1
|
Díaz Alarcón RG, Liotta DJ, Miño S. Zoonotic RVA: State of the Art and Distribution in the Animal World. Viruses 2022; 14:v14112554. [PMID: 36423163 PMCID: PMC9694813 DOI: 10.3390/v14112554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Rotavirus species A (RVA) is a pathogen mainly affecting children under five years old and young animals. The infection produces acute diarrhea in its hosts and, in intensively reared livestock animals, can cause severe economic losses. In this study, we analyzed all RVA genomic constellations described in animal hosts. This review included animal RVA strains in humans. We compiled detection methods, hosts, genotypes and complete genomes. RVA was described in 86 animal species, with 52% (45/86) described by serology, microscopy or the hybridization method; however, strain sequences were not described. All of these reports were carried out between 1980 and 1990. In 48% (41/86) of them, 9251 strain sequences were reported, with 28% being porcine, 27% bovine, 12% equine and 33% from several other animal species. Genomic constellations were performed in 80% (32/40) of hosts. Typical constellation patterns were observed in groups such as birds, domestic animals and artiodactyls. The analysis of the constellations showed RVA's capacity to infect a broad range of species, because there are RVA genotypes (even entire constellations) from animal species which were described in other studies. This suggests that this virus could generate highly virulent variants through gene reassortments and that these strains could be transmitted to humans as a zoonotic disease, making future surveillance necessary for the prevention of future outbreaks.
Collapse
Affiliation(s)
- Ricardo Gabriel Díaz Alarcón
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
| | - Domingo Javier Liotta
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Tropical Medicine (INMeT)—ANLIS “Dr. Carlos Malbrán”, Puerto Iguazú 3370, Misiones, Argentina
| | - Samuel Miño
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Agricultural Technology (INTA), EEA Cerro Azul, National Route 14, Km 836, Cerro Azul 3313, Misiones, Argentina
- Correspondence: ; Tel.: +54-376-449-4740 (ext. 120)
| |
Collapse
|
2
|
Duarte Júnior JWB, Chagas EHN, Serra ACS, Souto LCDS, da Penha Júnior ET, Bandeira RDS, e Guimarães RJDPS, Oliveira HGDS, Sousa TKS, Lopes CTDA, Domingues SFS, Pinheiro HHC, Malik YS, Salvarani FM, Mascarenhas JDP. Ocurrence of rotavirus and picobirnavirus in wild and exotic avian from amazon forest. PLoS Negl Trop Dis 2021; 15:e0008792. [PMID: 34506499 PMCID: PMC8432778 DOI: 10.1371/journal.pntd.0008792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
The present study reports the occurrence of rotavirus A (RVA), rotavirus D (RVD), rotavirus F (RVF), rotavirus G (RVG), and picobirnavirus (PBV) in fecal specimens of wild (n = 22), and exotic birds (n = 1) from different cities of Pará state. These animals were hospitalized at Veterinary Hospital of the Federal University of Pará, Brazil, in a period from January 2018 to June 2019. The animals exhibited different clinical signs, such as diarrhea, malnutrition, dehydration, and fractures. The results showed 39.1% (9/23) of positivity for RVA by RT-qPCR. Among these, one sample (1/9) for the NSP3 gene of T2 genotype was characterized. About 88.9% (8/9) for the VP7 gene belonging to G1, G3 equine like and G6 genotypes, and 55.5% (5/9) for the VP4 gene of P[2] genotype were obtained. In the current study, approximately 4.5% of the samples (1/23) revealed coinfection for the RVA, RVD and RVF groups. Furthermore, picobirnavirus (PBV) was detected in one of the 23 samples tested, and was classified in the Genogroup I. The findings represent the first report of RVA, RVD, RVF, RVG, and PBV genotypes in wild birds in Brazil, and due to wide distribution it can implies potential impacts of RVs, and PBVs on avian health, and other animals contributing to construction of new knowledge, and care perspectives.
Collapse
|
3
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
4
|
Beserra LAR, Barbosa CM, Berg M, Brandão PE, Soares RM, Gregori F. Genome constellations of rotavirus a isolated from avian species in Brazil, 2008-2015. Braz J Microbiol 2020; 51:1363-1375. [PMID: 32378061 DOI: 10.1007/s42770-020-00259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022] Open
Abstract
Rotaviruses are members of the family Reoviridae and are a common cause of acute diarrhea in many mammalian and avian species. They are non-enveloped icosahedral particles and their genome comprises 11 segments of double-stranded RNA, which encodes six structural proteins (VP1-4, VP6-7) and six nonstructural proteins (NSP1-6). Genotypes are defined based upon the diversity found in these genes and viral characterization plays a central role on epidemiological studies and prevention. Here we investigate the distribution of Brazilian RVAs genotypes in 8 chicken samples collected between 2008 and 2015 from different regions by RT-PCR, partial (Sanger) nucleotide sequencing and phylogenetic analysis from all rotavirus genes. Although the identified genotypes were typical from avian host species, when analyzed together, they form novel genetic constellations: G19-P[31]-I11-R6-C6-M7-A16-N6-T8-E10-H8 and G19-P[31]-I4-R4-C4-M4-A16-N4-T4-E4-H4. This study highlights that avian rotaviruses are widespread among commercial farms in Brazil, and the co-circulation of at least two different genomic constellations indicates that may present a way bigger genetic variability, that can be increased by the possible transmission events from other birds, lack of specific preventive measures, as well as the different viral evolution mechanisms.
