1
|
Deng M, Luo R, Wang H, Abuduwaili A, Jiang D, Zhang X, Xu L, Zhang X, Niu Z, Su J, Xu C, Hou Y. Loss of SWI/SNF complex expression (SMARCA4, SMARCA2, SMARCB1, ARID1A) is associated with dMMR in primary adenocarcinoma of jejunum and ileum: A clinicopathological and molecular analysis based on the Chinese population. Pathol Res Pract 2025; 269:155891. [PMID: 40101550 DOI: 10.1016/j.prp.2025.155891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/31/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE The SWI/SNF complex is an important chromatin remodeling complex that has been reported in various tumors. To date, there have been no reports on the subunits of this complex in primary small bowel adenocarcinoma (PSBA). METHODS Hematoxylin & Eosin (H&E) staining slides were reviewed, and the expression of MMR protein, BRM (SMARCA2), BRG1 (SMARCA4), INI1 (SMARCB1), and ARID1A proteins was detected. Molecular genetic testing was performed utilizing the amplification-refractory mutation system (ARMS) and high-throughput sequencing technology. RESULTS In this cohort of 58 cases, there was a trend toward a female predominance in ARID1A loss (P = 0.084), and BRM (SMARCA2) loss was associated with lymphatic invasion (P = 0.043). A significant positive correlation was observed between ARID1A loss and dMMR (P = 0.021), and BRG1 (SMARCA4) loss was more prevalent in poorly differentiated PSBA (P = 0.023). ARID1A loss was positively correlated with PIK3CA gene mutation (r = 0.551, P < 0.001), and loss of MMR protein expression was also positively correlated with PIK3CA gene mutation (r = 0.354, P = 0.006). Additionally, BRM (SMARCA2) loss showed a significant positive correlation with NRAS gene mutation (r = 0.293, P = 0.025) and a significant negative correlation with KRAS gene mutation (r = -0.281, P = 0.033). Univariate analysis indicated a trend toward poor prognosis with BRM (SMARCA2) loss (P = 0.097). CONCLUSION This study represents the initial description of loss of the SWI/SNF complex expression in PSBA, which is rare and primarily originates in the jejunum and ileum. Further investigations are warranted to elucidate potential targets of PIK3CA inhibitors for dMMR PSBA and ARID1A loss of expression in PSBA.
Collapse
Affiliation(s)
- Minying Deng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huimei Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ayizimugu Abuduwaili
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinyi Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiping Niu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Janjigian YY, Cecchini M, Shitara K, Enzinger PC, Wainberg ZA, Chau I, Satoh T, Lee J, Nebozhyn M, Loboda A, Kobie J, Vajdi A, Shih CS, Cristescu R, Cao ZA. Genomic Landscape of Late-Stage Gastric Cancer: Analysis From KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Studies. JCO Precis Oncol 2025; 9:e2400456. [PMID: 40117530 PMCID: PMC11949223 DOI: 10.1200/po-24-00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 03/23/2025] Open
Abstract
PURPOSE The Cancer Genome Atlas (TCGA) classifies gastric cancer (GC) into four molecular subtypes: Epstein-Barr virus-positive, microsatellite instability-high (MSI-H), genomically stable (GS), and chromosomal instability (CIN). This exploratory analysis compared the genomic landscape of late-stage GC from KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 studies with early-stage GC from TCGA and evaluated the genomic characteristics of late-stage GC in patients of Western and Asian origin. MATERIALS AND METHODS Using pretreatment tumor samples, bulk DNA was analyzed via whole-exome sequencing (WES; KEYNOTE-059/KEYNOTE-061) and FoundationOneCDx (KEYNOTE-062) to determine TCGA-defined molecular subtypes (only MSI-H is determinable from FoundationOneCDx), genomic alterations, homologous recombination deficiency (HRD), and tumor mutational burden (TMB); gene expression signatures were analyzed using RNA sequencing. RESULTS When comparing KEYNOTE-059/061/062 combined WES and FoundationOneCDx data with data from TCGA, the MSI-H subtype prevalence was numerically lower in patients of Western (5% v 22%) and Asian origin (5% v 19%). When comparing KEYNOTE-059/061 WES data with the TCGA data set, the GS subtype prevalence was numerically higher (36% v 21%) in patients of Western or Asian origin. Among subtypes in KEYNOTE-059/061, HRD scores and TMB trended highest in CIN and MSI-H subtypes, respectively. TP53 mutation was the most prevalent genomic characteristic per KEYNOTE-059/061/062 combined analysis in patients of Western or Asian origin. Gene expression signature distributions were generally similar between patients of Western and Asian origin. CONCLUSION Numerical differences in the prevalence of MSI-H and GS subtypes were observed between early-stage and late-stage GC. Genomic characteristics of late-stage GC were generally similar between patients of Western and Asian origin.
Collapse
Affiliation(s)
- Yelena Y. Janjigian
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | | | - Kohei Shitara
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | - Ian Chau
- The Royal Marsden NHS Foundation Trust, The Royal Marsden–Sutton, Surrey, United Kingdom
| | - Taroh Satoh
- Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jeeyun Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Afzal H, Shaukat A, Ul Haq MZ, Khaliq N, Zahid M, Shakeel L, Wasay Zuberi MA, Akilimali A. Serum metabolic profiling analysis of chronic gastritis and gastric cancer by untargeted metabolomics. Ann Med Surg (Lond) 2025; 87:583-597. [PMID: 40110261 PMCID: PMC11918594 DOI: 10.1097/ms9.0000000000002977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/12/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic gastritis (CG), particularly when associated with Helicobacter pylori (H. pylori) infection, is a significant precursor to gastric cancer (GC), a leading cause of cancer-related deaths worldwide. The persistent inflammation in CG, driven by factors such as H. pylori, induces oxidative stress and DNA damage in gastric epithelial cells, which can lead to malignant transformation. Atrophic gastritis, a form of CG, can be categorized into autoimmune and H. pylori-associated types, both of which increase the risk of GC development, particularly when compounded by external factors like smoking and dietary habits. This manuscript explores the pathophysiological mechanisms underlying CG and its progression to GC, highlighting the critical role of metabolomics in advancing our understanding of these processes. Metabolomics, the comprehensive study of metabolites, offers a novel approach to identifying biomarkers that could facilitate early detection and improve the accuracy of GC diagnosis and prognosis. The analysis of metabolic alterations, particularly in glucose, lipid, and amino acid metabolism, reveals distinct biochemical pathways associated with the progression from benign gastritis to malignancy. Integrating metabolomic profiling with traditional diagnostic methods can revolutionize GC management, enabling more personalized treatment strategies and improving clinical outcomes. However, significant challenges remain, including the need to validate biomarkers across diverse populations and standardize metabolomic techniques. Future research should address these challenges to fully realize the potential of metabolomics in early GC detection and treatment, ultimately aiming to reduce the global burden of this deadly disease.
Collapse
Affiliation(s)
- Hadiya Afzal
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ayesha Shaukat
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Zain Ul Haq
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Nawal Khaliq
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Maha Zahid
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Laiba Shakeel
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Aymar Akilimali
- Department of Research, Medical Research Circle (MedReC), Goma, Democratic Republic of the Congo
| |
Collapse
|
4
|
Jiang YK, Li W, Qiu YY, Yue M. Advances in targeted therapy for human epidermal growth factor receptor 2 positive in advanced gastric cancer. World J Gastrointest Oncol 2024; 16:2318-2334. [PMID: 38994153 PMCID: PMC11236256 DOI: 10.4251/wjgo.v16.i6.2318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.
Collapse
Affiliation(s)
- Ya-Kun Jiang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Wei Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Meng Yue
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
5
|
Hwang I, Cho Y, Kang SY, Kim DG, Ahn S, Lee J, Kim KM. Comparative analysis of ARID1A mutations with mRNA levels and protein expression in gastric carcinoma. Pathol Res Pract 2024; 255:155063. [PMID: 38324965 DOI: 10.1016/j.prp.2023.155063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 02/09/2024]
Abstract
The ARID1A gene is pivotal in chromatin remodeling and genomic integrity and is frequently mutated in various cancer types. ARID1A mutation is the second most frequently mutated tumor suppressor gene and has been suggested as a predictor of immunotherapeutic responsiveness in gastric carcinoma (GC). Despite its significance, the relationship among ARID1A somatic mutations, RNA expression levels, and protein expression remains unclear, particularly in GC. For this purpose, we performed comparative study in two cohorts. Cohort 1 used next-generation sequencing (NGS) to identify 112 GC cases with ARID1A mutations. These cases were compared with ARID1A immunohistochemistry (IHC) results. Cohort 2 employed microarray gene expression data to assess ARID1A RNA levels and compare them with ARID1A IHC results. In Cohort 1, 38.4% of ARID1A-mutated GC exhibited a complete loss of ARID1A protein when assessed by IHC, whereas the remaining 61.6% displayed intact ARID1A. Discordance between NGS and IHC results was not associated with specific mutation sites, variant classifications, or variant allele frequencies. In Cohort 2, 24.1% of the patients demonstrated a loss of ARID1A protein, and there was no significant difference in mRNA levels between the ARID1A protein-intact and -loss groups. Our study revealed a substantial discrepancy between ARID1A mutations detected using NGS and protein expression assessed using IHC in GC. Moreover, ARID1A mRNA expression levels did not correlate well with protein expression. These findings highlighted the complexity of ARID1A expression in GC.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yunjoo Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Deok Geun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Baranov E, Nowak JA. Pathologic Evaluation of Therapeutic Biomarkers in Colorectal Adenocarcinoma. Surg Pathol Clin 2023; 16:635-650. [PMID: 37863556 DOI: 10.1016/j.path.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Molecular testing is an essential component of the pathologic evaluation of colorectal carcinoma providing diagnostic, prognostic, and predictive therapeutic information. Mismatch repair status evaluation is required for all tumors. Advanced and metastatic tumors also require determination of tumor mutational burden, KRAS, NRAS, and BRAF mutation status, ERBB2 amplification status, and NTRK and RET gene rearrangement status to guide therapy. Multiple assays, including immunohistochemistry, microsatellite instability testing, MLH1 promoter methylation, and next-generation sequencing, are typically needed. Pathologists must be aware of these requirements to optimally triage tissue. Advances in colorectal cancer molecular diagnostics will continue to drive refinements in colorectal cancer personalized therapy.
Collapse
Affiliation(s)
- Esther Baranov
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Zhang Z, Li Q, Sun S, Ye J, Li Z, Cui Z, Liu Q, Zhang Y, Xiong S, Zhang S. Prognostic and immune infiltration significance of ARID1A in TCGA molecular subtypes of gastric adenocarcinoma. Cancer Med 2023; 12:16716-16733. [PMID: 37366273 PMCID: PMC10501255 DOI: 10.1002/cam4.6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/19/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND AT-rich interaction domain 1A (ARID1A) is an essential subunit of the switch/sucrose non-fermentable chromatin remodeling complex and is considered to be a tumor suppressor. The Cancer Genome Atlas (TCGA) molecular classification has deepened our understanding of gastric cancer at the molecular level. This study explored the significance of ARID1A expression in TCGA subtypes of gastric adenocarcinoma. METHODS We collected 1248 postoperative patients with gastric adenocarcinoma, constructed tissue microarrays, performed immunohistochemistry for ARID1A, and obtained correlations between ARID1A and clinicopathological variables. We then carried out the prognostic analysis of ARID1A in TCGA subtypes. Finally, we screened patients by random sampling and propensity score matching method and performed multiplex immunofluorescence to explore the effects of ARID1A on CD4, CD8, and PD-L1 expression in TCGA subtypes. RESULTS Seven variables independently associated with ARID1A were screened out: mismatch repair proteins, PD-L1, T stage, differentiation status, p53, E-cadherin, and EBER. The independent prognostic variables in the genomically stable (GS) subtype were N stage, M stage, T stage, chemotherapy, size, and ARID1A. PD-L1 expression was higher in the ARID1A negative group than in the ARID1A positive group in all TCGA subgroups. CD4 showed higher expression in the ARID1A negative group in most subtypes, while CD8 did not show the difference in most subtypes. When ARID1A was negative, PD-L1 expression was positively correlated with CD4/CD8 expression; while when ARID1A was positive, this correlation disappeared. CONCLUSIONS The negative expression of ARID1A occurred more frequently in the Epstein-Barr virus and microsatellite instability subtypes and was an independent adverse prognostic factor in the GS subtype. In the TCGA subtypes, ARID1A negative expression caused increased CD4 and PD-L1 expression, whereas CD8 expression appeared independent of ARID1A. The expression of CD4/CD8 induced by ARID1A negativity was accompanied by an increase in PD-L1 expression.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Weihai Municipal HospitalShandong UniversityWeihaiChina
- Department of OncologyShouguang People's HospitalWeifangChina
| | - Qiujing Li
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Shanshan Sun
- Department of Oncology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Jing Ye
- Binzhou Medical UniversityYantaiChina
| | - Zhe Li
- Weifang Medical CollegeWeifangChina
| | - Zhengguo Cui
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesFukuiJapan
| | - Qian Liu
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Yujie Zhang
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | | | - Shukun Zhang
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| |
Collapse
|
8
|
Lang-Schwarz C, Vieth M, Dregelies T, Sterlacci W. Frequency of Her2-low in colorectal cancer and its relations with the tumor microenvironment. Pathol Res Pract 2023; 244:154417. [PMID: 36947983 DOI: 10.1016/j.prp.2023.154417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND To date, little is known regarding human epithelial growth factor receptor (HER2) low-expressing colorectal cancer (CRC). Due to promising rising therapies with HER2-antibody-drug conjugates we aimed to analyze the frequency of HER2-low in patients with CRC. Additionally we characterized the clinicopathologic background of this group and its potential relationship with the tumor microenvironment represented by budding and tumor infiltrating lymphocytes (TILs). METHODS 319 patients with CRC, stages I-IV, were enrolled. HER2-immunohistochemistry (IHC) as well as fluorescence in situ hybridization (FISH) were performed on tissue microarrays. IHC was evaluated semiquantitatively and software-assisted using the HERACLES Diagnostic Criteria for CRC. HER2-low was defined as IHC 1 + or 2 +/FISH negative. HER2-IHC results were compared with budding, TILs and their combinations. RESULTS The HER2 low-expressing subset represented almost one half of all CRC (47.1 %). Assessment was highly reproducible with different methods. HER2-low cases were significantly more often lower T-, N-, and tumor stage and had less L1 compared with HER2-0. Additionally, they showed more often TILs > 5 % (p = 0.001). The difference between HER2-0 and HER2-low was highly significant between the four budding/TILs-groups (p < 0.001). Cases with low budding/high TILs were more often HER2-low. The highest difference was seen between the low budding/high TILs-group and the low budding/low TILs-group (p < 0.001). CONCLUSIONS HER2-low expression in CRC is frequent and involves nearly one half of all patients. We could show a relationsship between HER2-low expression and the tumor microenvironment. Special attention should be paid to the low budding/high TILs group in future research.
