1
|
Achatz TJ, Cleveland DW, Orlofske SA, Jadin RC, Block J, Belden LK, Pinto HA, Tkach VV. A RE-EVALUATION OF ZYGOCOTYLE (DIGENEA, PARAMPHISTOMOIDEA) BASED ON NEW GENETIC DATA SUPPORTS ITS SYNONYMIZATION WITH WARDIUS. J Parasitol 2025; 111:41-47. [PMID: 39909066 DOI: 10.1645/24-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
The Zygocotylidae Ward, 1917 is a compact family of amphistome digeneans that until now comprised 2 genera, each represented by a single species: Zygocotyle lunata (Diesing, 1836) Stunkard, 1916 and Wardius zibethicus Barker and East, 1915 in Barker 1915. Despite highly similar morphology, these genera are separated based on the presence (Zygocotyle) or absence (Wardius) of posterolateral projections (=lappets) on the ventral sucker and esophageal bulb. In the present study, we generated partial large ribosomal subunit (28S), internal transcribed spacer 2 (ITS2) rDNA, and cytochrome c oxidase subunit 1 (COI) sequences of Z. lunata from several hosts (12 avian and 1 rodent species) throughout North and South America as well as 28S and COI sequences of W. zibethicus from muskrat in North America. The newly generated 28S sequences were used for sequence comparison and phylogenetic analysis. The COI sequences were used for species-level comparisons. Our analysis revealed a close relationship and high sequence similarity between Z. lunata and W. zibethicus. Considering the low morphological and genetic differences, we synonymize ZygocotyleStunkard, 1916 with Wardius Barker and East, 1915 in Barker 1915 and transfer Z. lunata to Wardius as Wardius lunatus (Diesing, 1836) n. comb.
Collapse
Affiliation(s)
- Tyler J Achatz
- Department of Natural Sciences, Middle Georgia State University, Macon, Georgia 31206
| | - Dawn W Cleveland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| | - Sarah A Orlofske
- Department of Biology and Museum of Natural History, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin 54481
| | - Robert C Jadin
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Jason Block
- Department of Biology, Northeastern Illinois University, Chicago, Illinois 60625
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Hudson A Pinto
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202
| |
Collapse
|
2
|
Hodinka C, Detwiler JT. HOST SPECIES, HOST SIZE, AND MIRACIDIAL DOSE INFLUENCE THE INFECTION SUCCESS OF ECHINOSTOMA TRIVOLVIS LINEAGE C LARVAE. J Parasitol 2024; 110:725-729. [PMID: 39724939 DOI: 10.1645/24-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Completing parts of trematode life cycles in the laboratory is a useful way to obtain experimentally infected hosts and identify how specific aspects of parasitism influence host ecology and behavior. However, a lack of knowledge about host specificity and other factors that influence prevalence can hamper those efforts. Echinostoma trivolvis lineage c is a genetically distinct member of the E. trivolvis species complex that is known only from DNA sequences from adult and larval stages recovered from naturally infected muskrats (Ondatra zibethicus) and the marsh pondsnail (Ladislavella elodes), respectively. We determined the effect of host species/morphotype, host size, and miracidial dose on the infection success in potential first intermediate hosts. In the laboratory, we exposed 2 freshwater snail species (L. elodes and Planorbella duryi) and a morphological variant of L. elodes (formerly known as Stagnicola reflexa) to 2 miracidia to determine first intermediate host use. Among these 3 snail groups, we also tested the effect of host size on infection success with 3 size classes (1-5 mm, 5-10 mm, and 10-15 mm). Within 1 host species, L. elodes, we compared the effect of 2 doses (2 and 5 miracidia) and 3 size classes on infection success. At a dose of 2 miracidia, rediae and cercariae developed within 1 host species, L. elodes, as well as the S. reflexa morphotype, although infection success varied according to host size. At a dose of 5 miracidia, infection success increased in small and medium-size L. elodes relative to the low dose group. Our results confirm the first intermediate host species observed in nature but indicate that prevalence is influenced by host species morphotype, host size, and parasite dose. To obtain more infected snails, our experiments suggest exposing small and medium-size L. elodes snails to 5 miracidia. This research encourages further use of E. trivolvis lineage c in the laboratory to explore aspects of host-parasite interactions such as parasite-modified behavior.
Collapse
Affiliation(s)
- Cameron Hodinka
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Jillian T Detwiler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
3
|
Hu Y, Zhan RJ, Lu SL, Zhang YY, Zhou MY, Huang H, Wang DD, Zhang T, Huang ZX, Zhou YF, Lv ZY. Global distribution of zoonotic digenetic trematodes: a scoping review. Infect Dis Poverty 2024; 13:46. [PMID: 38877531 PMCID: PMC11177464 DOI: 10.1186/s40249-024-01208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Digenetic trematodes, including blood flukes, intestinal flukes, liver flukes, lung flukes, and pancreatic flukes, are highly diverse and distributed widely. They affect at least 200 million people worldwide, so better understanding of their global distribution and prevalence are crucial for controlling and preventing human trematodiosis. Hence, this scoping review aims to conduct a comprehensive investigation on the spatio-temporal distribution and epidemiology of some important zoonotic digenetic trematodes. METHODS We conducted a scoping review by searching PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wanfang databases for articles, reviews, and case reports of zoonotic digenetic trematodes, without any restrictions on the year of publication. We followed the inclusion and exclusion criteria to identify relevant studies. And relevant information of the identified studies were collected and summarized. RESULTS We identified a total of 470 articles that met the inclusion criteria and were included in the review finally. Our analysis revealed the prevalence and global distribution of species in Schistosoma, Echinostoma, Isthmiophora, Echinochasmus, Paragonimus, Opisthorchiidae, Fasciolidae, Heterophyidae, and Eurytrema. Although some flukes are distributed worldwide, developing countries in Asia and Africa are still the most prevalent areas. Furthermore, there were some overlaps between the distribution of zoonotic digenetic trematodes from the same genus, and the prevalence of some zoonotic digenetic trematodes was not entirely consistent with their global distribution. The temporal disparities in zoonotic digenetic trematodes may attribute to the environmental changes. The gaps in our knowledge of the epidemiology and control of zoonotic digenetic trematodes indicate the need for large cohort studies in most countries. CONCLUSIONS This review provides important insights into the prevalence and global distribution of some zoonotic digenetic trematodes, firstly reveals spatio-temporal disparities in these digenetic trematodes. Countries with higher prevalence rate could be potential sources of transmitting diseases to other areas and are threat for possible outbreaks in the future. Therefore, continued global efforts to control and prevent human trematodiosis, and more international collaborations are necessary in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Rong-Jian Zhan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Lin Lu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yi-Yang Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Min-Yu Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Hui Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Ding-Ding Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Tao Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zi-Xin Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yun-Fei Zhou
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan, China
| | - Zhi-Yue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Bedin LC, Alves PV, da Silva RJ. Evolutionary affinities and morphological characterization of the enigmatic Zonocotyle bicaecata (Trematoda: Paramphistomoidea: Zonocotylidae) from the Upper Paraná River basin. Syst Parasitol 2024; 101:30. [PMID: 38635136 DOI: 10.1007/s11230-024-10158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Neotropical fish amphistomes represent a highly diverse group within the Paramphistomoidea, with wide distribution across major South American hydrological drainages. However, the limited molecular characterization of these taxa has impeded a comprehensive assessment of their evolutionary relationships and the systematic relevance of morphological features in classification schemes. Our study, based on the critical evaluation of the type material of both nominal species of Zonocotyle (type genus of the monotypic Zonocotylidae), and newly collected specimens of Zonocotyle bicaecata from Steindachnerina insculpta (Curimatidae) in the Upper Paraná River basin, Brazil, presents a morphological reappraisal of Z. bicaecata and provides molecular data (28S rDNA, ITS1-5.8S-ITS2 region, and COI mtDNA) to assess its phylogenetic relationships. Our phylogenetic analyses confirm this species belongs to the Paramphistomoidea. The most comprehensive analyses (based on 28S and COI) further indicate a close relationship with other fish amphistomes from the Neotropical region. Additionally, we emphasized the necessity for a new classification within Paramphistomoidea and briefly discussed the host range of Zonocotyle among curimatid fish hosts.