Collapse
Affiliation(s)
- Laila A R Beserra
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil.
| | - Carla M Barbosa
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Prof. Lineu Prestes, 1374, São Paulo, SP, CEP 05508 900, Brazil
| | - Mikael Berg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU). BVF, Virologi, Box 7028, 75007, Uppsala, Sweden
| | - Paulo E Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil
| | - Rodrigo M Soares
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil
| | - Fabio Gregori
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil
| |
Collapse
|
5
|
McCowan C, Crameri S, Kocak A, Shan S, Fegan M, Forshaw D, Rubbenstroth D, Chen H, Holmes C, Harper J, Dearnley M, Batovska J, Bergfeld J, Walker C, Wang J. A novel group A rotavirus associated with acute illness and hepatic necrosis in pigeons (Columba livia), in Australia. PLoS One 2018; 13:e0203853. [PMID: 30204797 PMCID: PMC6133385 DOI: 10.1371/journal.pone.0203853] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Cases of vomiting and diarrhoea were reported in racing pigeons in Western Australia in May, 2016. Morbidity and mortality rates were high. Similar clinical disease was seen in Victoria in December and by early 2017 had been reported in all states except the Northern Territory, in different classes of domestic pigeon–racing, fancy and meat bird–and in a flock of feral pigeons. Autopsy findings were frequently unremarkable; histological examination demonstrated significant hepatic necrosis as the major and consistent lesion, often with minimal inflammatory infiltration. Negative contrast tissue suspension and thin section transmission electron microscopy of liver demonstrated virus particles consistent with a member of the Reoviridae. Inoculation of trypsin-treated Vero, MDBK and MA-104 cell lines resulted in cytopathic changes at two days after infection. Next generation sequencing was undertaken using fresh liver samples and a previously undescribed group A rotavirus (genotype G18P[17]) of avian origin was identified and the virus was isolated in several cell lines. A q-RT-PCR assay was developed and used to screen a wider range of samples, including recovered birds. Episodes of disease have continued to occur and to reoccur in previously recovered lofts, with variable virulence reported. This is the first report of a rotavirus associated with hepatic necrosis in any avian species.
Collapse
Affiliation(s)
| | - Sandra Crameri
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Ayfer Kocak
- Agriculture Victoria, Bundoora, Victoria, Australia
| | - Songhua Shan
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mark Fegan
- Agriculture Victoria, Bundoora, Victoria, Australia
| | - David Forshaw
- Department of Primary Industries and Regional Development, Albany, Western Australia, Australia
| | - Dennis Rubbenstroth
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Institute for Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald–Insel Riems, Germany
| | - Honglei Chen
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Clare Holmes
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jenni Harper
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Megan Dearnley
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Jana Batovska
- Agriculture Victoria, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Jemma Bergfeld
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Colin Walker
- Melbourne Bird Veterinary Clinic, Scoresby, Melbourne, Australia
| | - Jianning Wang
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Abstract
Group A rotavirus (RVA), an etiological agent of gastroenteritis in young mammals and birds, possesses a genome of 11 double-stranded RNA segments. Although it is believed that the RVA virion contains one copy of each genomic segment and that the positive-strand RNA (+RNA) is incorporated into the core shell, the packaging mechanisms of RVA are not well understood. Here, packaging signals of RVA were searched for by analyzing genomic sequences of mammalian and avian RVA, which are considered to have evolved independently without reassortment. Assuming that packaging is mediated by direct interaction between +RNA segments via base-pairing, co-evolving complementary nucleotide sites were identified within and between genomic segments. There were two pairs of co-evolving complementary sites within the segment encoding VP7 (the VP7 segment) and one pair between the NSP2 and NSP3 segments. In the VP7 segment, the co-evolving complementary sites appeared to form stem structures in both mammalian and avian RVA, supporting their functionality. In contrast, co-evolving complementary sites between the NSP2 and NSP3 segments tended to be free from base-pairings and constituted loop structures, at least in avian RVA, suggesting that they are involved in a specific interaction between these segments as a packaging signal.
Collapse
|
7
|
Beserra LAR, Barbosa BRP, Bernardes NTCG, Brandão PE, Gregori F. Occurrence and characterization of rotavirus A in broilers, layers, and broiler breeders from Brazilian poultry farms. Avian Dis 2014; 58:153-7. [PMID: 24758129 DOI: 10.1637/10626-080513-resnote.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rotaviruses are a major cause of diarrhea in humans and animals, including several mammalian and avian species. Using different PCR protocols, we report the occurrence of rotavirus A in 21 (53.84%; 21/39) from 39 fecal pool samples of broilers, layers, and broiler breeders from Brazilian avian farms. We typed the G5, G8, G11, G19, and P[31] genotypes.