Collapse
Affiliation(s)
- Corinna Lang-Schwarz
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Preuschwitzer Str. 101, 95445 Bayreuth, Germany.
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Preuschwitzer Str. 101, 95445 Bayreuth, Germany
| | - Theresa Dregelies
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Preuschwitzer Str. 101, 95445 Bayreuth, Germany
| | - William Sterlacci
- Institute of Pathology, Klinikum Bayreuth GmbH, Friedrich-Alexander-University Erlangen-Nuremberg, Preuschwitzer Str. 101, 95445 Bayreuth, Germany
| |
Collapse
|
9
|
Paydary K, Reizine N, Catenacci DVT. Immune-Checkpoint Inhibition in the Treatment of Gastro-Esophageal Cancer: A Closer Look at the Emerging Evidence. Cancers (Basel) 2021; 13:5929. [PMID: 34885039 PMCID: PMC8656762 DOI: 10.3390/cancers13235929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022] Open
Abstract
To date, several trials have evaluated the safety and efficacy of immune-checkpoint inhibitors (ICI) for the treatment of gastroesophageal cancers (GEC). In the US, ICIs have established indications for second-line treatment of microsatellite unstable tumors, while their use in third-line settings was recently withdrawn. Notably, the use of ICIs for first-line therapy of GEC is rapidly evolving, which currently includes high PD-L1 expressing tumors, irrespective of HER2 status, and in the adjuvant setting after neoadjuvant chemoradiotherapy in select patients. In this article, we review the results of studies that have evaluated the utility of ICI in the third-line, second-line, first-line, and peri-operative treatment settings of GECs. Considerations should be made before making any cross-trial comparisons since these trials vary in chemotherapy backbone, anatomical and histological eligibility, biomarker assessment, PD-L1 diagnostic antibodies, and definition of PD-L1 positivity. Regardless, the totality of the data suggest that first-line ICI use may most benefit GEC patients with high PD-L1 combined positivity score (CPS) ≥5 or ≥10, irrespective of histology or anatomy. Moreover, although PD-L1 by CPS has a good negative predictive value for significant benefit from ICIs, it has a low positive predictive value. Therefore, there is a pressing need to identify better biomarkers to predict benefit from ICIs among these patients.
Collapse
Affiliation(s)
| | | | - Daniel V. T. Catenacci
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL 60637, USA; (K.P.); (N.R.)
| |
Collapse
|
10
|
Wang J, Shao X, Liu Y, Shi R, Yang B, Xiao J, Liu Y, Qu X, Li Z. Mutations of key driver genes in gastric cancer metastasis risk: a systematic review and meta-analysis. Expert Rev Mol Diagn 2021; 21:963-972. [PMID: 34196586 DOI: 10.1080/14737159.2021.1946394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Associations between gene mutations and metastasis in gastric cancer (GC) remain contradictory, resulting in the inaccurate estimation of the magnitude of the risk associated with specific genotypes.Methods: In this study, we first screened out four key driver genes (TP53, PIK3CA, APC and ARID1A) by jointly analyzing the mutation levels and searching the literature for genes associated with GC metastasis. We then performed a meta-analysis to demonstrate the relationship between these key driver gene mutations and GC metastasis, including lymphatic and distance metastasis.Results: We found out four key driver genes (TP53, PIK3CA, APC and ARID1A), associated with risk of GC metastasis. The results showed that TP53 (OR 1.39, 95% CI 1.12-1.72) and APC mutations (OR 0.58, 95% CI 0.38-0.89) were associated with lymph node metastasis and distant metastasis in GC. And TP53 mutations (OR 1.65, 95% CI 1.25-2.18) were significantly related to GC metastasis in the Asian population. APC mutations (OR 0.54, 95% CI 0.29-1.00) were also related to GC metastasis in the European and American populations. There was no significant association with GC metastasis in PIK3CA or ARID1A mutations.Expert opinion:Mutations of TP53 and APC play important roles in lymph node metastasis and distant metastasis of GC and may be potential important biomarkers of progression and therapeutic targets. These observations should be further prospectively verified.
Collapse
Affiliation(s)
- Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xinye Shao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Ruichuan Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Numakura S, Uozaki H. Low MLL2 Protein Expression Is Associated With Fibrosis in Early Stage Gastric Cancer. In Vivo 2021; 35:603-609. [PMID: 33402515 DOI: 10.21873/invivo.12297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Myeloid/lymphoid or mixed lineage leukemia 2 (MLL2) gene is mutated in gastric cancer, with most resulting in inactivated proteins. In this study, we examined the expression of MLL2 protein in gastric cancers. PATIENTS AND METHODS The expression of MLL2 protein in cancer cell nuclei was studied by immunohistochemistry in tissue microarrays of 529 human gastric cancers. MLL2 expression was classified into low and high expression from the point of zygosity, and its relationships with mismatch repair protein expression and clinicopathological features were examined. RESULTS Low expression of MLL2 was associated with younger age, MSH6, and early cancers. MLL2-low pT1a cancers were associated with fibrosis, especially ulcer scars, and in 62.5% of them there was no direct contact between carcinoma and fibrosis. CONCLUSION There is potentially an association between low expression of MLL2 protein and gastric malignancy from chronic fibrosis.
Collapse
Affiliation(s)
- Satoe Numakura
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroshi Uozaki
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Lee M, Jain P, Wang F, Ma PC, Borczuk A, Halmos B. MET alterations and their impact on the future of non-small cell lung cancer (NSCLC) targeted therapies. Expert Opin Ther Targets 2021; 25:249-268. [PMID: 33945380 DOI: 10.1080/14728222.2021.1925648] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The MET gene and its pathway normally plays a crucial role in cell homeostasis, motility, and apoptosis. However, when the MET gene is altered, there is an imbalance toward cell proliferation and invasion commonly seen in numerous different types of cancers. The heterogeneous group of MET alterations that includes MET amplification, MET exon 14 skipping mutation, and MET fusions has been difficult to diagnose and treat. Currently, treatments are focused on tyrosine kinase inhibitors but now there is emerging data on novel MET-targeted therapies including monoclonal antibodies and antibody-drug conjugates that have emerged.Areas covered: We introduce new emerging data on MET alterations in non-small cell lung cancer (NSCLC) that has contributed to advances in MET targeted therapeutics. We offer our perspective and examine new information on the mechanisms of the MET alterations in this review.Expert opinion: Given the trends currently involving the targeting of MET altered malignancies, there will most likely be a continued rapid expansion of testing, novel tyrosine kinase inhibitors and potent antibody approaches. Combination treatments will be necessary to optimize management of advanced and early disease.
Collapse
Affiliation(s)
- Matthew Lee
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Prantesh Jain
- Division of Medical Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Feng Wang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick C Ma
- Penn State CancerInstitute, PennState College of Medicine, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Alain Borczuk
- Department of Pathology, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
13
|
Wang R, Chen M, Ye X, Poon K. Role and potential clinical utility of ARID1A in gastrointestinal malignancy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108360. [PMID: 34083049 DOI: 10.1016/j.mrrev.2020.108360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
ARID1A (AT-rich interactive domain 1A) is a newly discovered tumor suppressor gene, and its encoded product is an important component of the SWI/SNF chromatin remodeling complex. ARID1A plays an important role in cell proliferation, invasion and metastasis, apoptosis, cell cycle regulation, epithelial mesenchymal transition, and the regulation of other of biological behaviors. Recently, ARID1A mutations have been increasingly reported in esophageal adenocarcinoma, gastric cancer, colorectal cancer, hepatocellular carcinoma, cholangiocarcinoma, pancreatic cancer, and other malignant tumors of the digestive system. This article reviews the relationship between ARID1A mutation and the molecular mechanisms of carcinogenesis, including microsatellite instability and the PI3K/ATK signaling pathway, and relates these mechanisms to the prognostic assessment of digestive malignancy. Further, this review describes the potential for molecular pathologic epidemiology (MPE) to provide new insights into environment-tumor-host interactions.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Mei Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Xiaojun Ye
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| | - Karen Poon
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| |
Collapse
|
14
|
Nowak KM, Chetty R. SWI/SNF-deficient cancers of the Gastroenteropancreatic tract: an in-depth review of the literature and pathology. Semin Diagn Pathol 2020; 38:195-198. [PMID: 33288347 DOI: 10.1053/j.semdp.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
The SWItch Sucrose non-fermentable (SWI/SNF) complex is a large, multi-subunit ATP-dependent nucleosome remodeling complex that acts as a tumor suppressor by modulating transcription. Mutations of SWI/SNF subunits have been described in relation to developmental disorders, hereditary SWI/SNF deficiency syndromes, as well as malignancies. In this review we summarize the current literature in regards to SWI/SNF-deficient tumors of the luminal gastrointestinal tract (GIT) and pancreas. As a group they range from moderately to undifferentiated tumors composed of monotonous anaplastic cells, prominent macronucleoli and a variable rhabdoid cell component. Deficiency of a SWI/SNF subunit is typified by complete loss of nuclear staining by immunohistochemistry for respective subunit.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Division of Anatomical Pathology, Laboratory Medicine Programme, University Health Network, Toronto, Canada
| | - Runjan Chetty
- Department of Histopathology, Brighton and Sussex University Hospitals, Brighton; United Kingdom and Deciphex Ltd, Ireland.
| |
Collapse
|
15
|
Catenacci DVT, Moya S, Lomnicki S, Chase LM, Peterson BF, Reizine N, Alpert L, Setia N, Xiao SY, Hart J, Siddiqui UD, Hogarth DK, Eng OS, Turaga K, Roggin K, Posner MC, Chang P, Narula S, Rampurwala M, Ji Y, Karrison T, Liao CY, Polite BN, Kindler HL. Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II Study Evaluating an Individualized Treatment Strategy for Metastatic Disease. Cancer Discov 2020; 11:308-325. [PMID: 33234578 DOI: 10.1158/2159-8290.cd-20-1408] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
The one-year and median overall survival (mOS) rates of advanced gastroesophageal adenocarcinomas (GEA) are ∼50% and <12 months, respectively. Baseline spatial and temporal molecular heterogeneity of targetable alterations may be a cause of failure of targeted/immunooncologic therapies. This heterogeneity, coupled with infrequent incidence of some biomarkers, has resulted in stalled therapeutic progress. We hypothesized that a personalized treatment strategy, applied at first diagnosis then serially over up to three treatment lines using monoclonal antibodies combined with optimally sequenced chemotherapy, could contend with these hurdles. This was tested using a novel clinical expansion-platform type II design with a survival primary endpoint. Of 68 patients by intention-to-treat, the one-year survival rate was 66% and mOS was 15.7 months, meeting the primary efficacy endpoint (one-sided P = 0.0024). First-line response rate (74%), disease control rate (99%), and median progression-free survival (8.2 months) were superior to historical controls. The PANGEA strategy led to improved outcomes warranting a larger randomized study. SIGNIFICANCE: This study highlights excellent outcomes achieved by individually optimizing chemotherapy, biomarker profiling, and matching of targeted therapies at baseline and over time for GEA. Testing a predefined treatment strategy resulted in improved outcomes versus historical controls. Therapeutic resistance observed in correlative analyses suggests that dual targeted inhibition may be beneficial.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Daniel V T Catenacci
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois.