Collapse
Affiliation(s)
- Letícia C Bedin
- Instituto de Biociências, Setor de Parasitologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18616-689, Brazil
| | - Philippe V Alves
- Instituto de Biociências, Setor de Parasitologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18616-689, Brazil.
| | - Reinaldo J da Silva
- Instituto de Biociências, Setor de Parasitologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18616-689, Brazil
| |
Collapse
|
5
|
Bolek MG, Detwiler JT, Stigge HA. Selected Wildlife Trematodes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:391-440. [PMID: 39008272 DOI: 10.1007/978-3-031-60121-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The trematodes are a species-rich group of parasites, with some estimates suggesting that there are more than 24,000 species. However, the complexities associated with their taxonomic status and nomenclature can hinder explorations of the biology of wildlife trematodes, including fundamental aspects such as host use, life cycle variation, pathology, and disease. In this chapter, we review work on selected trematodes of amphibians, birds, mammals, and their snail intermediate hosts, with the goal of providing a tool kit on how to study trematodes of wildlife. We provide a brief introduction to each group of wildlife trematodes, followed by some examples of the challenges each group of trematodes has relative to the goal of their identification and understanding of the biology and interactions these organisms have with their wildlife hosts.
Collapse
Affiliation(s)
- Matthew G Bolek
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| | - Jillian T Detwiler
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
6
|
Flores VR, Hernández-Orts JS, Viozzi GP. A new species of Notocotylus (Digenea: Notocotylidae) from the black-necked swan Cygnus melancorhyphus (Molina) of Argentina. Vet Parasitol Reg Stud Reports 2023; 45:100925. [PMID: 37783528 DOI: 10.1016/j.vprsr.2023.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023]
Abstract
Notocotylus cygni n. sp. is described here, taken from the intestine of the black-necked swan Cygnus melancoryphus (Molina) of Patagonia, Argentina. This new species differs from other members of the genus Notocotylus by having the genital pore anterior to the caecal bifurcation (located slightly posterior to oral sucker) and the unequal number and arrangement of ventral papillae (2-3 in the lateral rows and 10-12 in the median row). Phylogenetic analyses of the 28S and ITS1-5.8S ribosomal DNA (rRNA) sequences of the new species and other notocotylid trematodes available in GenBank indicate that N. cygni n. sp. is a sister taxon of Notocotylus fosteri Kinsella et Tkach, 2005, a trematode of the intestine of the rice rat Oryzomys palustris of Florida, United States. The new species differs from N. fosteri in the unequal number and arrangement of ventral papillae, number of uterine loops, size of the egg, definitive hosts (birds vs. mammals), and disparate environment and geographical distribution (freshwater environment in Patagonia vs. salt marsh in North America). This is the eighth species of Notocotylus reported from birds in Argentina, and the ninth species from the family Notocotylidae recorded in black-necked swans in South America.
Collapse
Affiliation(s)
- Verónica Roxana Flores
- Laboratorio de Parasitología, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina.
| | - Jesús Servando Hernández-Orts
- Natural History Museum, London, United Kingdom; Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gustavo Pedro Viozzi
- Laboratorio de Parasitología, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
7
|
Valadão MC, Alves PV, López-Hernández D, Assis JCA, Coelho PRS, Geiger SM, Pinto HA. A new cryptic species of Echinostoma (Trematoda: Echinostomatidae) closely related to Echinostoma paraensei found in Brazil. Parasitology 2023; 150:337-347. [PMID: 36632020 PMCID: PMC10090611 DOI: 10.1017/s003118202300001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023]
Abstract
Echinostoma paraensei, described in Brazil at the end of the 1960s and used as a biological model for a range of studies, belongs to the ‘revolutum’ complex of Echinostoma comprising species with 37 collar spines. However, molecular data are available only for a few isolates maintained under laboratory conditions, with molecular prospecting based on specimens originating from naturally infected hosts virtually lacking. The present study describes Echinostoma maldonadoi Valadão, Alves & Pinto n. sp., a species cryptically related to E. paraensei found in Brazil. Larval stages (cercariae, metacercariae and rediae) of the new species were found in the physid snail Stenophysa marmorata in the State of Minas Gerais, Brazil, the same geographical area where E. paraensei was originally described. Adult parasites obtained experimentally in Meriones unguiculatus were used for morphological (optical microscopy) and molecular [28S, internal transcribed spacer (ITS), nad1 and cox1] characterization. The morphology of larval and adult parasites (most notable the small-sized dorsal spines in the head collar), associated with low (0–0.1%) molecular divergence for 28S gene or ITS region, and only moderate divergence for the mitochondrial cox1 gene (3.83%), might suggest that the newly collected specimens should be assigned to E. paraensei. However, higher genetic divergence (6.16–6.39%) was found in the mitochondrial nad1, revealing that it is a genetically distinct, cryptic lineage. In the most informative phylogenetic reconstruction, based on nad1, E. maldonadoi n. sp. exhibited a strongly supported sister relationship with E. paraensei, which may indicate a very recent speciation event giving rise to these 2 species.
Collapse
Affiliation(s)
- Marisa C. Valadão
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Philippe V. Alves
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
- Section of Parasitology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689, Botucatu, São Paulo, Brazil
| | - Danimar López-Hernández
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana C. A. Assis
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo R. S. Coelho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Stefan M. Geiger
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Hudson A. Pinto
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Enabulele EE, Lawton SP, Walker AJ, Kirk RS. Molecular epidemiological analyses reveal extensive connectivity between Echinostoma revolutum (sensu stricto) populations across Eurasia and species richness of zoonotic echinostomatids in England. PLoS One 2023; 18:e0270672. [PMID: 36745633 PMCID: PMC9901765 DOI: 10.1371/journal.pone.0270672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Echinostoma revolutum (sensu stricto) is a widely distributed member of the Echinostomatidae, a cosmopolitan family of digenetic trematodes with complex life cycles involving a wide range of definitive hosts, particularly aquatic birds. Integrative taxonomic studies, notably those utilising nad1 barcoding, have been essential in discrimination of E. revolutum (s.s.) within the 'Echinostoma revolutum' species complex and investigation of its molecular diversity. No studies, however, have focussed on factors affecting population genetic structure and connectivity of E. revolutum (s.s.) in Eurasia. Here, we used morphology combined with nad1 and cox1 barcoding to determine the occurrence of E. revolutum (s.s.) and its lymnaeid hosts in England for the first time, in addition to other echinostomatid species Echinoparyphium aconiatum, Echinoparyphium recurvatum and Hypoderaeum conoideum. Analysis of genetic diversity in E. revolutum (s.s.) populations across Eurasia demonstrated haplotype sharing and gene flow, probably facilitated by migratory bird hosts. Neutrality and mismatch distribution analyses support possible recent demographic expansion of the Asian population of E. revolutum (s.s.) (nad1 sequences from Bangladesh and Thailand) and stability in European (nad1 sequences from this study, Iceland and continental Europe) and Eurasian (combined data sets from Europe and Asia) populations with evidence of sub-population structure and selection processes. This study provides new molecular evidence for a panmictic population of E. revolutum (s.s.) in Eurasia and phylogeographically expands the nad1 database for identification of echinostomatids.
Collapse
Affiliation(s)
- Egie E. Enabulele
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Scott P. Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- Epidemiology Research Unit, Department of Veterinary and Animal Sciences, Northern Faculty, Scotland’s Rural College, Inverness, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Molecular and phylogenetic analysis and risk assessment of a trematode parasite, Artyfechinostomum sufrartyfex Lane, 1915 with a new host record from India. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Valadão MC, López-Hernández D, Alves PV, Pinto HA. A new species of Echinostoma (Trematoda: Echinostomatidae) from the ' revolutum' group found in Brazil: refuting the occurrence of Echinostoma miyagawai (= E. robustum) in the Americas. Parasitology 2022; 149:325-336. [PMID: 35264265 PMCID: PMC11010529 DOI: 10.1017/s0031182021001864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 11/06/2022]
Abstract
Although Echinostoma robustum (currently a synonym of E. miyagawai) was reported in the Americas based on molecular data, morphological support on adult parasites is still required. Herein, a new species of Echinostoma is described based on worms found in a chicken from Brazil. Molecular phylogenetic analyses based on 28S (1063 bp), ITS (947 bp) and Nad-1 (442 bp) datasets reveal the inclusion of the new species within Echinostoma ‘revolutum’ species complex. Moreover, it was verified the conspecificity between cercariae previously identified as E. robustum in Brazil [identical ITS and only 0.3% of divergence (1 nucleotide) in Nad-1]. Species discovery analyses show that these two isolates form an independent lineage (species) among Echinostoma spp. Compared to E. miyagawai, the new species presents relatively high divergence in Nad-1 (7.88–9.09%). Morphologically, the specimens are distinguished from all nominal species from the ‘revolutum’ species complex by the more posterior position of the testes (length of post-testicular field as a proportion of body length about 20%). They further differ from E. miyagawai and South American Echinostoma spp. by the higher proportion of forebody to the body length. Therefore, combined molecular and morphological evidence supports the proposal of the species named here as Echinostoma pseudorobustum sp. nov.
