the striatum. Exogenous application promoted survival, neurite outgrowth and protection from neurotoxin-induced death of dopaminergic (DA) neurons both in vitro and in vivo. In animal models of Parkinson's disease, co-transplantation of fetal DA cells with FGF-2 expressing cells increased survival and functional integration of the grafted DA neurons resulting in improved behavioral performance. Analyzing the physiological function of the endogenous FGF-2 system during development and after neurotoxin-induced lesion revealed for the DA neurons of the SNpc a dependence on FGFR3 signaling during development. In addition, in the absence of FGF-2 an increased number of DA neurons was found, whereas enhanced levels of FGF-2 resulted in a reduced DA cell density. Following neurotoxin-induced lesion of DA neurons, FGF-2-deleted mice displayed a higher extent of DA neuron death whereas in FGF-2 overexpressing mice more DA neurons were protected. According to the data, FGF-2 seems to promote DA neuron survival via FGFR3 during development, whereas absence of this ligand could be compensated by other members of the FGF family. In contrast, in the adult organism, FGF-2 cannot be compensated by other factors under lesion conditions suggesting a central role for this molecule in the nigrostriatal system.
Collapse
Affiliation(s)
- Claudia Grothe
- Department of Neuroanatomy, Hannover Medical School, OE 4140, Center for Systems Neuroscience Hannover (ZSN), Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|
33
|
Timmer M, Cesnulevicius K, Winkler C, Kolb J, Lipokatic-Takacs E, Jungnickel J, Grothe C. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci 2007; 27:459-71. [PMID: 17234579 PMCID: PMC6672785 DOI: 10.1523/jneurosci.4493-06.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
| | | | - Christian Winkler
- Neurology, Hannover Medical School, Center for Systems Neuroscience Hannover, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
34
|
Haile Y, Haastert K, Cesnulevicius K, Stummeyer K, Timmer M, Berski S, Dräger G, Gerardy-Schahn R, Grothe C. Culturing of glial and neuronal cells on polysialic acid. Biomaterials 2007; 28:1163-73. [PMID: 17123601 DOI: 10.1016/j.biomaterials.2006.10.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/30/2006] [Indexed: 12/16/2022]
Abstract
Although peripheral nerves exhibit regeneration capacities after transection injuries, the success of nerve repair depends crucially on the length of the gap. In addition to autologous nerve grafting as the conventional neurosurgical treatment to overcome long gaps, alternative strategies are needed. Numerous experimental studies have been undertaken to find the optimal material for production of artificial prostheses, which can be introduced as conduits between the nerve stumps. The current study follows the aim to establish polysialic acid (polySia), a homopolymer of alpha2,8-linked sialic acid residues, as a novel, biocompatible, and bioresorbable material for nerve tissue engineering. As a first step towards this goal, protocols for efficient coating of cell culture dishes with soluble polySia were established. In addition, primary nerve cells which are candidates for reconstructive therapies, including neonatal and adult Schwann cells, neural progenitor cells, spinal ganglionic neurons and motoneurons were cultured on polySia substrates. Cultures were evaluated with regard to cell survival and cell proliferation capacities. polySia turned out to be stable under cell culture conditions, and induced degradable and degradation products had no negative effects on cell cultures. Furthermore, polySia revealed its compatibility for several cell types derived from rat embryonic, postnatal and adult nervous tissue when used as a substrate.
Collapse
Affiliation(s)
- Y Haile
- Hannover Medical School, Department of Neuroanatomy, OE-4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zaragosi LE, Billon N, Ailhaud G, Dani C. Nucleofection is a valuable transfection method for transient and stable transgene expression in adipose tissue-derived stem cells. Stem Cells 2006; 25:790-7. [PMID: 17158239 DOI: 10.1634/stemcells.2006-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue-derived stem cells are a powerful tool for in vitro study of adult stem cell biology. So far, they have not been extensively used for gain or loss of function studies since they are resistant to most common transfection methods. Herein, we tested several classic transfection methods on human multipotent adipose tissue-derived stem (hMADS) cells. Our results showed that lipofectants and calcium phosphate were poorly efficient for transgene delivery in hMADS cells. In contrast, nucleofection, an electroporation-based method that is assumed to target plasmid DNA directly to the cell nucleus, led to a significant transient transgene expression in hMADS cells (up to 76% enhanced green fluorescent protein [EGFP]-positive cells were detected). Furthermore, after selection of hMADS cells that were nucleofected with a selectable plasmid coding for EGFP, stable EGFP expressing clones could be propagated in culture and efficiently induced to differentiate into EGFP-positive adipocytes and osteoblasts. Finally, we verified that nucleofected hMADS cells could produce a functional, transgene-encoded, secreted protein. To this aim, hMADS cells were nucleofected with a plasmid coding for leukemia inhibitory factor (LIF). This protein was detected at high concentrations in supernatants from pCAG-LIF transfected hMADS cells. Moreover, supernatants were able to maintain mouse embryonic stem cells' undifferentiated phenotype, indicating that hMADS cells could secrete a functional LIF protein. Taken together, our data demonstrate that nucleofection allows both transient and stable gene expression in adipose tissue-derived stem cells, without impairing their differentiation potential.
Collapse
Affiliation(s)
- Laure-Emmanuelle Zaragosi
- Institut de Recherche, Signalisation, Biologie du Développement et Cancer, CNRS UMR6543, Centre de Biochimie, Faculté des Sciences, Université Nice Sophia-Antipolis, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|