| | - Stephanie Moya
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| | - Samantha Lomnicki
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| | - Leah M Chase
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| | - Bryan F Peterson
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| | - Natalie Reizine
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| | - Lindsay Alpert
- The University of Chicago, Department of Pathology, Chicago, Illinois
| | - Namrata Setia
- The University of Chicago, Department of Pathology, Chicago, Illinois
| | - Shu-Yuan Xiao
- The University of Chicago, Department of Pathology, Chicago, Illinois
| | - John Hart
- The University of Chicago, Department of Pathology, Chicago, Illinois
| | - Uzma D Siddiqui
- The University of Chicago, Department of Medicine, Center for Endoscopic Research and Therapeutics (CERT), Chicago, Illinois
| | - D Kyle Hogarth
- The University of Chicago, Department of Medicine, Section of Pulmonology, Chicago, Illinois
| | - Oliver S Eng
- The University of Chicago, Department of Surgery, Chicago, Illinois
| | - Kiran Turaga
- The University of Chicago, Department of Surgery, Chicago, Illinois
| | - Kevin Roggin
- The University of Chicago, Department of Surgery, Chicago, Illinois
| | | | - Paul Chang
- The University of Chicago, Department of Radiology, Chicago, Illinois
| | | | | | - Yuan Ji
- The University of Chicago, Department of Public Health Sciences, Chicago, Illinois
| | - Theodore Karrison
- The University of Chicago, Department of Public Health Sciences, Chicago, Illinois
| | - Chih-Yi Liao
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| | - Blase N Polite
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| | - Hedy L Kindler
- The University of Chicago, Section of Hematology/Oncology, Department of Medicine, Chicago, Illinois
| |
Collapse
|
16
|
Reizine N, Peterson B, Moya S, Wang Y, Tan YHCYH, Eng OS, Bilimoria M, Lengyel E, Turaga K, Catenacci DVT. Complete Response in a Patient With Chemorefractory EGFR-Amplified, PD-L1-Positive Metastatic Gastric Cancer Treated By Dual Anti-EGFR and Anti-PD-1 Monoclonal Antibody Therapy. JCO Precis Oncol 2020; 4:2000239. [PMID: 33215053 DOI: 10.1200/po.20.00239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | | | - Yan Wang
- University of Chicago, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
17
|
Catenacci DV, Rasco D, Lee J, Rha SY, Lee KW, Bang YJ, Bendell J, Enzinger P, Marina N, Xiang H, Deng W, Powers J, Wainberg ZA. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients With Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma. J Clin Oncol 2020; 38:2418-2426. [PMID: 32167861 PMCID: PMC7367551 DOI: 10.1200/jco.19.01834] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To evaluate the safety, pharmacokinetics, and preliminary activity of bemarituzumab in patients with FGFR2b-overexpressing gastric and gastroesophageal junction adenocarcinoma (GEA). PATIENTS AND METHODS FPA144-001 was a phase I, open-label, multicenter trial consisting of the following 3 parts: part 1a involved dose escalation in patients with recurrent solid tumors at doses ranging from 0.3 to 15 mg/kg; part 1b involved dose escalation in patients with advanced-stage GEA; and part 2 involved dose expansion in patients with advanced-stage GEA that overexpressed FGFR2b at various levels (4 cohorts; high, medium, low, and no FGFR2b overexpression) and 1 cohort of patients with FGFR2b-overexpressing advanced-stage bladder cancer. RESULTS Seventy-nine patients were enrolled; 19 were enrolled in part 1a, 8 in part 1b, and 52 in part 2. No dose-limiting toxicities were reported, and the recommended dose was identified as 15 mg/kg every 2 weeks based on safety, tolerability, pharmacokinetic parameters, and clinical activity. The most frequent treatment-related adverse events (TRAEs) were fatigue (17.7%), nausea (11.4%), and dry eye (10.1%). Grade 3 TRAEs included nausea (2 patients) and anemia, neutropenia, increased AST, increased alkaline phosphatase, vomiting, and an infusion reaction (1 patient each). Three (10.7%) of 28 patients assigned to a cohort receiving a dose of ≥ 10 mg/kg every 2 weeks for ≥ 70 days reported reversible grade 2 corneal TRAEs. No TRAEs of grade ≥ 4 were reported. Five (17.9%; 95% CI, 6.1% to 36.9%) of 28 patients with high FGFR2b-overexpressing GEA had a confirmed partial response. CONCLUSION Overall, bemarituzumab seems to be well tolerated and demonstrated single-agent activity as late-line therapy in patients with advanced-stage GEA. Bemarituzumab is currently being evaluated in combination with chemotherapy in a phase III trial as front-line therapy for patients with high FGFR2b-overexpressing advanced-stage GEA.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Female
- Humans
- Male
- Middle Aged
- Receptor, Fibroblast Growth Factor, Type 2/immunology
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
Collapse
Affiliation(s)
| | - Drew Rasco
- The START Center for Cancer Care, San Antonio, TX
| | - Jeeyun Lee
- Samsung Medical Center, Seoul, South Korea
| | - Sun Young Rha
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Keun-Wook Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yung Jue Bang
- Seoul National University College of Medicine, Seoul, South Korea
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN
| | | | | | - Hong Xiang
- Five Prime Therapeutics, South San Francisco, CA
| | - Wei Deng
- Five Prime Therapeutics, South San Francisco, CA
| | | | | |
Collapse
|
18
|
Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A. MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 2020; 17:569-587. [PMID: 32514147 DOI: 10.1038/s41571-020-0377-z] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Attempts to develop MET-targeted therapies have historically focused on MET-expressing cancers, with limited success. Thus, MET expression in the absence of a genomic marker of MET dependence is a poor predictor of benefit from MET-targeted therapy. However, owing to the development of more sensitive methods of detecting genomic alterations, high-level MET amplification and activating MET mutations or fusions are all now known to be drivers of oncogenesis. MET mutations include those affecting the kinase or extracellular domains and those that result in exon 14 skipping. The activity of MET tyrosine kinase inhibitors varies by MET alteration category. The likelihood of benefit from MET-targeted therapies increases with increasing levels of MET amplification, although no consensus exists on the optimal diagnostic cut-off point for MET copy number gains identified using fluorescence in situ hybridization and, in particular, next-generation sequencing. Several agents targeting exon 14 skipping alterations are currently in clinical development, with promising data available from early-phase trials. By contrast, the therapeutic implications of MET fusions remain underexplored. Here we summarize and evaluate the utility of various diagnostic techniques and the roles of different classes of MET-targeted therapies in cancers with MET amplification, mutation and fusion, and MET overexpression.
Collapse
Affiliation(s)
- Robin Guo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jia Luo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
19
|
Liu J, Wang H, Liao X. MicroRNA-223-5p targets long non-coding RNA TP73 antisense RNA1 to promote the invasion of gastric cancer. Hum Cell 2020; 33:676-682. [PMID: 32248369 DOI: 10.1007/s13577-020-00349-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/07/2020] [Indexed: 01/15/2023]
Abstract
Long non-coding RNA (lncRNA) TP73 antisense RNA 1 (TP73-AS1) has been characterized as an oncogenic lncRNA in GC. However, by analyzing The Cancer Genome Atlas (TCGA) dataset we observed the downregulation of TP73-AS1 in GC. In addition, TP73-AS1 is predicted to interact with microRNA-223-5p (miR-223-5p), which is also a critical player in cancer biology. This study was therefore carried out to investigate the roles of miR-223-5p and TP73-AS1 in gastric cancer (GC) and to explore the interactions between them. In this study, 68 GC patients were included as research subjects. Expression of miR-223-5p and TP73-AS1 was analyzed by RT-qPCR. Dual-luciferase assay and overexpression experiments were used to analyze gene interactions. Transwell assays were used to analyze cell invasion and migration. We found that miR-223-5p was upregulated and TP73-AS1 was downregulated in GC and they were inversely correlated. Altered miR-223-5p and TP73-AS1 expression predicted poor disease-specific survival. Dual-luciferase assay showed that miR-223-5p may bind TP73-AS1 and overexpression experiments showed that miR-223-5p overexpression downregulated TP73-AS1 in gastric cancer cells. Cell invasion and migration assays showed that miR-223-5p could promote the invasion and migration of gastric cancer cells, while TP73-AS1 could inhibit the invasion and migration of gastric cancer cells. In addition, miR-223-5p attenuated the effects of TP73-AS1 overexpression. Therefore, miR-223-5p may target TP73-AS1 to promote the invasion and migration of gastric cancer patients.
Collapse
Affiliation(s)
- Junhui Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Haijiang Wang
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, West Yanta Road 274, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinhua Liao
- Department of General Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, West Yanta Road 274, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
20
|
Zhu Y, Li K, Yan L, He Y, Wang L, Sheng L. miR-223-3p promotes cell proliferation and invasion by targeting Arid1a in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:150-159. [PMID: 31912865 DOI: 10.1093/abbs/gmz151] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has indicated that microRNAs can regulate downstream signaling pathways and play an important role in various tumors. In this study, we found that miR-223-3p was differentially expressed in 40 paired gastric cancer tissues and adjacent tissues and that miR-223-3p was positively correlated with tumor invasion depth and lymph node metastasis. Luciferase reporter assay confirmed that Arid1a was the target gene of miR-223-3p. Functional assays showed that miR-223-3p promoted the proliferation and invasion of gastric cancer cells by regulating the expression of Arid1a. We also confirmed that miR-223-3p regulated the growth of gastric cancer cells in vivo, while an antagomir against miR-223-3p significantly inhibited tumor growth. In conclusion, our results demonstrated that miR-223-3p inhibits gastric cancer cell progression by decreasing the expression of Arid1a. Therefore, miR-223-3p may act as a potential therapeutic target for patients with gastric cancer.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Kai Li
- School of Graduate Studies, Wannan Medical College, Wuhu 241000, China
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241000, China
| | - Liang Yan
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241000, China
| | - Yang He
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Lili Sheng
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| |
Collapse
|
21
|
Bonelli P, Borrelli A, Tuccillo FM, Silvestro L, Palaia R, Buonaguro FM. Precision medicine in gastric cancer. World J Gastrointest Oncol 2019; 11:804-829. [PMID: 31662821 PMCID: PMC6815928 DOI: 10.4251/wjgo.v11.i10.804] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a complex disease linked to a series of environmental factors and unhealthy lifestyle habits, and especially to genetic alterations. GC represents the second leading cause of cancer-related deaths worldwide. Its onset is subtle, and the majority of patients are diagnosed once the cancer is already advanced. In recent years, there have been innovations in the management of advanced GC including the introduction of new classifications based on its molecular characteristics. Thanks to new technologies such as next-generation sequencing and microarray, the Cancer Genome Atlas and Asian Cancer Research Group classifications have also paved the way for precision medicine in GC, making it possible to integrate diagnostic and therapeutic methods. Among the objectives of the subdivision of GC into subtypes is to select patients in whom molecular targeted drugs can achieve the best results; many lines of research have been initiated to this end. After phase III clinical trials, trastuzumab, anti-Erb-B2 receptor tyrosine kinase 2 (commonly known as ERBB2) and ramucirumab, anti-vascular endothelial growth factor receptor 2 (commonly known as VEGFR2) monoclonal antibodies, were approved and introduced into first- and second-line therapies for patients with advanced/metastatic GC. However, the heterogeneity of this neoplasia makes the practical application of such approaches difficult. Unfortunately, scientific progress has not been matched by progress in clinical practice in terms of significant improvements in prognosis. Survival continues to be low in contrast to the reduction in deaths from many common cancers such as colorectal, lung, breast, and prostate cancers. Although several target molecules have been identified on which targeted drugs can act and novel products have been introduced into experimental therapeutic protocols, the overall approach to treating advanced stage GC has not substantially changed. Currently, surgical resection with adjuvant or neoadjuvant radiotherapy and chemotherapy are the most effective treatments for this disease. Future research should not underestimate the heterogeneity of GC when developing diagnostic and therapeutic strategies aimed toward improving patient survival.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Lucrezia Silvestro
- Abdominal Medical Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Raffaele Palaia
- Gastro-pancreatic Surgery Division, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori - IRCCS - Fondazione G Pascale, Napoli 80131, Italy
| |
Collapse
|
22
|
Bergquist JR, Leiting JL, Habermann EB, Cleary SP, Kendrick ML, Smoot RL, Nagorney DM, Truty MJ, Grotz TE. Early-onset gastric cancer is a distinct disease with worrisome trends and oncogenic features. Surgery 2019; 166:547-555. [PMID: 31331685 DOI: 10.1016/j.surg.2019.04.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Overall the incidence of gastric cancer is declining in the United States; however, the incidence of early-onset gastric cancer is increasing. We sought to elucidate clinical and genomic characteristics and risk factors for early-onset gastric cancer compared with late-onset gastric cancer. METHODS We utilized the Surveillance, Epidemiology, and End Results database (1973-2015), the Behavioral Risk Factor Surveillance Survey, and The Cancer Genome Atlas to characterize early-onset gastric cancer. RESULTS The incidence of early-onset gastric cancer increased during the study period and now comprises >30% of all gastric cancer in the United States. Early-onset gastric cancer was associated with higher grade (55.2 vs 46.9%), signet-ring cells (19.0 vs 10.4%), diffuse histology (25.7 vs 15.0%), and metastatic disease (49.5 vs 40.9%, all P < .01) compared with late-onset gastric cancer. Early-onset gastric cancer was more likely to be Epstein-Barr virus (7.7 vs 5.1%) or genomically stable (22.5 vs 8.1%) subtype, whereas late-onset gastric cancer was more likely to be microsatellite instability subtype (18.6 vs 5.6%; all P < .01). Risk factors for gastric cancer were less correlated with early-onset gastric cancer compared with late-onset gastric cancer. CONCLUSION The incidence of early-onset gastric cancer has been steadily increasing in the United States, comprising >30% of new gastric cancer cases today. Early-onset gastric cancer is genetically and clinically distinct from traditional gastric cancer. Additional investigations are warranted to better understand this alarming phenomenon.