Collapse
Affiliation(s)
- Marisa C. Valadão
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Danimar López-Hernández
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Philippe V. Alves
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| | - Hudson A. Pinto
- Department of Parasitology, Laboratório de Biologia de Trematoda, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 30123-970, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Friesen OC, Li CH, Sykes EME, Stout JM, Aukema HM, Kumar A, Detwiler JT. Density-Dependent Prophylaxis in Freshwater Snails Driven by Oxylipin Chemical Cues. Front Immunol 2022; 13:826500. [PMID: 35173735 PMCID: PMC8841777 DOI: 10.3389/fimmu.2022.826500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
While animal aggregations can benefit the fitness of group members, the behaviour may also lead to higher risks of parasite infection as group density increases. Some animals are known to moderate their investment in immunity relative to the risk of infection. These animals exhibit density-dependent prophylaxis (DDP) by increasing their immune investment as group density increases. Despite being documented in many taxa, the mechanisms of DDP remain largely unexplored. Snails are known to aggregate and experience large fluctuations in density and serve as required hosts for many parasites. Further, they are known to use chemical cues to aggregate. To test whether freshwater snails exhibit DDP and investigate the role that chemical signaling compounds may play in triggering this phenomenon, we performed four experiments on the freshwater snail Stagnicola elodes, which is a common host for many trematode parasite species. First, we tested if DDP occurred in snails in laboratory-controlled conditions (control vs snail-conditioned water) and whether differences in exposure to chemical cues affected immune function. Second, we used gas chromatography to characterize fatty acids expressed in snail-conditioned water to determine if precursors for particular signaling molecules, such as oxylipins, were being produced by snails. Third, we characterized the oxylipins released by infected and uninfected field-collected snails, to better understand how differences in oxylipin cocktails may play a role in inducing DDP. Finally, we tested the immune response of snails exposed to four oxylipins to test the ability of specific oxylipins to affect DDP. We found that snails exposed to water with higher densities of snails and raised in snail-conditioned water had higher counts of haemocytes. Additionally, lipid analysis demonstrated that fatty acid molecules that are also precursors for oxylipins were present in snail-conditioned water. Trematode-infected snails emitted 50 oxylipins in higher amounts, with 24 of these oxylipins only detected in this group. Finally, oxylipins that were higher in infected snails induced naïve snails to increase their immune responses compared to sham-exposed snails. Our results provide evidence that snails exhibit DDP, and the changes in oxylipins emitted by infected hosts may be one of the molecular mechanisms driving this phenomenon.
Collapse
Affiliation(s)
- Olwyn C. Friesen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chen-Hua Li
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jake M. Stout
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Harold M. Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jillian T. Detwiler
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Izrailskaia AV, Besprozvannykh VV, Tatonova YV. Echinostoma chankensis nom. nov., other Echinostoma spp. and Isthmiophora hortensis in East Asia: morphology, molecular data and phylogeny within Echinostomatidae. Parasitology 2021; 148:1366-1382. [PMID: 34103113 PMCID: PMC11010142 DOI: 10.1017/s0031182021000950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/06/2022]
Abstract
Life cycles, and morphological and molecular data were obtained for Echinostoma chankensis nom. nov., Echinostoma cinetorchis, Echinostoma miyagawai and Isthmiophora hortensis from East Asia. It was established that, based on both life cycle and morphology data, one of the trematodes is identical to the worms designated as Euparyphium amurensis. Genetic data showed that this trematode belongs to Echinostoma. The complex data on biological, morphological and genetic characterizations establish that the distribution of the morphologically similar species, I. hortensis and Isthmiophora melis, in the Old World are limited by the East Asian and European regions, respectively. Data on mature worms of East Asian E. miyagawai revealed morphological and genetic identity with E. miyagawai from Europe. However, E. miyagawai from Europe differs from E. miyagawai from the type locality (East Asia) in terms of reaching maturity and the morphology of cercariae. These data indicate that the European worm, designated E. miyagawai, does not belong to this species. An analysis of the phylogenetic relationships of Echinostomatidae was conducted based on the 28S, ITS2 and nad1 markers. Analysis using the nad1 gene for the known representatives of Echinostomatidae is carried out for the first time, showing that nuclear markers are ineffective separate from mitochondrial ones.
Collapse
Affiliation(s)
- Anna V. Izrailskaia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, School of Biomedicine, Sukhanova, 8, Vladivostok, 690091, Russian Federation
| | - Vladimir V. Besprozvannykh
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok, 690022, Russian Federation
| | - Yulia V. Tatonova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 100-letiya Street, 159, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, School of Biomedicine, Sukhanova, 8, Vladivostok, 690091, Russian Federation
| |
Collapse
|
13
|
Schuster RK, Specht P, Rieger S. On the Helminth Fauna of the Muskrat ( Ondatra zibethicus (Linnaeus, 1766)) in the Barnim District of Brandenburg State/Germany. Animals (Basel) 2021; 11:2444. [PMID: 34438901 PMCID: PMC8388652 DOI: 10.3390/ani11082444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
The muskrat is a neozoon species that has occupied many countries of continental North Europe after its introduction from north America as fur animals. Due to its burrowing activity it damages river and canal banks and structures of flood control. For this reason, the eradication of this alien species is recommended. Muskrats are also of parasitological interest since they can act as suitable intermediate hosts for Echinococcus multilocularis. On the other hand, little is known on the other helminths that infect muskrats. A total of 130 muskrats of different age groups trapped in different habitats in the Barnim district of the Brandenburg state by a professional hunter were examined for parasites and seven trematodes (Echinostoma sp., Notocotylus noyeri, Plagiorchis elegans, Plagiorchis arvicolae, Psilosostoma simillimum, P. spiculigerum, Opisthorchis felineus and four larval cestode species (Hydatigera taeniaeformis, Taenia martis, Taenia polyacantha, Taenia crassiceps) were detected. Larval stages of E. multilocularis were not found. O. felineus was found for the first time in muskrats in Germany. All the named parasites were present in Europe prior to the introduction of muskrats. With a prevalence of 48.9%, Strobilocercus fasciolaris, the larval stage of the cat tapeworm, H. taeniaeformis, was the most frequent parasite found in adult muskrats.
Collapse
Affiliation(s)
- Rolf K. Schuster
- Central Veterinary Research Institute, Dubai P.O. Box 597, United Arab Emirates
- Institute for Parasitology and Tropical Veterinary Medicine, Free University of Berlin, Robert von Ostertag Str. 7, 14163 Berlin, Germany
| | - Peter Specht
- Department of Forestry and Environment, University of Applied Sciences Eberswalde, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany; (P.S.); (S.R.)
| | - Siegfried Rieger
- Department of Forestry and Environment, University of Applied Sciences Eberswalde, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany; (P.S.); (S.R.)
| |
Collapse
|
14
|
Chibwana F, Katandukila J. Occurrence of echinostomatoids (Platyhelminthes: Digenea) in Great Cormorant (Phalacrocorax carbo) and Grey Heron (Ardea cinerea): first insights into the DNA barcodes from Lake Victoria, Tanzania. AFRICAN ZOOLOGY 2021. [DOI: 10.1080/15627020.2021.1958056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fred Chibwana
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jestina Katandukila
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
15
|
Gagnon DK, Kasl EA, Preisser WC, Belden LK, Detwiler JT. Morphological and molecular characterization of Quinqueserialis (Digenea: Notocotylidae) species diversity in North America. Parasitology 2021; 148:1083-1091. [PMID: 34027840 PMCID: PMC11010126 DOI: 10.1017/s0031182021000792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/07/2022]
Abstract
Estimates of trematode diversity are inaccurate due to unrecognized cryptic species and phenotypic plasticity within species. Integrative taxonomy (genetics, morphology and host use) increases the clarity of species delineation and improves knowledge of parasite biology. In this study, we used this approach to resolve taxonomic issues and test hypotheses of cryptic species in a genus of trematode, Quinqueserialis. Specimens from throughout North America were field collected from hosts and obtained from museums. We found three morphologically distinct groups and successfully sequenced specimens from two of these groups. DNA sequencing at the 28S and CO1 gene regions revealed that two of the three groups were genetically distinct. One genetic group included two morphological clusters demonstrating host-induced phenotypic plasticity within Quinqueserialis quinqueserialis. The other unique genetic group is a novel species, Quinqueserialis kinsellai n. sp., which is described herein. Our study illustrates the importance of integrating multiple sources of evidence when investigating trematode diversity to account for the influence of cryptic species or phenotypic plasticity. However, further sampling is needed to understand Quinqueserialis spp. diversity as some species have no genetic information associated with them.