Collapse
|
8
|
Abstract
Gut health is very important to get maximum returns in terms of weight gain and egg production. Enteric diseases such as poult enteritis complex (PEC) in turkeys do not allow their production potential to be achieved to its maximum. A number of viruses, bacteria, and protozoa have been implicated but the primary etiology has not been definitively established. Previously, electron microscopy was used to detect the presence of enteric viruses, which were identified solely on the basis of their morphology. With the advent of rapid molecular diagnostic methods and next generation nucleic acid sequencing, researchers have made long strides in identification and characterization of viruses associated with PEC. The molecular techniques have also helped us in identification of pathogens which were previously not known. Regional and national surveys have revealed the presence of several different enteric viruses in PEC including rotavirus, astrovirus, reovirus and coronavirus either alone or in combination. There may still be unknown pathogens that may directly or indirectly play a role in enteritis in turkeys. This review will focus on the role of turkey coronavirus, rotavirus, reovirus, and astrovirus in turkey enteritis.
Collapse
|
9
|
Ghosh S, Kobayashi N. Exotic rotaviruses in animals and rotaviruses in exotic animals. Virusdisease 2014; 25:158-72. [PMID: 25674582 DOI: 10.1007/s13337-014-0194-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022] Open
Abstract
Group A rotaviruses (RVA) are a major cause of viral diarrhea in the young of mammals and birds. RVA strains with certain genotype constellations or VP7-VP4 (G-P) genotype combinations are commonly found in a particular host species, whilst unusual or exotic RVAs have also been reported. In most cases, these exotic rotaviruses are derived from RVA strains common to other host species, possibly through interspecies transmission coupled with reassortment events, whilst a few other strains exhibit novel genotypes/genetic constellations rarely found in other RVAs. The epidemiology and evolutionary patterns of exotic rotaviruses in humans have been thoroughly reviewed previously. On the other hand, there is no comprehensive review article devoted to exotic rotaviruses in domestic animals and birds so far. The present review focuses on the exotic/unusual rotaviruses detected in livestock (cattle and pigs), horses and companion animals (cats and dogs). Avian rotaviruses (group D, group F and group G strains), including RVAs, which are genetically divergent from mammalian RVAs, are also discussed. Although scattered and limited studies have reported rotaviruses in several exotic animals and birds, including wildlife, these data remain to be reviewed. Therefore, a section entitled "rotaviruses in exotic animals" was included in the present review.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556 Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556 Japan
| |
Collapse
|
10
|
|
11
|
Trojnar E, Sachsenröder J, Twardziok S, Reetz J, Otto PH, Johne R. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol 2013; 94:136-142. [DOI: 10.1099/vir.0.047381-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Group A rotaviruses (RVAs) are an important cause of diarrhoeal illness in humans, as well as in mammalian and avian animal species. Previous sequence analyses indicated that avian RVAs are related only distantly to mammalian RVAs. Here, the complete genomes of RVA strain 03V0002E10 from turkey (Meleagris gallopavo) and RVA strain 10V0112H5 from pheasant (Phasianus colchicus) were analysed using a combination of 454 deep sequencing and Sanger sequencing technologies. An adenine-rich insertion similar to that found in the chicken RVA strain 02V0002G3, but considerably shorter, was found in the 3′ NCR of the NSP1 gene of the pheasant strain. Most genome segments of both strains were related closely to those of avian RVAs. The novel genotype N10 was assigned to the NSP2 gene of the pheasant RVA, which is related most closely to genotype N6 found in avian RVAs. However, this virus contains a VP4 gene of the novel genotype P[37], which is related most closely to RVAs from pigs, dogs and humans. This strain either may represent an avian/mammalian rotavirus reassortant, or it carries an unusual avian rotavirus VP4 gene, thereby broadening the potential genetic and antigenic variability among RVAs.
Collapse
Affiliation(s)
- Eva Trojnar
- Federal Institute for Risk Assessment, Max-Dohrn Straße 8-10, 10589 Berlin, Germany
- Free University Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Jana Sachsenröder
- Federal Institute for Risk Assessment, Max-Dohrn Straße 8-10, 10589 Berlin, Germany
- Free University Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Sven Twardziok
- Institute for Molecular Biology and Bioinformatic, Charite, Arnimallee 22, 14195 Berlin, Germany
| | - Jochen Reetz
- Federal Institute for Risk Assessment, Max-Dohrn Straße 8-10, 10589 Berlin, Germany
| | - Peter H. Otto
- Friedrich Loeffler Institute, Institute for Bacterial Infections and Zoonoses, Naumburger Straße 96a, 07743 Jena, Germany
| | - Reimar Johne
- Federal Institute for Risk Assessment, Max-Dohrn Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|