Collapse
Affiliation(s)
- John R Bergquist
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN; Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Surgical Outcomes Program, Rochester, MN
| | - Jennifer L Leiting
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Elizabeth B Habermann
- Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Surgical Outcomes Program, Rochester, MN
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Michael L Kendrick
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Rory L Smoot
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - David M Nagorney
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Mark J Truty
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Travis E Grotz
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
23
|
Kwon D, Kim B, Shin HC, Kim EJ, Ha SY, Jang KT, Kim ST, Lee J, Kang WK, Park JO, Kim KM. Cancer Panel Assay for Precision Oncology Clinic: Results from a 1-Year Study. Transl Oncol 2019; 12:1488-1495. [PMID: 31442744 PMCID: PMC6710823 DOI: 10.1016/j.tranon.2019.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing (NGS)-based cancer panel tests are actively being applied in the clinic for precision oncology. Given the importance of NGS panel tests in the palliative clinical setting, it is critical to understand success rates, factors responsible for test failures, and the incidence of clinically meaningful genetic alterations. We performed NGS cancer panel test with tumors from the stomach (n = 234), colorectum (n = 196), and rare tumors (n = 105) from 535 recurrent or metastatic cancer patients for 1 year. Sequencing was successful in 483 (95.3%) archival tumor samples to find single nucleotide variant (SNV), copy number alteration (CNA), and fusion. NGS testing was unsuccessful in 52 (9.7%) specimens due to inadequate tissue (n = 28), low tumor volume (n = 19), and poor quality of nucleic acid (n = 5). According to the Tier system, variants were classified as Tier IA, 0.8%; IIC, 10.3%; IID, 2.0%; III, 66.7% for gastric: Tier IA, 3.6%; IIC, 11.6% for colorectal: Tier IA, 1.6%; IIC, 13.5%; IID, 0.5%; III, 70.8% for melanoma, and Tier IA, 9.1%; IIC, 1.8%; IID, 1.0%; III, 66.4% for GIST. In total, 30.8% of 483 sequenced cases harbored clinically meaningful variants. In Tier IA, KRAS and ERBB2 were the most commonly altered genes. Interestingly, we identified CD274 (PD-L1) amplification, PTPN11 (SHP2) SNV, TPM3-NTRK1 fusion, and FGFR3-TACC3 fusion as a rare (<2%) alteration having therapeutic targets. In conclusion, although small biopsy samples constitute half of cases, informative NGS results were successfully reported in >90% of archival tissue samples, and 30.8% of them harbored clinically meaningful variants.
Collapse
Affiliation(s)
- Dohee Kwon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Binnari Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeong Chan Shin
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Ji Kim
- Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Maron SB, Chase LM, Lomnicki S, Kochanny S, Moore KL, Joshi SS, Landron S, Johnson J, Kiedrowski LA, Nagy RJ, Lanman RB, Kim ST, Lee J, Catenacci DVT. Circulating Tumor DNA Sequencing Analysis of Gastroesophageal Adenocarcinoma. Clin Cancer Res 2019; 25:7098-7112. [PMID: 31427281 DOI: 10.1158/1078-0432.ccr-19-1704] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Gastroesophageal adenocarcinoma (GEA) has a poor prognosis and few therapeutic options. Utilizing a 73-gene plasma-based next-generation sequencing (NGS) cell-free circulating tumor DNA (ctDNA-NGS) test, we sought to evaluate the role of ctDNA-NGS in guiding clinical decision-making in GEA. EXPERIMENTAL DESIGN We evaluated a large cohort (n = 2,140 tests; 1,630 patients) of ctDNA-NGS results (including 369 clinically annotated patients). Patients were assessed for genomic alteration (GA) distribution and correlation with clinicopathologic characteristics and outcomes. RESULTS Treatment history, tumor site, and disease burden dictated tumor-DNA shedding and consequent ctDNA-NGS maximum somatic variant allele frequency. Patients with locally advanced disease having detectable ctDNA postoperatively experienced inferior median disease-free survival (P = 0.03). The genomic landscape was similar but not identical to tissue-NGS, reflecting temporospatial molecular heterogeneity, with some targetable GAs identified at higher frequency via ctDNA-NGS compared with previous primary tumor-NGS cohorts. Patients with known microsatellite instability-high (MSI-High) tumors were robustly detected with ctDNA-NGS. Predictive biomarker assessment was optimized by incorporating tissue-NGS and ctDNA-NGS assessment in a complementary manner. HER2 inhibition demonstrated a profound survival benefit in HER2-amplified patients by ctDNA-NGS and/or tissue-NGS (median overall survival, 26.3 vs. 7.4 months; P = 0.002), as did EGFR inhibition in EGFR-amplified patients (median overall survival, 21.1 vs. 14.4 months; P = 0.01). CONCLUSIONS ctDNA-NGS characterized GEA molecular heterogeneity and rendered important prognostic and predictive information, complementary to tissue-NGS.See related commentary by Frankell and Smyth, p. 6893.
Collapse
Affiliation(s)
- Steven B Maron
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leah M Chase
- The University of Chicago Medical Center, Chicago, Illinois
| | | | - Sara Kochanny
- The University of Chicago Medical Center, Chicago, Illinois
| | - Kelly L Moore
- The University of Chicago Medical Center, Chicago, Illinois
| | - Smita S Joshi
- The University of Chicago Medical Center, Chicago, Illinois
| | - Stacie Landron
- The University of Chicago Medical Center, Chicago, Illinois
| | - Julie Johnson
- The University of Chicago Medical Center, Chicago, Illinois
| | - Lesli A Kiedrowski
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Rebecca J Nagy
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Richard B Lanman
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
25
|
Kim ST, Lee IK, Rom E, Sirkis R, Park SH, Park JO, Park YS, Lim HY, Kang WK, Kim KM, Yayon A, Lee J. Neutralizing antibody to FGFR2 can act as a selective biomarker and potential therapeutic agent for gastric cancer with FGFR2 amplification. Am J Transl Res 2019; 11:4508-4515. [PMID: 31396354 PMCID: PMC6684926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) amplification has been reported in 5-10% of gastric cancer (GC) and is associated with poor prognosis. In this study, we characterized the anti-tumor effect of PRO-007, a newly developed recombinant monoclonal antibody that targets FGFR2, in GC cell lines KATO III (with FGFR2 amplification) and NCI-N87 (without FGFR2 amplification). Validation was performed in parallel using two patient-derived tumor cells (PDCs) from patients with GC. Cell viability assays were performed using FGFR2-transfected NCI-N87 cells and FGFR2-knockdown KATO III cells that were generated using short hairpin RNA (shRNA). PRO-007 reduced KATO III cell viability (P = 0.0034) but not that of NCI-N87 cells (P = 0.3710). PRO-007 also significantly reduced KATO III cell invasiveness (P < 0.0001) but not NCI-N87 cell invasiveness (P = 0.8136). Immunoblot analysis showed that PRO-007 treatment decreased the levels of phosphorylated AKT and ERK. The FGFR2-inhibitory activity of PRO-007 was confirmed in genetically modified GC cell lines. Cell viability of FGFR2-overexpressing NCI-N87 cells was significantly decreased by PRO-007, while KATO III cells were significantly resistant to the treatment when FGFR2 was knocked down by FGFR2 shRNA transfection. Furthermore, PRO-007 had a synergistic effect with ramucirumab on the invasiveness of cancer cells with FGFR2 amplification. Consistent results were obtained using PDCs from patients with GC. Overall, these preclinical data support the further clinical development of PRO-007 as a potential therapeutic agent for patients with FGFR2-amplified GC.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - In Kyoung Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Eran Rom
- Fibron Ltd., Weizmann Science ParkNess Ziona, Israel
| | - Roy Sirkis
- Fibron Ltd., Weizmann Science ParkNess Ziona, Israel
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Avner Yayon
- Fibron Ltd., Weizmann Science ParkNess Ziona, Israel
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| |
Collapse
|
26
|
Klempner SJ, Madison R, Pujara V, Ross JS, Miller VA, Ali SM, Schrock AB, Kim ST, Maron SB, Dayyani F, Catenacci DVT, Lee J, Chao J. FGFR2-Altered Gastroesophageal Adenocarcinomas Are an Uncommon Clinicopathologic Entity with a Distinct Genomic Landscape. Oncologist 2019; 24:1462-1468. [PMID: 31249137 PMCID: PMC6853122 DOI: 10.1634/theoncologist.2019-0121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Little is known about the genomic landscape of FGFR2‐altered gastroesophageal adenocarcinomas. This article attempts to bridge that gap, with a focus on concurrent alterations that may affect sensitivity to FGFR2‐directed therapies. Background. With the exception of trastuzumab, therapies directed at receptor tyrosine kinases (RTKs) in gastroesophageal adenocarcinomas (GEA) have had limited success. Recurrent fibroblast growth factor receptor 2 (FGFR2) alterations exist in GEA; however, little is known about the genomic landscape of FGFR2‐altered GEA. We examined FGFR2 alteration frequency and frequency of co‐occurring alterations in GEA. Subjects, Materials, and Methods. A total of 6,667 tissue specimens from patients with advanced GEA were assayed using hybrid capture‐based genomic profiling. Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA, and microsatellite instability was determined on 95 or 114 loci. Descriptive statistics were used to compare subgroups. Results. We identified a total of 269 (4.0%) FGFR2‐altered cases consisting of FGFR2‐amplified (amp; 193, 72% of FGFR2‐altered), FGFR2‐mutated (36, 13%), FGFR2‐rearranged (re; 23, 8.6%), and cases with multiple FGFR2 alterations (17, 6.3%). Co‐occurring alterations in other GEA RTK targets including ERBB2 (10%), EGFR (8%), and MET (3%) were observed across all classes of FGFR2‐altered GEA. Co‐occurring alterations in MYC (17%), KRAS (10%), and PIK3CA (5.6%) were also observed frequently. Cases with FGFR2amp and FGFR2re were exclusively microsatellite stable. The median TMB for FGFR2‐altered GEA was 3.6 mut/mb, not significantly different from a median of 4.3 mut/mb seen in FGFR2 wild‐type samples. Conclusion. FGFR2‐altered GEA is a heterogenous subgroup with approximately 20% of FGFR2‐altered samples harboring concurrent RTK alterations. Putative co‐occurring modifiers of FGFR2‐directed therapy including oncogenic MYC, KRAS, and PIK3CA alterations were also frequent, suggesting that pretreatment molecular analyses may be needed to facilitate rational combination therapies and optimize patient selection for clinical trials. Implications for Practice. Actionable receptor tyrosine kinase alterations assayed within a genomic context with therapeutic implications remain limited to HER2 amplification in gastroesophageal adenocarcinomas (GEA). Composite biomarkers and heterogeneity assessment are critical in optimizing patients selected for targeted therapies in GEA. Comprehensive genomic profiling in FGFR2‐altered GEA parallels the heterogeneity findings in HER2‐amplified GEA and adds support to the utility of genomic profiling in advanced gastroesophageal adenocarcinomas.