Collapse
Affiliation(s)
- Demi K. Gagnon
- Department of Biological Sciences, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Emily A. Kasl
- Department of Biology, University of North Alabama, Florence, AL35632, USA
| | - Whitney C. Preisser
- School of Aquatic and Fishery Science, University of Washington, Seattle, WA98105, USA
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Jillian T. Detwiler
- Department of Biological Sciences, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| |
Collapse
|
16
|
Pantoja C, Faltýnková A, O'Dwyer K, Jouet D, Skírnisson K, Kudlai O. Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes. ACTA ACUST UNITED AC 2021; 28:59. [PMID: 34319230 PMCID: PMC8336728 DOI: 10.1051/parasite/2021054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022]
Abstract
The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. The number of echinostome species in different hosts did not vary greatly and ranged from one to three species. Of these 14 trematode species, we discovered four species (Echinoparyphium sp. 1, Echinoparyphium sp. 2, Neopetasiger sp. 5, and Echinostomatidae gen. sp.) as novel in Europe; we provide descriptions for the newly recorded species and those not previously associated with DNA sequences. Two species from Iceland (Neopetasiger islandicus and Echinoparyphium sp. 2) were recorded in both Iceland and North America. All species found in Ireland are new records for this country. Via an integrative taxonomic approach taken, both morphological and molecular data are provided for comparison with future studies to elucidate many of the unknown parasite life cycles and transmission routes. Our reports of species distributions spanning Europe and North America highlight the need for parasite biodiversity assessments across large geographical areas.
Collapse
Affiliation(s)
- Camila Pantoja
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic - Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | - Anna Faltýnková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Katie O'Dwyer
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW Galway, Ireland
| | - Damien Jouet
- BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | - Karl Skírnisson
- Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland
| | - Olena Kudlai
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic - Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| |
Collapse
|
17
|
Chai JY, Jung BK, Chang T, Shin H, Cho J, Ryu JY, Kim HS, Park K, Jeong MH, Hoang EH, Abdullah MBM. Echinostoma miyagawai Ishii, 1932 (Echinostomatidae) from Ducks in Aceh Province, Indonesia with Special Reference to Its Synonymy with Echinostoma robustum Yamaguti, 1935. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:35-45. [PMID: 33684985 PMCID: PMC7939967 DOI: 10.3347/kjp.2021.59.1.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022]
Abstract
Adult echinostomes having 37 collar spines collected from the intestine of Pitalah ducks in Aceh Province, Indonesia in 2018 were morphologically and molecularly determined to be Echinostoma miyagawai Ishii, 1932 (Digenea: Echinostomatidae). Among 20 ducks examined, 7 (35.0%) were found to be infected with this echinostome, and the number of flukes collected was 48 in total with average 6.9 (1-17) worms per duck. The adult flukes were 7.2 (6.1-8.5) mm in length and 1.2 (1.0-1.4) mm in width (pre-ovarian or testicular level) and characterized by having a head collar armed with 37 collar spines (dorsal spines arranged in 2 alternating rows), including 5 end group spines, and variable morphology of the testes, irregularly or deeply lobed (3-5 lobes) at times with horizontal extension. The eggs within the worm uterus were 93 (79-105) µm long and 62 (56-70) µm wide. These morphological features were consistent with both E. miyagawai and Echinostoma robustum, for which synonymy to each other has been raised. Sequencing of 2 mitochondrial genes, cox1 and nad1, revealed high homology with E. miyagawai (98.6-100% for cox1 and 99.0-99.8% for nad1) and also with E. robustum (99.3-99.8% for nad1) deposited in GenBank. We accepted the synonymy between the 2 species and diagnosed our flukes as E. miyagawai (syn. E. robustum) with redescription of its morphology. Further studies are required to determine the biological characteristics of E. miyagawai in Aceh Province, Indonesia, including the intermediate host and larval stage information.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
- Corresponding author ()
| | - Taehee Chang
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Hyejoo Shin
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Jaeeun Cho
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Jin-Youp Ryu
- Bureau of Health Examination and Management, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Hyun-Seung Kim
- Bureau of Health Examination and Management, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Kwanghoon Park
- Bureau of Health Examination and Management, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Mun-Hyoo Jeong
- Bureau of Health Examination and Management, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Eui-Hyug Hoang
- Bureau of Health Examination and Management, Korea Association of Health Promotion, Seoul 07649, Korea
| | | |
Collapse
|
18
|
Cho J, Jung BK, Chang T, Sohn WM, Sinuon M, Chai JY. Echinostoma mekongi n. sp. (Digenea: Echinostomatidae) from Riparian People along the Mekong River in Cambodia. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:431-443. [PMID: 32871637 PMCID: PMC7462798 DOI: 10.3347/kjp.2020.58.4.431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
Echinostoma mekongi n. sp. (Digenea: Echinostomatidae) is described based on adult flukes collected from humans residing along the Mekong River in Cambodia. Total 256 flukes were collected from the diarrheic stool of 6 echinostome egg positive villagers in Kratie and Takeo Province after praziquantel treatment and purging. Adults of the new species were 9.0-13.1 (av. 11.3) mm in length and 1.3-2.5 (1.9) mm in maximum width and characterized by having a head collar armed with 37 collar spines (dorsal spines arranged in 2 alternative rows), including 5 end group spines. The eggs in feces and worm uterus were 98-132 (117) μm long and 62-90 (75) μm wide. These morphological features closely resembled those of Echinostoma revolutum, E. miyagawai, and several other 37-collar-spined Echinostoma species. However, sequencing of the nuclear ITS (ITS1-5.8S rRNA-ITS2) and 2 mitochondrial genes, cox1 and </>nad1, revealed unique features distinct from E. revolutum and also from other 37-collar-spined Echinostoma group available in GenBank (E. bolschewense, E. caproni, E. cinetorchis, E. deserticum, E. miyagawai, E. nasincovae, E. novaezealandense, E. paraensei, E. paraulum, E. robustum, E. trivolvis, and Echinostoma sp. IG). Thus, we assigned our flukes as a new species, E. mekongi. The new species revealed marked variation in the morphology of testes (globular or lobulated), and smaller head collar, collar spines, oral and ventral suckers, and cirrus sac compared to E. revolutum and E. miyagawai. Epidemiological studies regarding the geographical distribution and its life history, including the source of human infections, remain to be performed.