Collapse
Affiliation(s)
- Samuel J Klempner
- The Angeles Clinic and Research Institute, Los Angeles California, USA
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles California, USA
| | | | - Vivek Pujara
- The Angeles Clinic and Research Institute, Los Angeles California, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
- Upstate Medical University, Syracuse, New York, USA
| | | | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | | | - Seung Tae Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Steven B Maron
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Farshid Dayyani
- Division of Hematology-Oncology, Department of Medicine, University of California Irvine, Orange, California, USA
| | - Daniel V T Catenacci
- Department of Medicine, Division of Hematology-Oncology, University of Chicago School of Medicine, Chicago, Illinois, USA
| | - Jeeyun Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joseph Chao
- Department of Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
27
|
Zhou W, Ma L, Yang J, Qiao H, Li L, Guo Q, Ma J, Zhao L, Wang J, Jiang G, Wan X, Adam Goscinski M, Ding L, Zheng Y, Li W, Liu H, Suo Z, Zhao W. Potent and specific MTH1 inhibitors targeting gastric cancer. Cell Death Dis 2019; 10:434. [PMID: 31164636 PMCID: PMC6547740 DOI: 10.1038/s41419-019-1665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/22/2023]
Abstract
Human mutT homolog 1(MTH1), the oxidized dNTP pool sanitizer enzyme, has been reported to be highly expressed in various malignant tumors. However, the oncogenic role of MTH1 in gastric cancer remains to be determined. In the current study, we found that MTH1 was overexpressed in human gastric cancer tissues and cells. Using an in vitro MTH1 inhibitor screening system, the compounds available in our laboratory were screened and the small molecules containing 5-cyano-6-phenylpyrimidine structure were firstly found to show potently and specifically inhibitory effect on MTH1, especially compound MI-743 with IC50 = 91.44 ± 1.45 nM. Both molecular docking and target engagement experiments proved that MI-743 can directly bind to MTH1. Moreover, MI-743 could not only inhibit cell proliferation in up to 16 cancer cell lines, especially gastric cancer cells HGC-27 and MGC-803, but also significantly induce MTH1-related 8-oxo-dG accumulation and DNA damage. Furthermore, the growth of xenograft tumours derived by injection of MGC-803 cells in nude mice was also significantly inhibited by MI-743 treatment. Importantly, MTH1 knockdown by siRNA in those two gastric cancer cells exhibited the similar findings. Our findings indicate that MTH1 is highly expressed in human gastric cancer tissues and cell lines. Small molecule MI-743 with 5-cyano-6-phenylpyrimidine structure may serve as a novel lead compound targeting the overexpressed MTH1 for gastric cancer treatment.
Collapse
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
- Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jing Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Lingyu Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Qian Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jinlian Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Junwei Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiangbin Wan
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450001, China
| | - Mariusz Adam Goscinski
- Department of Urology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway
| | - Lina Ding
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Zhenhe Suo
- Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
28
|
Shen X, Zhao Y, Chen X, Sun H, Liu M, Zhang W, Jiang F, Li P. Associations of PIK3CA mutations with clinical features and prognosis in gastric cancer. Future Oncol 2019; 15:1873-1894. [DOI: 10.2217/fon-2018-0335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: The clinical implications of PIK3CA mutations in gastric cancer (GC) are not conclusive. Materials & methods: A systematic searching of the previous publications and related studies in The Cancer Genome Atlas (TCGA) database were performed to investigate the clinical implications of PIK3CA mutations in GC. Results: Twenty-six independent cohort studies including six studies with original data were identified. Meta-analysis suggested PIK3CA mutations were associated with high T stage, poor differentiation and microsatellite instability, but not with prognosis in overall. However, PIK3CA mutation was found to be associated with favorable overall survival in subgroup of patients with low PIK3CA mutation prevalence. Conclusion: PIK3CA mutations might be involved in GC development and might be used as favorable prognostic factor in GC population with low PIK3CA mutations prevalence.
Collapse
Affiliation(s)
- Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, PR China
| | - Ying Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, PR China
| | - Xiaowei Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, PR China
| | - Haixiang Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, PR China
| | - Mengqi Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, PR China
| | - Wenwen Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, PR China
| | | | - Pengfei Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, PR China
| |
Collapse
|
29
|
Catenacci DV, Tesfaye A, Tejani M, Cheung E, Eisenberg P, Scott AJ, Eng C, Hnatyszyn J, Marina N, Powers J, Wainberg Z. Bemarituzumab with modified FOLFOX6 for advanced FGFR2-positive gastroesophageal cancer: FIGHT Phase III study design. Future Oncol 2019; 15:2073-2082. [PMID: 31094225 DOI: 10.2217/fon-2019-0141] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bemarituzumab is an afucosylated monoclonal antibody against FGFR2b (a FGF receptor) with demonstrated monotherapy clinical activity in patients with late-line gastric cancer whose tumors overexpress FGFR2b (NCT02318329). We describe the rationale and design of the FIGHT trial (NCT03343301), a global, randomized, double-blind, placebo-controlled Phase III study evaluating the role of bemarituzumab in patients with previously untreated, FGFR2b-overexpressing advanced gastroesophageal cancer. Patients are randomized in a blinded fashion to the combination of mFOLFOX6 and bemarituzumab or mFOLFOX6 and placebo. Eligible patients are selected based on the presence of either FGFR2b protein overexpression determined by immunohistochemistry or FGFR2 gene amplification determined by circulating tumor DNA. The primary end point is overall survival, and secondary end points include progression-free survival, objective response rate and safety.
Collapse
Affiliation(s)
| | | | - Mohamed Tejani
- University of Rochester Medical Center, Rochester, NY, USA
| | - Eric Cheung
- Innovative Clinical Research Institute, Whittier, CA, USA
| | | | - Aaron J Scott
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Clarence Eng
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | | | - Neyssa Marina
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | | | - Zev Wainberg
- University of California Los Angeles Medical Center (UCLA), Los Angeles, CA, USA
| |
Collapse
|
30
|
Klempner SJ, Maron SB, Chase L, Lomnicki S, Wainberg ZA, Catenacci DVT. Initial Report of Second-Line FOLFIRI in Combination with Ramucirumab in Advanced Gastroesophageal Adenocarcinomas: A Multi-Institutional Retrospective Analysis. Oncologist 2019; 24:475-482. [PMID: 30470690 PMCID: PMC6459251 DOI: 10.1634/theoncologist.2018-0602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The randomized phase III RAINBOW trial established paclitaxel (pac) plus ramucirumab (ram) as a global standard for second-line (2L) therapy in advanced gastric and gastroesophageal junction adenocarcinoma, together gastroesophageal adenocarcinoma (GEA). Patients (pts) receiving first-line (1L) FOLFOX often develop neuropathy that renders continued neurotoxic agents in the 2L setting unappealing and other regimens more desirable. As such, FOLFIRI-ram has become an option for patients with 2L GEA. FOLFIRI-ramucirumab (ram) has demonstrated safety and activity in 2L colorectal cancer, but efficacy/safety data in GEA are lacking. SUBJECTS, MATERIALS, AND METHODS Patients with GEA treated with 2L FOLFIRI-ram between August 2014 and April 2018 were identified. Clinicopathologic data including oxaliplatin neurotoxicity rates/grades (G), 2L treatment response, progression-free survival (PFS), overall survival (OS), safety, and molecular features were abstracted from three U.S. academic institutions. Kaplan-Meier survival analysis was used to generate PFS/OS; the likelihood ratio test was used to determine statistical significance. RESULTS We identified 29 pts who received 2L FOLFIRI-ram. All pts received 1L platinum + fluoropyrimidine, and 23 of 29 (79%) had post-1L neuropathy; 12 (41%) had G1, and 11 (38%) had G2. Patients were evenly split between esophagus/gastroesophageal junction (12; 41%) and gastric cancer (17; 59%). Among evaluable pts (26/29), the overall response rate was 23% (all partial response) with a disease control rate of 79%. Median PFS was 6.0 months and median OS was 13.4 months among all evaluable pts. Six- and 12-month OS were 90% (n = 18/20) and 41% (n = 7/17). There were no new safety signals. CONCLUSION We provide the first data suggesting FOLFIRI-ram is a safe, non-neurotoxic regimen comparing favorably with the combination of pac + ram used in the seminal RAINBOW trial. IMPLICATIONS FOR PRACTICE Results of this study provide initial support for the safety and efficacy of second-line (2L) FOLFIRI-ramucirumab (ram) after progression on first-line platinum/fluoropyrimidine in patients with gastroesophageal adenocarcinoma (GEA). The overall response, progression-free survival, overall survival, and toxicity profile compare favorably with paclitaxel (pac) + ram and highlight the importance of the ongoing phase II RAMIRIS trial examining FOLFIRI-ram versus pac + ram in 2L GEA (NCT03081143). FOLFIRI-ram may warrant consideration for inclusion as an alternate regimen in consensus guidelines for GEA.
Collapse
Affiliation(s)
- Samuel J Klempner
- The Angeles Clinic and Research Institute, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Steven B Maron
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois, USA
| | - Leah Chase
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois, USA
| | - Samantha Lomnicki
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois, USA
| | - Zev A Wainberg
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daniel V T Catenacci
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medical Center and Biological Sciences, Chicago, Illinois, USA
| |
Collapse
|
31
|
Gastric Carcinomas With Lymphoid Stroma: An Evaluation of the Histopathologic and Molecular Features. Am J Surg Pathol 2019; 42:453-462. [PMID: 29438172 DOI: 10.1097/pas.0000000000001018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastric carcinoma with lymphoid stroma is an uncommon variant enriched for mutually exclusive Epstein-Barr virus (EBV) positivity and mismatch repair (MMR) deficiency. We performed this study to evaluate molecular alterations in this morphologically homogeneous subtype and compare them with 295 conventional gastric cancers analyzed in The Cancer Genome Atlas study. We identified 31 study cases and subjected them to in situ hybridization for EBV-encoded RNAs and assessment for MMR status. Immunostains for PD-L1, β-catenin, and HER2 were performed; extracted DNA was sequenced with a Comprehensive Cancer Panel. Most study patients were older adult men with stage I or II disease (76%). Tumors were classified as EBV/MMR-proficient (MMR-P) (n=7), EBV/MMR deficient (n=12), and EBV/MMR-P (n=12). EBV/MMR-P tumors were usually located in the proximal stomach (83%) and showed heterogenous growth patterns with glandular differentiation (83%). Tumors in all groups showed numerous tumor infiltrating lymphocytes and PD-L1 expression, infrequent nuclear β-catenin accumulation (10%), and lacked both membranous HER2 staining and HER2 amplification. EBV/MMR-deficient tumors showed significantly higher tumor mutation burden (P=0.001) and KRAS alterations (56%) compared with EBV/MMR-P tumors (9%, P=0.05). TP53 variants were more common among EBV/MMR-P tumors (82%) compared with EBV/MMR proficient (0%, P=0.01) and EBV/MMR-deficient (11%, P<0.01) tumors. Alterations in KRAS, ARID1A, PIK3CA, and TP53 followed similar patterns of distribution compared with The Cancer Genome Atlas dataset. We conclude that gastric carcinomas with lymphoid stroma show a spectrum of molecular changes and frequent PD-L1 expression, raising the possibility that this subgroup of tumors may be susceptible to checkpoint inhibitors and/or agents that target receptor tyrosine kinase-mediated signaling.
Collapse
|
32
|
Hewitt LC, Saito Y, Wang T, Matsuda Y, Oosting J, Silva ANS, Slaney HL, Melotte V, Hutchins G, Tan P, Yoshikawa T, Arai T, Grabsch HI. KRAS status is related to histological phenotype in gastric cancer: results from a large multicentre study. Gastric Cancer 2019; 22:1193-1203. [PMID: 31111275 PMCID: PMC6811379 DOI: 10.1007/s10120-019-00972-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is histologically a very heterogeneous disease, and the temporal development of different histological phenotypes remains unclear. Recent studies in lung and ovarian cancer suggest that KRAS activation (KRASact) can influence histological phenotype. KRASact likely results from KRAS mutation (KRASmut) or KRAS amplification (KRASamp). The aim of the study was to investigate whether KRASmut and/or KRASamp are related to the histological phenotype in GC. METHODS Digitized haematoxylin/eosin-stained slides from 1282 GC resection specimens were classified according to Japanese Gastric Cancer Association (JGCA) and the Lauren classification by at least two observers. The relationship between KRAS status, predominant histological phenotype and clinicopathological variables was assessed. RESULTS KRASmut and KRASamp were found in 68 (5%) and 47 (7%) GCs, respectively. Within the KRASmut and KRASamp cases, the most frequent GC histological phenotype was moderately differentiated tubular 2 (tub2) type (KRASmut: n = 27, 40%; KRASamp: n = 21, 46%) or intestinal type (KRASmut: n = 41, 61%; KRASamp: n = 23, 50%). Comparing individual histological subtypes, mucinous carcinoma displayed the highest frequency of KRASmut (JGCA: n = 6, 12%, p = 0.012; Lauren: n = 6, 12%, p = 0.013), and KRASamp was more frequently found in poorly differentiated solid type (n = 12, 10%, p = 0.267) or indeterminate type (n = 12, 10%, p = 0.480) GC. 724 GCs (57%) had intratumour morphological heterogeneity. CONCLUSIONS This is the largest GC study investigating KRAS status and histological phenotype. We identified a relationship between KRASmut and mucinous phenotype. The high level of intratumour morphological heterogeneity could reflect KRASmut heterogeneity, which may explain the failure of anti-EGFR therapy in GC.