Collapse
Affiliation(s)
- Jaeeun Cho
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Taehee Chang
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Muth Sinuon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
19
|
Chai JY, Cho J, Chang T, Jung BK, Sohn WM. Taxonomy of Echinostoma revolutum and 37-Collar-Spined Echinostoma spp.: A Historical Review. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:343-371. [PMID: 32871630 PMCID: PMC7462802 DOI: 10.3347/kjp.2020.58.4.343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Echinostoma flukes armed with 37 collar spines on their head collar are called as 37-collar-spined Echinostoma spp. (group) or 'Echinostoma revolutum group'. At least 56 nominal species have been described in this group. However, many of them were morphologically close to and difficult to distinguish from the other, thus synonymized with the others. However, some of the synonymies were disagreed by other researchers, and taxonomic debates have been continued. Fortunately, recent development of molecular techniques, in particular, sequencing of the mitochondrial (nad1 and cox1) and nuclear genes (ITS region; ITS1-5.8S-ITS2), has enabled us to obtain highly useful data on phylogenetic relationships of these 37-collar-spined Echinostoma spp. Thus, 16 different species are currently acknowledged to be valid worldwide, which include E. revolutum, E. bolschewense, E. caproni, E. cinetorchis, E. deserticum, E. lindoense, E. luisreyi, E. mekongi, E. miyagawai, E. nasincovae, E. novaezealandense, E. paraensei, E. paraulum, E. robustum, E. trivolvis, and Echinostoma sp. IG of Georgieva et al., 2013. The validity of the other 10 species is retained until further evaluation, including molecular analyses; E. acuticauda, E. barbosai, E. chloephagae, E. echinatum, E. jurini, E. nudicaudatum, E. parvocirrus, E. pinnicaudatum, E. ralli, and E. rodriguesi. In this review, the history of discovery and taxonomic debates on these 26 valid or validity-retained species are briefly reviewed.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jaeeun Cho
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Taehee Chang
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| |
Collapse
|
20
|
Timing and order of exposure to two echinostome species affect patterns of infection in larval amphibians. Parasitology 2020; 147:1515-1523. [PMID: 32660661 DOI: 10.1017/s0031182020001092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The study of priority effects with respect to coinfections is still in its infancy. Moreover, existing coinfection studies typically focus on infection outcomes associated with exposure to distinct sets of parasite species, despite that functionally and morphologically similar parasite species commonly coexist in nature. Therefore, it is important to understand how interactions between similar parasites influence infection outcomes. Surveys at seven ponds in northwest Pennsylvania found that multiple species of echinostomes commonly co-occur. Using a larval anuran host (Rana pipiens) and the two most commonly identified echinostome species from our field surveys (Echinostoma trivolvis and Echinoparyphium lineage 3), we examined how species composition and timing of exposure affect patterns of infection. When tadpoles were exposed to both parasites simultaneously, infection loads were higher than when exposed to Echinoparyphium alone but similar to being exposed to Echinostoma alone. When tadpoles were sequentially exposed to the parasite species, tadpoles first exposed to Echinoparyphium had 23% lower infection loads than tadpoles first exposed to Echinostoma. These findings demonstrate that exposure timing and order, even with similar parasites, can influence coinfection outcomes, and emphasize the importance of using molecular methods to identify parasites for ecological studies.
Collapse
|
21
|
van der Marel A, Waterman JM, López-Darias M. Social organization in a North African ground squirrel. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Research on sociality in temperate ground-dwelling squirrels has focused on female philopatry and other life history trade-offs, which are influenced by constraints in the duration of the active growing season. Temperate ground-dwelling squirrels that experience high predation pressure, are large in body size, and have a short active season, show a more complex social organization. In contrast, African ground squirrels are active year-round, suggesting that instead of a short active season, distinct selective pressures influence their social organization. We examined the social organization of Barbary ground squirrels, Atlantoxerus getulus, and compared the social organization of temperate and African ground-dwelling sciurids. Anecdotal accounts on Barbary ground squirrels’ social organization suggested that they were either solitary or gregarious, or live in small family groups. We recorded the group size, composition, cohesion, and genetic relatedness, of the population on the arid island of Fuerteventura, Spain. Our data indicate that females live in small (1–8) all-female kin groups separate from adult males, and that unrelated adult males share sleeping burrows with immature individuals of either sex. We observed sex-biased dispersal with males primarily the dispersing sex and females primarily philopatric. Females sleep solitarily during gestation and lactation and nest either communally or singly after juvenile emergence. During the day, males and females can be active in the same area. Barbary ground squirrels are social because the squirrels share sleeping burrows and show spatiotemporal overlap. Barbary ground squirrels’ social organization resembles that of the closely related Cape ground squirrel rather than that of the temperate ground-dwelling sciurids, although the former are more temperate, seasonal breeders. In addition to describing the social organization of a previously unstudied species, this paper sheds light on the ecological drivers of sociality, and the evolution of distinct social organizations in ground-dwelling sciurids.
Collapse
Affiliation(s)
| | - Jane M Waterman
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, Canada
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Av. Astrofisico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
22
|
Gagnon DK, Detwiler JT. Broader Geographic Sampling Increases Extent of Intermediate Host Specificity for a Trematode Parasite (Notocotylidae: Quinqueserialis quinqueserialis). J Parasitol 2019. [DOI: 10.1645/19-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- D. K. Gagnon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada, R3T 2N2
| | - J. T. Detwiler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada, R3T 2N2
| |
Collapse
|
23
|
Buddhachat K, Chontananarth T. Is species identification of Echinostoma revolutum using mitochondrial DNA barcoding feasible with high-resolution melting analysis? Parasitol Res 2019; 118:1799-1810. [PMID: 31028468 DOI: 10.1007/s00436-019-06322-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
The taxonomic evaluation of Echinostoma species is controversial. Echinostoma species are recognized as complex, leading to problems associated with accurate identification of these species. The aim of this study was to test the feasibility of using DNA barcoding of cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) conjugated with high-resolution melting (HRM) analysis to identify Echinostoma revolutum. HRM using COI and ND1 was unable to differentiate between species in the "revolutum complex" but did distinguish between two isolates of 37-collar-spined echinostome species, including E. revolutum (Asian lineage) and Echinostoma sp. A from different genera, e.g., Hypoderaeum conoideum, Haplorchoides mehrai, Fasciola gigantica, and Thapariella anastomusa, based on the Tm values derived from HRM analysis. Through phylogenetic analysis, a new clade of the cryptic species known as Echinostoma sp. A was identified. In addition, we found that the E. revolutum clade of ND1 phylogeny obtained from the Thailand strain was from a different lineage than the Eurasian lineage. These findings reveal the complexity of the clade, which is composed of 37-collar-spined echinostome species found in Southeast Asia. Taken together, the systematic aspects of the complex revolutum group are in need of extensive investigation by integrating morphological, biological, and molecular features in order to clarify them, particularly in Southeast Asia.
Collapse
Affiliation(s)
- Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.,Excellence Center in Veterinary Biosciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand. .,Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
24
|
Gordy MA, Hanington PC. A fine-scale phylogenetic assessment of digenean trematodes in central Alberta reveals we have yet to uncover their total diversity. Ecol Evol 2019; 9:3153-3238. [PMID: 30962888 PMCID: PMC6434566 DOI: 10.1002/ece3.4939] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
Despite over 100 years of digenean trematode parasite species descriptions, from a wide diversity of vertebrate and invertebrate host species, our ability to recognize the diversity of trematode species within a single lake remains an incredible challenge. The most challenging aspect is the identification of species from larval stages derived from intermediate hosts, due to the disjointed data of adult worm morphological descriptions, from which species are named, and links to corresponding molecular identifiers in depauperate databases. Cryptic species also play a significant role in the challenge of linking trematode larvae to adults, species identifications, and estimating diversity. Herein, we utilize a large, longitudinal dataset of snail first-intermediate host infection data from lakes in Alberta, Canada, to infer trematode larval diversity using molecular phylogenetics and snail host associations. From our assessments, we uncover a diversity of 79 larval trematode species among just five snail host species. Only 14 species were identified to a previously described species, while the other 65 species are either cryptic or otherwise unrepresented by mitochondrial genes in GenBank. This study currently represents the largest and most diverse singular molecular survey of trematode larval fauna composed of over one thousand mitochondrial sequences. Surprisingly, rarefaction analyses indicate we have yet to capture the complete diversity of trematodes from our sampling area.
Collapse
|
25
|
Selected Wildlife Trematodes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:321-355. [DOI: 10.1007/978-3-030-18616-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Echinochasmus swabiensis n. sp. (Digenea: Echinostomatidae) from Black Kite ( Milvus Migrans Migrans) in Swabi District, Pakistan. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
A new species of the genus Echinochasmushas been described from the small intestine of the black kite (Milvus m. migrans) collected from Swabi, Khyber Pakhtunkhwa, Pakistan and identified as E. swabiensis n. sp. The new species is different from its congeners in its body size; it has 22 collar spines which includes two corner spines on one side, four on the other side and eight marginal plus ventral spines on each side. There aretegumental-scale like spines interspersed on the anterior margin of the ventral sucker with a smaller, terminal oral sucker. The pharynx is nearly twice as large as the oral sucker, while the ventral sucker is nearly six times as large as the oral sucker. The suckers’ width ratio is 1 : 4.7 to 1 : 5.6. The vitelline follicles are compact and denser at the lateral sides masking the caeca. This species has been added to the record of trematodes circulating among avian species, especially in the study area.