Collapse
Affiliation(s)
- Lindsay C. Hewitt
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Yuichi Saito
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Tan Wang
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan ,Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaldo N. S. Silva
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Hayley L. Slaney
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Veerle Melotte
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Department of Clinical Genetics, Erasmus University Medical Center, University of Rotterdam, Rotterdam, The Netherlands
| | - Gordon Hutchins
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Patrick Tan
- Duke-NUS Medical School, Singapore, Singapore
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan ,Department of Gastrointestinal Surgery, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Heike I. Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands ,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| |
Collapse
|
33
|
Mutational landscape of goblet cell carcinoids and adenocarcinoma ex goblet cell carcinoids of the appendix is distinct from typical carcinoids and colorectal adenocarcinomas. Mod Pathol 2018; 31:989-996. [PMID: 29422640 DOI: 10.1038/s41379-018-0003-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
There is limited data on the spectrum of molecular alterations in goblet cell carcinoids and adenocarcinoma ex goblet cell carcinoids of the appendix. We used next generation sequencing to determine mutations of potential pathogenetic and therapeutic significance in this rare group of tumors. Adequate DNA was successfully extracted in 34/46 cases and the final group included 18 goblet cell carcinoids and 16 adenocarcinoma ex goblet cell carcinoids. Illumina TruSeq™ was used for sequencing exons of a custom 282 gene panel using an Illumina HiSeq 2000. All cases had a minimum coverage depth of at least 50 reads. After filtering through the Exome Sequencing Project, the number of mutations per case ranged from 0-9 (mean:3). The mutational burden in adenocarcinoma ex goblet cell carcinoids was significantly higher than goblet cell carcinoids (mean 5 vs. 3; p < 0.05) but the spectrum of alterations overlapped between the two groups. The most frequent mutations included ARID1A (4/34), ARID2 (4/34), CDH1 (4/34), RHPN2 (4/34), and MLL2 (3/34). Some mutations typically seen in conventional colorectal adenocarcinomas were also identified but with much lower frequency (APC :4/34; KRAS :2/34). MLL2 and KRAS mutations were only seen in adenocarcinoma ex goblet cell carcinoids and TP53 mutations were limited to poorly differentiated adenocarcinoma ex goblet cell carcinoids (2/34). Copy number changes could be evaluated in 15/34 cases and showed low copy number gains in CDKN1B (6/15) and NFKBIA (6/15), among others. The overlapping molecular alterations suggest that goblet cell carcinoids and adenocarcinoma ex goblet cell carcinoids are best considered two grades of differentiation of the same tumor rather than two distinct histological types. Mutations in TP53, CDH1 and MLL2 mutations were predominantly present in the adenocarcinoma ex goblet cell carcinoid group consistent with transformation to a higher grade lesion. The unique mutational profile also offers an explanation for the poor chemosensitivity in these tumors and highlights the need for developing new targeted therapies.
Collapse
|
34
|
Maron SB, Alpert L, Kwak HA, Lomnicki S, Chase L, Xu D, O'Day E, Nagy RJ, Lanman RB, Cecchi F, Hembrough T, Schrock A, Hart J, Xiao SY, Setia N, Catenacci DVT. Targeted Therapies for Targeted Populations: Anti-EGFR Treatment for EGFR-Amplified Gastroesophageal Adenocarcinoma. Cancer Discov 2018; 8:696-713. [PMID: 29449271 PMCID: PMC5984701 DOI: 10.1158/2159-8290.cd-17-1260] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/11/2018] [Accepted: 02/09/2018] [Indexed: 02/07/2023]
Abstract
Previous anti-EGFR trials in unselected patients with gastroesophageal adenocarcinoma (GEA) were resoundingly negative. We identified EGFR amplification in 5% (19/363) of patients at the University of Chicago, including 6% (8/140) who were prospectively screened with intention-to-treat using anti-EGFR therapy. Seven patients received ≥1 dose of treatment: three first-line FOLFOX plus ABT-806, one second-line FOLFIRI plus cetuximab, and three third/fourth-line cetuximab alone. Treatment achieved objective response in 58% (4/7) and disease control in 100% (7/7) with a median progression-free survival of 10 months. Pretreatment and posttreatment tumor next-generation sequencing (NGS), serial plasma circulating tumor DNA (ctDNA) NGS, and tumor IHC/FISH for EGFR revealed preexisting and/or acquired genomic events, including EGFR-negative clones, PTEN deletion, KRAS amplification/mutation, NRAS, MYC, and HER2 amplification, and GNAS mutations serving as mechanisms of resistance. Two evaluable patients demonstrated interval increase of CD3+ infiltrate, including one who demonstrated increased NKp46+, and PD-L1 IHC expression from baseline, suggesting an immune therapeutic mechanism of action. EGFR amplification predicted benefit from anti-EGFR therapy, albeit until various resistance mechanisms emerged.Significance: This paper highlights the role of EGFR inhibitors in EGFR-amplified GEA-despite negative results in prior unselected phase III trials. Using serial ctDNA and tissue NGS, we identified mechanisms of primary and acquired resistance in all patients, as well as potential contribution of antibody-dependent cell-mediated cytotoxicity to their clinical benefit. Cancer Discov; 8(6); 696-713. ©2018 AACR.See related commentary by Strickler, p. 679This article is highlighted in the In This Issue feature, p. 663.
Collapse
Affiliation(s)
- Steven B Maron
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Lindsay Alpert
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Heewon A Kwak
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | - Leah Chase
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - David Xu
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Emily O'Day
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | | | | | | | | | - John Hart
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Namrata Setia
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
35
|
Ji J, Chen W, Lian W, Chen R, Yang J, Zhang Q, Weng Q, Khan Z, Hu J, Chen X, Zou P, Chen X, Liang G. (S)-crizotinib reduces gastric cancer growth through oxidative DNA damage and triggers pro-survival akt signal. Cell Death Dis 2018; 9:660. [PMID: 29855474 PMCID: PMC5981313 DOI: 10.1038/s41419-018-0667-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC), a common gastrointestinal malignancy worldwide, has poor prognosis and frequent recurrence. There is a great need to identify effective therapy for GC. Crizotinib is a multi-targeted, clinically available oral tyrosine kinase inhibitor approved for lung cancer, but its use for the highly heterogeneous disease of GC is unknown. The goal of this study was to investigate the anti-cancer mechanisms of the (S)-crizotinib in inhibiting GC growth. Human GC cell lines (SGC-7901 and BGC-823) and the (S)-crizotinib-resistant BGC-823/R were cultured for determining the effects of (S)-crizotinib on cell viability, apoptosis, oxidant generation, and cell cycle progression. Involvement of ROS, Akt signaling, MTH1, and DNA damage was tested with respective pharmacological blockade. The in vivo anti-tumor effects of (S)-crizotinib were determined using xenograft tumor mice. Results indicated that (S)-crizotinib decreased GC cell viability, induced growth arrest and apoptosis, and increased levels of γH2AX and Ser1981-phosphorylated ATM, which were inhibited by NAC. The anti-cancer mechanism of (S)-crizotinib was independent of MTH1. Moreover, ATM-activated Akt, a pro-survival signal, whose inhibition further enhanced (S)-crizotinib-induced inhibition of GC cell growth and tumor growth in xenograft mice, and re-sensitized resistant GC cells to (S)-crizotinib. (S)-crizotinib reduced GC cell and tumor growth through oxidative DNA damage mechanism and triggered pro-survival Akt signaling. We conclude that inclusion of Akt inhibition (to block the survival signaling) with (S)-crizotinib may provide an effective and novel combination therapy for GC in the clinical setting.
Collapse
Affiliation(s)
- Jiansong Ji
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Weiqian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Weishuai Lian
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jinqing Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Qiaoyou Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Zia Khan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoming Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
36
|
Díaz-Serrano A, Angulo B, Dominguez C, Pazo-Cid R, Salud A, Jiménez-Fonseca P, Leon A, Galan MC, Alsina M, Rivera F, Plaza JC, Paz-Ares L, Lopez-Rios F, Gómez-Martín C. Genomic Profiling of HER2-Positive Gastric Cancer: PI3K/Akt/mTOR Pathway as Predictor of Outcomes in HER2-Positive Advanced Gastric Cancer Treated with Trastuzumab. Oncologist 2018; 23:1092-1102. [PMID: 29700210 DOI: 10.1634/theoncologist.2017-0379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/22/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND HER2-positive gastric cancer (GC) affects 7%-34% of patients with GC. Trastuzumab-based first-line treatment has become the standard of care for HER2-positive advanced gastric cancer (AGC). However, there are no clinically validated biomarkers for resistance to HER2-targeted therapies. Upregulation of PI3K pathway and tyrosine kinase receptor (TKR) alterations have been noted as molecular mechanisms of resistance in breast cancer. Our study aimed to perform a molecular characterization of HER2-positive AGC and investigate the role of PI3K/Akt/mTOR signaling pathway activation and TKR gene copy number (GCN) gains as predictive biomarkers in HER2-positive AGC treated with trastuzumab. PATIENTS AND METHODS Forty-two HER2-positive GC samples from patients treated with trastuzumab-based first-line chemotherapy were selected. DNA samples were sequenced. PTEN and MET immunohistochemistry were also performed. RESULTS Concurrent genetic alterations were detected in 97.1% of HER2-positive AGC. We found activation of PI3K/Akt/mTOR pathway in 52.4% of patients and TKR GCN gains in 38.1%. TKR GCN gains did not correlate with overall survival (OS) or progression-free survival (PFS). Multivariate Cox models showed that PI3K/Akt/mTOR activation negatively affects the effectiveness of trastuzumab-based chemotherapy in terms of OS and PFS. CONCLUSION Our results provide for the first time a detailed molecular profile of concurrent genetic alterations in HER2-positive AGC. PI3K pathway activation could be used as a predictive marker of worse outcome in this patient population. In addition, gains in copy number of other TKR genes in this subgroup may also influence the survival benefit obtained with trastuzumab. IMPLICATIONS FOR PRACTICE This article reports, for the first time, a detailed molecular profile of genomic alterations in patients with HER2-positive advanced gastric cancer (AGC). PI3K/Akt/mTOR signaling pathway activation seems to have a differentially negative effect on overall survival and progression-free survival in AGC treated with trastuzumab-based chemotherapy. Combining different targeted agents could be a successful therapeutic strategy to improve the prognosis of HER2-positive AGC.
Collapse
Affiliation(s)
| | - Barbara Angulo
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Carolina Dominguez
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Roberto Pazo-Cid
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Antonieta Salud
- Medical Oncology Unit, Hospital Universitario Arnau de Vilanova, Lérida, Spain
| | - Paula Jiménez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ana Leon
- Medical Oncology Unit, Fundación Jimenez Diaz, Madrid, Spain
| | - Maria Carmen Galan
- Medical Oncology Department, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Alsina
- Medical Oncology Department, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Fernando Rivera
- Medical Oncology Deparment, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - J Carlos Plaza
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Lopez-Rios
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Carlos Gómez-Martín
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
37
|
Zhu YP, Sheng LL, Wu J, Yang M, Cheng XF, Wu NN, Ye XB, Cai J, Wang L, Shen Q, Wu JQ. Loss of ARID1A expression is associated with poor prognosis in patients with gastric cancer. Hum Pathol 2018; 78:28-35. [PMID: 29689245 DOI: 10.1016/j.humpath.2018.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Deletion of the frequently mutated AT-rich interacting domain-containing protein 1A (ARID1A), an SWI/SNF subunit, is associated with poor prognosis in various tumors. This study observed and analyzed ARID1A expression and its correlation with prognosis in gastric carcinoma. Postoperative sections of 98 patients with primary gastric cancer and 40 patients with gastric benign lesions were examined by immunohistochemistry. ARID1A deficiency was observed in 19.39% of gastric cancer tissues, 4.08% of matched paracancerous tissues, and 2.5% of normal gastric mucosa tissues. ARID1A expression was significantly down-regulated in gastric cancer tissues compared with paracancerous tissues (P = .001) and normal gastric mucosa tissues (P = .011). ARID1A deletion significantly correlated with tumor size (P = .022), lymph node metastasis (P = .030), and tumor differentiation (P = .009). In the 90 gastric cancer tissues with tumor stages II and III, the clinical outcome of the ARID1A-negative patients was significantly poorer than that of the ARID1A-positive patients (P = .005). Univariate analysis revealed that tumor invasion depth (P = .025), stage (P = .032), poor differentiation (P = .046), lymph node metastasis (P = .038), and ARID1A expression (P = .023) were significantly related to the overall survival of gastric cancer patients. Multivariate analysis demonstrated that tumor invasion depth (P = .029) and ARID1A expression (P = .031) were independent factors that indicate poor prognosis. In conclusion, the loss of ARID1A expression in gastric cancer patients significantly correlated with poor survival.