Collapse
|
27
|
Zimmermann MR, Luth KE, Esch GW. Snail species diversity impacts the infection patterns of Echinostoma spp.: Examples from field collected data. Acta Parasitol 2017; 62:493-501. [PMID: 28682781 DOI: 10.1515/ap-2017-0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 11/15/2022]
Abstract
Rapid losses of biodiversity due to the changing landscape have spurred increased interest in the role of species diversity and disease risk. A leading hypothesis for the importance of biodiversity in disease reduction is the dilution effect, which suggests that increasing species diversity within a system decreases the risk of disease among the organisms inhabiting it. The role of species diversity in trematode infection was investigated using field studies from sites across the U.S. to examine the impact of snail diversity in the infection dynamics of both first and second intermediate larval stages of Echinostoma spp. parasites. The prevalence of Echinostoma spp. sporocysts/rediae infection was not affected by increases in snail diversity, but significant negative correlations in metacercariae prevalence and intensity with snail diversity were observed. Additionally, varying effectiveness of the diluting hosts was found, i.e., snail species that were incompatible first intermediate hosts for Echinostoma spp. were more successful at diluting the echinostome parasites in the focal species, while H. trivolvis, a snail species that can harbor the first intermediate larval stages, amplified infection. These findings have important implications not only on the role of species diversity in reducing disease risk, but the success of the parasites in completing their life cycles and maintaining their abundance within an aquatic system.
Collapse
|
28
|
Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int J Parasitol 2017; 47:327-345. [DOI: 10.1016/j.ijpara.2016.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023]
|
29
|
Georgieva S, Blasco-Costa I, Kostadinova A. Molecular characterisation of four echinostomes (Digenea: Echinostomatidae) from birds in New Zealand, with descriptions of Echinostoma novaezealandense n. sp. and Echinoparyphium poulini n. sp. Syst Parasitol 2017; 94:477-497. [PMID: 28341929 DOI: 10.1007/s11230-017-9712-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/26/2017] [Indexed: 11/26/2022]
Abstract
Morphological and molecular characterisation of echinostome specimens (Digenea: Echinostomatidae) recovered in one Anas platyrhynchos L. and one Cygnus atratus (Latham) (Anseriformes: Anatidae) from New Zealand revealed the presence of two known species, Echinostoma miyagawai Ishii, 1932 and Echinoparyphium ellisi (Johnston & Simpson, 1944) and two species new to science. Comparative morphological and phylogenetic analyses supported the distinct species status of Echinostoma novaezealandense n. sp. ex Branta canadensis (L.), A. platyrhynchos and C. atratus, and Echinoparyphium poulini n. sp. ex C. atratus. Echinostoma novaezealandense n. sp., a species of the "revolutum" species complex characterised by the possession of a head collar armed with 37 spines, keyed down to E. revolutum but was distinguished from the latter in having a much narrower body with almost parallel margins, longer oesophagus, wider cirrus-sac, larger seminal vesicle, much smaller ventral sucker, ovary, Mehlis' gland and testes, more anteriorly located ovary and testes, and distinctly smaller eggs (81-87 × 42-53 vs 106-136 × 55-70 µm). This new species appears similar to Echinostoma acuticauda Nicoll, 1914 described in Australia but differs in having a longer forebody, more posteriorly located ovary and testes, and much smaller eggs (81-87 × 42-53 vs 112-126 × 63-75 µm). Echinoparyphium poulini n. sp. is differentiated from the four species of Echinoparyphium possessing 37 collar spines considered valid as follows: from E. chinensis Ku, Li & Chu, 1964 in having a much smaller body, four (vs five) angle spines and simple seminal vesicle (vs bipartite); from E. schulzi Matevosyan, 1951 in having a less robust body at a comparable body length, much smaller ventral sucker, ovary and testes, and longer but narrower eggs (87-109 × 50-59 vs 70-85 × 60-84 µm); and from the two smaller forms, E. serratum Howell, 1968 and E. aconiatum Dietz, 1909, in a number of additional metrical features correlated with body size and especially in the possession of much larger collar spines. Partial fragments of the mitochondrial nad1 and 28S rRNA genes were amplified for representative isolates of the four species and analysed together with sequences for Echinostoma spp. and Echinoparyphium spp. available on GenBank. Phylogenetic analyses based on the mitochondrial nad1 gene revealed congruence between the molecular data and species identification/delineation based on morphology; this was corroborated by the 28S rDNA sequence data.
Collapse
Affiliation(s)
- Simona Georgieva
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Isabel Blasco-Costa
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Natural History Museum of Geneva, Route de Malagnou 1, 1208, Geneva, Switzerland
| | - Aneta Kostadinova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
30
|
An updated look at the uneven distribution of cryptic diversity among parasitic helminths. J Helminthol 2017; 92:197-202. [PMID: 28260533 DOI: 10.1017/s0022149x17000189] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cryptic parasite diversity is a major issue for taxonomy and systematics, and for attempts to control diseases of humans, domestic animals and wildlife. Here, we re-examine an earlier report that, after correcting for sampling effort, more cryptic species of trematodes are found per published study than for other helminth taxa. We performed a meta-analysis of 110 studies that used DNA sequences to search for cryptic species in parasitic helminth taxa. After correcting for study effort and accounting for the biogeographical region of origins, we found that more cryptic species tend to be uncovered among trematodes, and fewer among cestodes and animal-parasitic nematodes, than in other helminth groups. However, this pattern was only apparent when we included only studies using nuclear markers in the analysis; it was not seen in a separate analysis based only on mitochondrial markers. We propose that the greater occurrence of cryptic diversity among trematodes may be due to some of their unique features, such as their mode of reproduction or frequent lack of hard morphological structures, or to the way in which trematode species are described. Whatever the reason, the high frequency of cryptic species among trematodes has huge implications for estimates of parasite diversity and for future taxonomic research.
Collapse
|
31
|
Abstract
Paramphistomoids are ubiquitous and widespread digeneans that infect a diverse range of
definitive hosts, being particularly speciose in ruminants. We collected adult worms from
cattle, goats and sheep from slaughterhouses, and cercariae from freshwater snails from
ten localities in Central and West Kenya. We sequenced cox1 (690 bp) and
internal transcribed region 2 (ITS2) (385 bp) genes from a small piece of 79 different
adult worms and stained and mounted the remaining worm bodies for comparisons with
available descriptions. We also sequenced cox1 and ITS2 from 41
cercariae/rediae samples collected from four different genera of planorbid snails.
Combining morphological observations, host use information, genetic distance values and
phylogenetic methods, we delineated 16 distinct clades of paramphistomoids. For four of
the 16 clades, sequences from adult worms and cercariae/rediae matched, providing an
independent assessment for their life cycles. Much work is yet to be done to resolve fully
the relationships among paramphistomoids, but some correspondence between sequence- and
anatomically based classifications were noted. Paramphistomoids of domestic ruminants
provide one of the most abundant sources of parasitic flatworm biomass, and because of the
predilection of several species use Bulinus and
Biomphalaria snail hosts, have interesting linkages with the biology of
animal and human schistosomes to in Africa.
Collapse
|
32
|
Tantrawatpan C, Saijuntha W, Manochantr S, Kheolamai P, Thanchomnang T, Sadaow L, Intapan PM, Maleewong W. A singleplex real-time fluorescence resonance energy transfer PCR with melting curve analysis for the differential detection of Paragonimus heterotremus, Echinostoma malayanum and Fasciola gigantica eggs in faeces. Trans R Soc Trop Med Hyg 2016; 110:74-83. [PMID: 26740365 DOI: 10.1093/trstmh/trv098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Because the eggs of Paragonimus, Echinostoma and Fasciola are very similar in size and shape, it is difficult to distinguish and accurately identify species by the morphology of their eggs, which is a standard diagnostic method. METHODS In this study, a novel assay combining a real-time fluorescence resonance energy transfer PCR and melting curve analysis using one set of primers and fluorophore-labelled hybridization probes specific for the 28S rDNA region was developed for the molecular detection of Paragonimus heterotremus, Echinostoma malayanum and Fasciola gigantica eggs. RESULTS This assay could detect and distinguish P. heterotremus, E. malayanum and F. gigantica DNA with the distinct melting temperature (Tm) values of 57.99±0.08, 62.12±0.15 and 74.10±0.18, respectively. The assay can also be used to detect and distinguish DNA from P. bangkokensis, P. harinasutai, P. machorchis, E. revolutum, Hypodereum conoideum and F. hepatica, which have different Tm values. The sensitivity of this assay enabled the detection of one egg of P. heterotremus, E. malayanum or F. gigantica per 100 mg of faeces. In addition, the specificity testing showed no fluorescence signal for other parasites. CONCLUSIONS Due to the sensitivity and specificity of our assay in detecting P. heterotremus, E. malayanum and F. gigantica, our method could be used to accurately diagnose these three medically important parasitic groups and has potential implications for molecular epidemiological investigations of human and/or animal infections.