Collapse
Affiliation(s)
- Yi Ping Zhu
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Li Li Sheng
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Jing Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006,China
| | - Mo Yang
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xian Feng Cheng
- Department of Clinical Laboratory, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210000, China
| | - Ning Ni Wu
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiao Bing Ye
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Juan Cai
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Lu Wang
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, China
| | - Qian Shen
- Department of Oncology, Nantong Cancer Hospital, Nantong, Jiangsu 226000, China.
| | - Jian Qiu Wu
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
38
|
Abstract
Gastroesophageal cancer (GEC) remains a major cause of cancer-related mortality worldwide. Although the incidence of distal gastric adenocarcinoma (GC) is declining in the United States, proximal esophagogastric junction adenocarcinoma (EGJ) is increasing in incidence. GEC, including GC and EGJ, is treated uniformly in the metastatic setting. Overall survival in the metastatic setting remains poor. Molecular characterization of GEC has identified mutations and copy number variations, along with other oncogenes, biomarkers, and immuno-oncologic checkpoints that may serve as actionable therapeutic targets. This article reviews these key aberrations, their impact on protein expression, therapeutic implications, and clinical directions within each pathway.
Collapse
Affiliation(s)
- Steven B Maron
- Section of Hematology/Oncology, University of Chicago Comprehensive Cancer Center, 900 E 57th St, Suite 7128, Chicago, IL 60637, USA
| | - Daniel V T Catenacci
- Section of Hematology/Oncology, University of Chicago Comprehensive Cancer Center, 900 E 57th St, Suite 7128, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Ross JS, Fakih M, Ali SM, Elvin JA, Schrock AB, Suh J, Vergilio J, Ramkissoon S, Severson E, Daniel S, Fabrizio D, Frampton G, Sun J, Miller VA, Stephens PJ, Gay LM. Targeting HER2 in colorectal cancer: The landscape of amplification and short variant mutations in ERBB2 and ERBB3. Cancer 2018; 124:1358-1373. [PMID: 29338072 PMCID: PMC5900732 DOI: 10.1002/cncr.31125] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND In contrast to lung cancer, few precision treatments are available for colorectal cancer (CRC). One rapidly emerging treatment target in CRC is ERBB2 (human epidermal growth factor receptor 2 [HER2]). Oncogenic alterations in HER2, or its dimerization partner HER3, can underlie sensitivity to HER2-targeted therapies. METHODS In this study, 8887 CRC cases were evaluated by comprehensive genomic profiling for genomic alterations in 315 cancer-related genes, tumor mutational burden, and microsatellite instability. This cohort included both colonic (7599 cases; 85.5%) and rectal (1288 cases; 14.5%) adenocarcinomas. RESULTS A total of 569 mCRCs were positive for ERBB2 (429 cases; 4.8%) and/or ERBB3 (148 cases; 1.7%) and featured ERBB amplification, short variant alterations, or a combination of the 2. High tumor mutational burden (≥20 mutations/Mb) was significantly more common in ERBB-mutated samples, and ERBB3-mutated CRCs were significantly more likely to have high microsatellite instability (P<.002). Alterations affecting KRAS (27.3%) were significantly underrepresented in ERBB2-amplified samples compared with wild-type CRC samples (51.8%), and ERBB2- or ERBB3-mutated samples (49.0% and 60.8%, respectively) (P<.01). Other significant differences in mutation frequency were observed for genes in the PI3K/MTOR and mismatch repair pathways. CONCLUSIONS Although observed less often than in breast or upper gastrointestinal carcinomas, indications for which anti-HER2 therapies are approved, the percentage of CRC with ERBB genomic alterations is significant. Importantly, 32% of ERBB2-positive CRCs harbor short variant alterations that are undetectable by routine immunohistochemistry or fluorescence in situ hybridization testing. The success of anti-HER2 therapies in ongoing clinical trials is a promising development for patients with CRC. Cancer 2018;124:1358-73. © 2018 Foundation Medicine, Inc. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.
Collapse
Affiliation(s)
- Jeffrey S. Ross
- Foundation Medicine IncCambridgeMassachusetts
- Department of PathologyAlbany Medical CenterAlbanyNew York
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research City of HopeDuarteCalifornia
| | | | | | | | - James Suh
- Foundation Medicine IncCambridgeMassachusetts
| | | | | | | | | | | | | | - James Sun
- Foundation Medicine IncCambridgeMassachusetts
| | | | | | | |
Collapse
|
40
|
Michaels PD, Robinson H, Nardi V, Iafrate AJ, Le L, Lennerz JK. MET Amplification in Esophageal Squamous Carcinoma. Int J Surg Pathol 2018; 26:731-732. [PMID: 29552946 DOI: 10.1177/1066896918764301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Phillip D Michaels
- 1 Massachusetts General Hospital, Boston, MA, USA.,2 Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Long Le
- 1 Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
41
|
Kankeu Fonkoua L, Yee NS. Molecular Characterization of Gastric Carcinoma: Therapeutic Implications for Biomarkers and Targets. Biomedicines 2018; 6:32. [PMID: 29522457 PMCID: PMC5874689 DOI: 10.3390/biomedicines6010032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
Abstract
Palliative chemotherapy is the mainstay of treatment of advanced gastric carcinoma (GC). Monoclonal antibodies including trastuzumab, ramucirumab, and pembrolizumab have been shown to provide additional benefits. However, the clinical outcomes are often unpredictable and they can vary widely among patients. Currently, no biomarker is available for predicting treatment response in the individual patient except human epidermal growth factor receptor 2 (HER2) amplification and programmed death-ligand 1 (PD-L1) expression for effectiveness of trastuzumab and pembrolizumab, respectively. Multi-platform molecular analysis of cancer, including GC, may help identify predictive biomarkers to guide selection of therapeutic agents. Molecular classification of GC by The Cancer Genome Atlas Research Network and the Asian Cancer Research Group is expected to identify therapeutic targets and predictive biomarkers. Complementary to molecular characterization of GC is molecular profiling by expression analysis and genomic sequencing of tumor DNA. Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS) on molecular profile (MP)-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy. Future strategies aiming to integrate molecular classification and profiling of tumors with therapeutic agents for achieving the goal of personalized treatment of GC are indicated.
Collapse
Affiliation(s)
- Lionel Kankeu Fonkoua
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | - Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Experimental Therapeutics Program, Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
42
|
Szász AM, Lánczky A, Nagy Á, Förster S, Hark K, Green JE, Boussioutas A, Busuttil R, Szabó A, Győrffy B. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 2018; 7:49322-49333. [PMID: 27384994 PMCID: PMC5226511 DOI: 10.18632/oncotarget.10337] [Citation(s) in RCA: 753] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023] Open
Abstract
Introduction Multiple gene expression based prognostic biomarkers have been repeatedly identified in gastric carcinoma. However, without confirmation in an independent validation study, their clinical utility is limited. Our goal was to establish a robust database enabling the swift validation of previous and future gastric cancer survival biomarker candidates. Results The entire database incorporates 1,065 gastric carcinoma samples, gene expression data. Out of 29 established markers, higher expression of BECN1 (HR = 0.68, p = 1.5E-05), CASP3 (HR = 0.5, p = 6E-14), COX2 (HR = 0.72, p = 0.0013), CTGF (HR = 0.72, p = 0.00051), CTNNB1 (HR = 0.47, p = 4.3E-15), MET (HR = 0.63, p = 1.3E-05), and SIRT1 (HR = 0.64, p = 2.2E-07) correlated to longer OS. Higher expression of BIRC5 (HR = 1.45, p = 1E-04), CNTN1 (HR = 1.44, p = 3.5E- 05), EGFR (HR = 1.86, p = 8.5E-11), ERCC1 (HR = 1.36, p = 0.0012), HER2 (HR = 1.41, p = 0.00011), MMP2 (HR = 1.78, p = 2.6E-09), PFKB4 (HR = 1.56, p = 3.2E-07), SPHK1 (HR = 1.61, p = 3.1E-06), SP1 (HR = 1.45, p = 1.6E-05), TIMP1 (HR = 1.92, p = 2.2E- 10) and VEGF (HR = 1.53, p = 5.7E-06) were predictive for poor OS. MATERIALS AND METHODS We integrated samples of three major cancer research centers (Berlin, Bethesda and Melbourne datasets) and publicly available datasets with available follow-up data to form a single integrated database. Subsequently, we performed a literature search for prognostic markers in gastric carcinomas (PubMed, 2012–2015) and re-validated their findings predicting first progression (FP) and overall survival (OS) using uni- and multivariate Cox proportional hazards regression analysis. Conclusions The major advantage of our analysis is that we evaluated all genes in the same set of patients thereby making direct comparison of the markers feasible. The best performing genes include BIRC5, CASP3, CTNNB1, TIMP-1, MMP-2, SIRT, and VEGF.
Collapse
Affiliation(s)
- A Marcell Szász
- MTA-TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - András Lánczky
- MTA-TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Ádám Nagy
- MTA-TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Susann Förster
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kim Hark
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey E Green
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Alex Boussioutas
- Cancer Genetics and Genomics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Rita Busuttil
- Cancer Genetics and Genomics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - András Szabó
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Schrock AB, Devoe CE, McWilliams R, Sun J, Aparicio T, Stephens PJ, Ross JS, Wilson R, Miller VA, Ali SM, Overman MJ. Genomic Profiling of Small-Bowel Adenocarcinoma. JAMA Oncol 2017; 3:1546-1553. [PMID: 28617917 PMCID: PMC5710195 DOI: 10.1001/jamaoncol.2017.1051] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Small-bowel adenocarcinomas (SBAs) are rare cancers with a significantly lower incidence, later stage at diagnosis, and worse overall survival than other intestinal-derived cancers. To date, comprehensive genomic analysis of SBA is lacking. OBJECTIVE To perform in-depth genomic characterization of a large series of SBAs and other gastrointestinal tumors to draw comparisons and identify potentially clinically actionable alterations. DESIGN, SETTING, AND PARTICIPANTS Prospective analysis was performed of clinical samples from patients with SBA (n = 317), colorectal cancer (n = 6353), and gastric carcinoma (n = 889) collected between August 24, 2012, and February 3, 2016, using hybrid-capture-based genomic profiling, at the request of the individual treating physicians in the course of clinical care for the purpose of making therapy decisions. RESULTS Of the 7559 patients included in analysis, 4138 (54.7%) were male; the median age was 56 (range, 12-101) years. The frequency of genomic alterations seen in SBA demonstrated distinct differences in comparison with either colorectal cancer (APC: 26.8% [85 of 317] vs 75.9% [4823 of 6353], P < .001; and CDKN2A: 14.5% [46 of 317] vs 2.6% [165 of 6353], P < .001) or gastric carcinoma (KRAS: 53.6% [170 of 317] vs 14.2% [126 of 889], P < .001; APC: 26.8% [85 of 317] vs 7.8% [69 of 889], P < .001; and SMAD4: 17.4% [55 of 317] vs 5.2% [46 of 889], P < .001). BRAF was mutated in 7.6% (484 of 6353) of colorectal cancer and 9.1% (29 of 317) of SBA samples, but V600E mutations were much less common in SBA, representing only 10.3% (3 of 29) of BRAF-mutated cases. The ERBB2/HER2 point mutations (8.2% [26 of 317]), microsatellite instability (7.6% [13 of 170]), and high tumor mutational burden (9.5% [30 of 317]) were all enriched in SBA. Significant differences were noted in the molecular profile of unspecified SBA compared with duodenal adenocarcinoma, as well as in inflammatory bowel disease-associated SBAs. Targetable alterations in several additional genes, including PIK3CA and MEK1, and receptor tyrosine kinase fusions, were also identified in all 3 series. CONCLUSIONS AND RELEVANCE This study presents to our knowledge the first large-scale genomic comparison of SBA with colorectal cancer and gastric carcinoma. The distinct genomic differences establish SBA as a molecularly unique intestinal cancer. In addition, genomic profiling can identify potentially targetable genomic alterations in the majority of SBA cases (91%), and the higher incidence of microsatellite instability and tumor mutational burden in SBA suggests a potential role for immunotherapy.