Collapse
Affiliation(s)
- Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, Thailand Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, Thailand
| | - Tongjit Thanchomnang
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Lakkhana Sadaow
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pewpan M Intapan
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
33
|
Orlofske SA, Belden LK, Hopkins WA. Effects of Echinostoma trivolvis metacercariae infection during development and metamorphosis of the wood frog (Lithobates sylvaticus). Comp Biochem Physiol A Mol Integr Physiol 2016; 203:40-48. [PMID: 27543422 DOI: 10.1016/j.cbpa.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 11/27/2022]
Abstract
Many organisms face energetic trade-offs between defense against parasites and other host processes that may determine overall consequences of infection. These trade-offs may be particularly evident during unfavorable environmental conditions or energetically demanding life history stages. Amphibian metamorphosis, an ecologically important developmental period, is associated with drastic morphological and physiological changes and substantial energetic costs. Effects of the trematode parasite Echinostoma trivolvis have been documented during early amphibian development, but effects during later development and metamorphosis are largely unknown. Using a laboratory experiment, we examined the energetic costs of late development and metamorphosis coupled with E. trivolvis infection in wood frogs, Lithobates [=Rana] sylvaticus. Echinostoma infection intensity did not differ between tadpoles examined prior to and after completing metamorphosis, suggesting that metacercariae were retained through metamorphosis. Infection with E. trivolvis contributed to a slower growth rate and longer development period prior to the initiation of metamorphosis. In contrast, E. trivolvis infection did not affect energy expenditure during late development or metamorphosis. Possible explanations for these results include the presence of parasites not interfering with pronephros degradation during metamorphosis or the mesonephros compensating for any parasite damage. Overall, the energetic costs of metamorphosis for wood frogs were comparable to other species with similar life history traits, but differed from a species with a much shorter duration of metamorphic climax. Our findings contribute to understanding the possible role of energetic trade-offs between parasite defense and host processes by considering parasite infection with simultaneous energetic demands during a sensitive period of development.
Collapse
Affiliation(s)
- Sarah A Orlofske
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
34
|
|
35
|
Nagataki M, Tantrawatpan C, Agatsuma T, Sugiura T, Duenngai K, Sithithaworn P, Andrews RH, Petney TN, Saijuntha W. Mitochondrial DNA sequences of 37 collar-spined echinostomes (Digenea: Echinostomatidae) in Thailand and Lao PDR reveals presence of two species: Echinostoma revolutum and E. miyagawai. INFECTION GENETICS AND EVOLUTION 2015. [PMID: 26205690 DOI: 10.1016/j.meegid.2015.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The "37 collar-spined" or "revolutum" group of echinostomes is recognized as a species complex. The identification of members of this complex by morphological taxonomic characters is difficult and confusing, and hence, molecular analyses are a useful alternative method for molecular systematic studies. The current study examined the genetic diversity of those 37 collar-spined echinostomes which are recognized morphologically as Echinostoma revolutum in Thailand and Lao PDR using the cytochrome c oxidase subunit 1 (CO1) and the NADH dehydrogenase subunit 1 (ND1) sequences. On the basis of molecular investigations, at least two species of 37 collar-spined echinostomes exist in Southeast Asia, namely E. revolutum and Echinostoma miyagawai. The specimens examined in this study, coming from ducks in Thailand and Lao PDR, were compared to isolates from America, Europe and Australia for which DNA sequences are available in public databases. Haplotype analysis detected 6 and 26 haplotypes when comparing the CO1 sequences of E. revolutum and E. miyagawai, respectively, from different geographical isolates from Thailand and Lao PDR. The phylogenetic trees, ND1 haplotype network and genetic differentiation (ɸST) analyses showed that E. revolutum were genetically different on a continental scale, i.e. Eurasian and American lineages.
Collapse
Affiliation(s)
- Mitsuru Nagataki
- Division of Environmental Health Sciences, Kochi Medical School, Kochi University, Oko, Nankoku 783-8505, Japan
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand
| | - Takeshi Agatsuma
- Division of Environmental Health Sciences, Kochi Medical School, Kochi University, Oko, Nankoku 783-8505, Japan
| | - Tetsuro Sugiura
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kochi University, Oko, Nankoku 783-8505, Japan
| | - Kunyarat Duenngai
- Department of Public Health, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand
| | - Paiboon Sithithaworn
- Liver Fluke and Cholangiocarcinoma Research Center (LFCRC), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ross H Andrews
- Liver Fluke and Cholangiocarcinoma Research Center (LFCRC), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Imperial College London, Faculty of Medicine, St Mary's Campus, South Wharf Street, London W2 1NY, United Kingdom; Cholangiocarcinoma Screening and Care Program, Faculty of Medicine, Khon Kaen Univeristy, Khon Kaen 40002, Thailand
| | - Trevor N Petney
- Institute of Zoology 1: Ecology and Parasitology, University of Karlsruhe, Kornblumen Strasse 13, Karlsruhe, Germany; Cholangiocarcinoma Screening and Care Program, Faculty of Medicine, Khon Kaen Univeristy, Khon Kaen 40002, Thailand
| | - Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham 44150, Thailand.
| |
Collapse
|
36
|
An integrative taxonomic investigation of the diversity of digenean parasites infecting the intertidal snail Austrolittorina unifasciata Gray, 1826 (Gastropoda: Littorinidae) in Australia. Parasitol Res 2015; 114:2381-97. [DOI: 10.1007/s00436-015-4436-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
|
37
|
Naem S, Smythe AB. Tegumental ultrastructure of adult Quinqueserialis quinqueserialis (Trematoda: Notocotylidae): an intestinal parasite of muskrat (Ondatra zibethicus). Parasitol Res 2015; 114:2473-80. [PMID: 25832183 DOI: 10.1007/s00436-015-4444-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
Abstract
Ten adult Quinqueserialis quinqueserialis specimens were removed from the intestine of a naturally infected muskrat, and scanning electron microscopy was used to study the morphological characteristics of the trematodes. The mature trematode, which was easy to recognize by the monostome holdfast organ, with no anterior cone, measured 2200-2500 μm in length by 900-1050 μm in width. The body was elongated and tapering at the anterior end, but the posterior end was rounded, and in some specimens was slightly truncated. The mouth opening lay at the anterior end and was surrounded by the oral sucker, which was round, small to medium in size, and subterminal. The tegument of the rim and inside of the oral sucker was smooth and had two types of papillae, domed and rosette papillae. Around the oral sucker, tegument was covered with sharp, pointed spines. The common genital pore was located on the median line of the body, posterior to the oral sucker. The cirrus had smooth tegument at the base and was armed with numerous conical spines throughout its length. The ventral surface was concave and provided with five distinct longitudinal rows of ventral papillae, which extended from the anterior to the posterior end of the body. Each row consisted of 15 to 20 papillae, making 81 to 88 papillae in all. These papillae were variable in size. In most specimens, the papillae were simple knob-like structures, but in some cases, they appeared to be bi- or trifurcate. The tegument at the base of each ventral papilla showed minute spiny pattern, but it was smooth or folded on top and had small rosette and ciliated papillae. Tegument at the edges of the worm was smooth in the mid-parts, spiny on lateral parts, and included rosette papillae. The dorsal surface of the worm was smooth and slightly convex, and the tegument was provided with two large domed papillae in one third of the anterior end of the dorsal part, few thick spines in the mid-part, and excretory pore at the level just posterior to the end. No spines or papillae were seen around the excretory pore.