Collapse
Affiliation(s)
| | - Craig E. Devoe
- Northwell Health, The Monter Cancer Center, Lake Success, New York
| | | | - James Sun
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | - Thomas Aparicio
- Gastroenterology and Digestive Oncology, Centre Hospitalo-Universitaire Avicenne, Assistance Publique Hôpitaux de Paris, University Paris 13, Bobigny, France
| | | | - Jeffrey S. Ross
- Foundation Medicine, Inc, Cambridge, Massachusetts
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - Richard Wilson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland
| | | | - Siraj M. Ali
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
44
|
Klempner SJ, Wu W, Mehta P, Schrock AB, Chao J, Ali SM. Genomic Profiling to Expand Management Options for Locally Advanced Esophagogastric Cancers: A Proof of Principle Case. JCO Precis Oncol 2017; 1:PO.17.00166. [PMID: 32913963 PMCID: PMC7446319 DOI: 10.1200/po.17.00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Samuel J. Klempner
- Samuel J. Klempner and Pareen Mehta, The Angeles Clinic and Research Institute; Samuel J. Klempner, Cedars-Sinai Medical Center; Winnie Wu, Providence Saint John’s Hospital, Los Angeles; Joseph Chao, City of Hope Comprehensive Cancer Center, Duarte, CA; and Alexa B. Schrock and Siraj M. Ali, Foundation Medicine, Cambridge, MA
| | - Winnie Wu
- Samuel J. Klempner and Pareen Mehta, The Angeles Clinic and Research Institute; Samuel J. Klempner, Cedars-Sinai Medical Center; Winnie Wu, Providence Saint John’s Hospital, Los Angeles; Joseph Chao, City of Hope Comprehensive Cancer Center, Duarte, CA; and Alexa B. Schrock and Siraj M. Ali, Foundation Medicine, Cambridge, MA
| | - Pareen Mehta
- Samuel J. Klempner and Pareen Mehta, The Angeles Clinic and Research Institute; Samuel J. Klempner, Cedars-Sinai Medical Center; Winnie Wu, Providence Saint John’s Hospital, Los Angeles; Joseph Chao, City of Hope Comprehensive Cancer Center, Duarte, CA; and Alexa B. Schrock and Siraj M. Ali, Foundation Medicine, Cambridge, MA
| | - Alexa B. Schrock
- Samuel J. Klempner and Pareen Mehta, The Angeles Clinic and Research Institute; Samuel J. Klempner, Cedars-Sinai Medical Center; Winnie Wu, Providence Saint John’s Hospital, Los Angeles; Joseph Chao, City of Hope Comprehensive Cancer Center, Duarte, CA; and Alexa B. Schrock and Siraj M. Ali, Foundation Medicine, Cambridge, MA
| | - Joseph Chao
- Samuel J. Klempner and Pareen Mehta, The Angeles Clinic and Research Institute; Samuel J. Klempner, Cedars-Sinai Medical Center; Winnie Wu, Providence Saint John’s Hospital, Los Angeles; Joseph Chao, City of Hope Comprehensive Cancer Center, Duarte, CA; and Alexa B. Schrock and Siraj M. Ali, Foundation Medicine, Cambridge, MA
| | - Siraj M. Ali
- Samuel J. Klempner and Pareen Mehta, The Angeles Clinic and Research Institute; Samuel J. Klempner, Cedars-Sinai Medical Center; Winnie Wu, Providence Saint John’s Hospital, Los Angeles; Joseph Chao, City of Hope Comprehensive Cancer Center, Duarte, CA; and Alexa B. Schrock and Siraj M. Ali, Foundation Medicine, Cambridge, MA
| |
Collapse
|
45
|
Kim Y, Cho MY, Kim J, Kim SN, Oh SC, Lee KA. Profiling cancer-associated genetic alterations and molecular classification of cancer in Korean gastric cancer patients. Oncotarget 2017; 8:69888-69905. [PMID: 29050249 PMCID: PMC5642524 DOI: 10.18632/oncotarget.19435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Recently, the Cancer Genome Atlas (TCGA) Research Network and Asian Cancer Research Group provided a new classification of gastric cancer (GC) to aid the development of biomarkers for targeted therapy and predict prognosis. We studied associations between genetically aberrant profiles of cancer-related genes, environmental factors, and histopathological features in 107 paired gastric tumor-non-tumor tissue GC samples. 6.5% of our GC cases were classified as the EBV subtype, 17.8% as the MSI subtype, 43.0% as the CIN subtype, and 32.7% as the GS subtype. The distribution of four GC subgroups based on the TCGA and our dataset were similar. The MSI subtype showed a hyper-mutated status and the best prognosis among molecular subtype. However, molecular classification based on the four GC subtypes showed no significant survival differences in terms of overall survival (p= 0.548) or relapse-free survival (RFS, p=0.518). The P619fs*43 in ZBTB20 was limited to MSI group (n= 5/19, 26.3%), showing similar trends observed in TCGA dataset. Genetic alterations of the RTK/RAS/MAPK and PI3K/AKT/mTOR pathways were detected in 34.6% of GC cases (37 individual cases). We also found two cases with likely pathogenic variants (NM_004360.4: c. 2494 G>A, p.V832M) in the CDH1 gene. Here, we classified molecular subtypes of GC according to the TCGA system and provide a critical starting point for the design of more appropriate clinical trials based on a comprehensive analysis of genetic alterations in Korean GC patients.
Collapse
Affiliation(s)
- Yoonjung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Mee-Yon Cho
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Juwon Kim
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Nam Kim
- Department of Pathology, Samkwang Medical Labotories, Seoul, Korea
| | - Seoung Chul Oh
- Department of Laboratory Medicine, Gangnam Severance Hospital, Seoul, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Abstract
Gastroesophageal cancer (GEC) remains a major cause of cancer-related mortality worldwide. Although the incidence of distal gastric adenocarcinoma (GC) is declining in the United States, proximal esophagogastric junction adenocarcinoma (EGJ) incidence is rising. GC and EGJ, together, are treated uniformly in the metastatic setting as GEC. Overall survival in the metastatic setting remains poor, with few molecular targeted approaches having been successfully incorporated into routine care to date-only first-line anti-HER2 therapy for ERBB2 amplification and second-line anti-VEGFR2 therapy. This article reviews aberrations in epidermal growth factor receptor, MET, and ERBB2, their therapeutic implications, and future directions in targeting these pathways.
Collapse
Affiliation(s)
- Steven B Maron
- Section of Hematology/Oncology, University of Chicago Comprehensive Cancer Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Daniel V T Catenacci
- The University of Chicago Medical Center & Biological Sciences, 900 East 57th Street, KCBD Building, Office 7128, Chicago, IL 60637, USA.
| |
Collapse
|
47
|
Statz CM, Patterson SE, Mockus SM. Barriers preventing the adoption of comprehensive cancer genomic profiling in the clinic. Expert Rev Mol Diagn 2017; 17:549-555. [DOI: 10.1080/14737159.2017.1319280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Lee HS, Kim WH, Kwak Y, Koh J, Bae JM, Kim KM, Chang MS, Han HS, Kim JM, Kim HW, Chang HK, Choi YH, Park JY, Gu MJ, Lhee MJ, Kim JY, Kim HS, Cho MY. Molecular Testing for Gastrointestinal Cancer. J Pathol Transl Med 2017; 51:103-121. [PMID: 28219002 PMCID: PMC5357760 DOI: 10.4132/jptm.2017.01.24] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
With recent advances in molecular diagnostic methods and targeted cancer therapies, several molecular tests have been recommended for gastric cancer (GC) and colorectal cancer (CRC). Microsatellite instability analysis of gastrointestinal cancers is performed to screen for Lynch syndrome, predict favorable prognosis, and screen patients for immunotherapy. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor has been approved in metastatic CRCs with wildtype RAS (KRAS and NRAS exon 2-4). A BRAF mutation is required for predicting poor prognosis. Additionally, amplification of human epidermal growth factor receptor 2 (HER2) and MET is also associated with resistance to EGFR inhibitor in metastatic CRC patients. The BRAF V600E mutation is found in sporadic microsatellite unstable CRCs, and thus is helpful for ruling out Lynch syndrome. In addition, the KRAS mutation is a prognostic biomarker and the PIK3CA mutation is a molecular biomarker predicting response to phosphoinositide 3-kinase/AKT/mammalian target of rapamycin inhibitors and response to aspirin therapy in CRC patients. Additionally, HER2 testing should be performed in all recurrent or metastatic GCs. If the results of HER2 immunohistochemistry are equivocal, HER2 silver or fluorescence in situ hybridization testing are essential for confirmative determination of HER2 status. Epstein-Barr virus-positive GCs have distinct characteristics, including heavy lymphoid stroma, hypermethylation phenotype, and high expression of immune modulators. Recent advances in next-generation sequencing technologies enable us to examine various genetic alterations using a single test. Pathologists play a crucial role in ensuring reliable molecular testing and they should also take an integral role between molecular laboratories and clinicians.
Collapse
Affiliation(s)
- Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Hye Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Hwal Woong Kim
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Young Hee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Ji Y. Park
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Mi Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Min Jin Lhee
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
| | - Jung Yeon Kim
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Hee Sung Kim
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Mee-Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Gastrointestinal Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Molecular Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
49
|
Greil R, Hutterer E, Hartmann TN, Pleyer L. Reactivation of dormant anti-tumor immunity - a clinical perspective of therapeutic immune checkpoint modulation. Cell Commun Signal 2017; 15:5. [PMID: 28100240 PMCID: PMC5244547 DOI: 10.1186/s12964-016-0155-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022] Open
Abstract
In favor of their outgrowth, cancer cells must resist immune surveillance and edit the immune response. Cancer immunoediting is characterized by fundamental changes in the cellular composition and the inflammatory cytokine profiles in the microenvironment of the primary tumor and metastatic niches, with an ever increasing complexity of interactions between tumor cells and the immune system. Recent data suggest that genetic instability and immunoediting are not necessarily disparate processes. Increasing mutational load may be associated with multiple neoepitopes expressed by the tumor cells and thus increased chances for the immune system to recognize and combat these cells. At the same time the immune system is more and more suppressed and exhausted by this process. Consequently, immune checkpoint modulation may have the potential to be most successful in genetically highly altered and usually extremely unfavorable types of cancer. Moreover, the fact that epitopes recognized by the immune system are preferentially encoded by passenger gene mutations opens windows of synergy in targeting cancer-specific signaling pathways by small molecules simultaneously with antibodies modifying T-cell activation or exhaustion. This review covers some aspects of the current understanding of the immunological basis necessary to understand the rapidly developing therapeutic endeavours in cancer treatment, the clinical achievements made, and raises some burning questions for translational research in this field.
Collapse
Affiliation(s)
- Richard Greil
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria. .,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria. .,Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT) Study Group, Salzburg, Austria. .,Cancer Cluster Salzburg (CCS), Salzburg, Austria.
| | - Evelyn Hutterer
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Tanja Nicole Hartmann
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Lisa Pleyer
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria.,Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT) Study Group, Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| |
Collapse
|
50
|
Kim YS, Jeong H, Choi JW, Oh HE, Lee JH. Unique characteristics of ARID1A mutation and protein level in gastric and colorectal cancer: A meta-analysis. Saudi J Gastroenterol 2017; 23:268-274. [PMID: 28937020 PMCID: PMC5625362 DOI: 10.4103/sjg.sjg_184_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Recently, AT-rich interactive domain-containing 1A protein (ARID1A) has been identified as a novel tumor suppressor gene in gastric cancer (GC) and colorectal cancer (CRC). However, the clinicopathologic value of ARID1A mutation or protein level in GC and CRC patients is controversial. Hence, we conducted a meta-analysis on the relationship between ARID1A aberrations and clinicopathologic parameters in GC and CRC. MATERIALS AND METHODS Relevant published studies were selected from PubMed and EMBASE. The effect sizes of ARID1A mutation or level on the patient's clinicopathologic parameters were calculated by prevalence rate or odds ratio (OR) or hazard ratio (HR), respectively. The effect sizes were combined using a random-effects model. RESULTS The frequency of ARID1A mutation and loss of ARID1A protein expression in GC patients was 17% and 27%, respectively. The loss of ARID1A protein expression of GC patients was significantly associated with advanced tumor depth (OR = 1.8, P = 0.004), lymph node metastasis (OR = 1.4, P = 0.001), and unfavorable adjusted overall survival (HR = 1.5, P < 0.001). ARID1A mutation of GC was significantly associated with microsatellite instability (MSI) (OR = 24.5, P < 0.001) and EBV infection (OR = 2.6, P = 0.001). The frequency of ARID1A mutation and ARID1A protein expression loss in CRC patients was approximately 12-13%. Interestingly, the loss of ARID1A protein expression in CRC patients was significantly associated with poorly differentiated grade (OR = 4.0, P < 0.001) and advanced tumor depth (OR = 1.8, P = 0.012). CONCLUSION Our meta-analysis revealed that ARID1A alterations may be involved in the carcinogenesis of GC by EBV infection and MSI. The loss of ARID1A protein expression may be a marker of poor prognosis in GC and CRC patients.
Collapse
Affiliation(s)
- Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Hoiseon Jeong
- Department of Pathology, Korea University Ansan Hospital, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Hwa Eun Oh
- Department of Pathology, Korea University Ansan Hospital, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea,Address for correspondence: Dr. Ju-Han Lee, Department of Pathology, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, Republic of Korea. E-mail:
| |
Collapse
|