Collapse
Affiliation(s)
- Soraya Naem
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran,
| | | |
Collapse
|
38
|
A re-assessment of species diversity within the ‘revolutum’ group of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) in Europe. Syst Parasitol 2015; 90:1-25. [DOI: 10.1007/s11230-014-9530-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
39
|
Georgieva S, Faltýnková A, Brown R, Blasco-Costa I, Soldánová M, Sitko J, Scholz T, Kostadinova A. Echinostoma 'revolutum' (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasit Vectors 2014; 7:520. [PMID: 25430038 PMCID: PMC4258292 DOI: 10.1186/s13071-014-0520-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The systematics of echinostomes within the so-called 'revolutum' group of the genus Echinostoma, which encompasses the type-species E. revolutum and a number of morphologically similar species, has long been controversial. Recent molecular studies indicate the existence of more species than previously considered valid, thus stressing the need for wider taxon sampling from natural host populations. This is especially true for Europe where morphological evidence indicates higher species diversity than previously thought, but where molecular data are virtually lacking. This gap in our knowledge was addressed in the present study through an integration of morphological and molecular approaches in the investigation of a dataset with larger taxonomic and geographical coverage. METHODS More than 20,000 freshwater snails belonging to 16 species were collected during 1998-2012 from various localities in eight countries in Europe. Snail screening provided representative larval isolates for five species of the 'revolutum' group, identified by their morphology. Adult isolates for four species recovered from natural and experimental infections were also identified. Partial fragments of the mitochondrial nad1 and 28S rRNA genes were amplified for 74 and 16 isolates, respectively; these were analysed together with the sequences of Echinostoma spp. available on GenBank. RESULTS Delineation of the European Echinostoma spp. was carried out based on molecular, morphological and ecological data. The large-scale screening revealed infections with five Echinostoma spp., including one new species: E. revolutum (sensu stricto), E. miyagawai, E. paraulum, E. bolschewense and Echinostoma n. sp. The newly-generated nad1 sequences from Europe fall into six distinct, well-supported, reciprocally monophyletic lineages corresponding to the species identifications based on morphology; this was corroborated by the 28S rDNA sequences. The analyses of the total nad1 dataset provided evidence for 12 monophyletic groups and five singletons, which represent seven described/named species and ten cryptic species-level lineages of Echinostoma. CONCLUSION We conclude that nad1 should be the first choice for large-scale barcode-based identification of the species of the 'revolutum' group. Our study provides a comprehensive reference library for precisely identified isolates of the European species and highlights the importance of an integrative approach for species identification linking molecular, morphological and biological data.
Collapse
Affiliation(s)
- Simona Georgieva
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Anna Faltýnková
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Rebecca Brown
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic. .,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Isabel Blasco-Costa
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic. .,Natural History Museum of Geneva, P.O. Box 6134, CH-1211, Geneva, Switzerland.
| | - Miroslava Soldánová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Jiljí Sitko
- Komenský Museum, Horní nám, 7, 750 11 Přerov 2, Přerov, Czech Republic.
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Aneta Kostadinova
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
40
|
O'Dwyer K, Blasco-Costa I, Poulin R, Faltýnková A. Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data. Syst Parasitol 2014; 89:133-52. [PMID: 25204600 DOI: 10.1007/s11230-014-9515-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Littorinid snails are one particular group of gastropods identified as important intermediate hosts for a wide range of digenean parasite species, at least throughout the Northern Hemisphere. However nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Austrolittorina Rosewater, A. cincta Quoy & Gaimard and A. antipodum Philippi, from intertidal rocky shores, revealed infections with four digenean species representative of a diverse range of families: Philophthalmidae Looss, 1899, Notocotylidae Lühe, 1909, Renicolidae Dollfus, 1939 and Microphallidae Ward, 1901. This paper provides detailed morphological descriptions of the cercariae and intramolluscan stages of these parasites. Furthermore, partial sequences of the 28S rRNA gene and the mitochondrial gene cytochrome c oxidase subunit 1 (cox1) for varying numbers of isolates of each species were obtained. Phylogenetic analyses were carried out at the superfamily level and along with the morphological data were used to infer the generic affiliation of the species.
Collapse
Affiliation(s)
- Katie O'Dwyer
- Evolutionary and Ecological Parasitology Group, Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand,
| | | | | | | |
Collapse
|
41
|
Broad geographic analyses reveal varying patterns of genetic diversity and host specificity among echinostome trematodes in New Zealand snails. Parasitology 2014; 142:406-15. [PMID: 25148139 DOI: 10.1017/s0031182014001279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Host specificity is a fundamental component of a parasite's life history. However, accurate assessments of host specificity, and the factors influencing it, can be obscured by parasite cryptic species complexes. We surveyed two congeneric species of intertidal snail intermediate hosts, Zeacumantus subcarinatus and Zeacumantus lutulentus, throughout New Zealand to identify the number of genetically distinct echinostome trematodes infecting them and determine the levels of snail host specificity among echinostomes. Two major echinostome clades were identified: a clade consisting of an unidentified species of the subfamily Himasthlinae and a clade consisting of five species of the genus Acanthoparyphium. All five Acanthoparyphium species were only found in a single snail species, four in Z. subcarinatus and one in Z. lutulentus. In contrast, the Himasthlinae gen. sp. was found in both hosts, but was more prevalent in Z. lutulentus (97 infections) than Z. subcarinatus (10 infections). At least two of the Acanthoparyphium spp. and the Himasthlinae gen. sp. are widespread throughout New Zealand, and can therefore encounter both snail species. Our results suggest that host specificity is determined by host-parasite incompatibilities, not geographic separation, and that it can evolve in different ways in closely related parasite lineages.
Collapse
|
42
|
Abstract
Parasite virulence, or the damage a parasite does to its host, is measured in terms of both host costs (reductions in host growth, reproduction and survival) and parasite benefits (increased transmission and parasite numbers) in the literature. Much work has shown that ecological and genetic factors can be strong selective forces in virulence evolution. This review uses kin selection theory to explore how variations in host ecological parameters impact the genetic relatedness of parasite populations and thus virulence. We provide a broad overview of virulence and population genetics studies and then draw connections to existing knowledge about natural parasite populations. The impact of host movement (transporting parasites) and host resistance (filtering parasites) on the genetic structure and virulence of parasite populations is explored, and empirical studies of these factors using Plasmodium and trematode systems are proposed.
Collapse
|
43
|
Molecular analysis of echinostome metacercariae from their second intermediate host found in a localised geographic region reveals genetic heterogeneity and possible cryptic speciation. PLoS Negl Trop Dis 2014; 8:e2778. [PMID: 24699358 PMCID: PMC3974680 DOI: 10.1371/journal.pntd.0002778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 12/03/2022] Open
Abstract
Echinostome metacercariae are the infective stage for humans and animals. The identification of echinostomes has been based until recently on morphology but molecular techniques using sequences of ribosomal RNA and mitochondrial DNA have indicated major clades within the group. In this study we have used the ITS2 region of ribosomal RNA and the ND1 region of mitochondrial DNA to identify metacercariae from snails collected from eight well-separated sites from an area of 4000 km2 in Lamphun Province, Thailand. The derived sequences have been compared to those collected from elsewhere and have been deposited in the nucleotide databases. There were two aims of this study; firstly, to determine the species of echinostome present in an endemic area, and secondly, to assess the intra-specific genetic diversity, as this may be informative with regard to the potential for the development of anthelmintic resistance and with regard to the spread of infection by the definitive hosts. Our results indicate that the most prevalent species are most closely related to E. revolutum, E. trivolvis, E. robustum, E. malayanum and Euparyphium albuferensis. Some sites harbour several species and within a site there could be considerable intra-species genetic diversity. There is no significant geographical structuring within this area. Although the molecular techniques used in this study allowed the assignment of the samples to clades within defined species, however, within these groupings there were significant differences indicating that cryptic speciation may have occurred. The degree of genetic diversity present would suggest the use of targeted regimes designed to minimise the selection of anthelmintic resistance. The apparent lack of geographic structuring is consistent with the transmission of the parasites by the avian hosts. Infections by food-borne trematodes are estimated to infect over 40 million people worldwide, although infections by echinostomes make up only a portion of these cases, usually in regions where their prevalence is high. In South East Asia and in the far east of Asia, human infection is associated with cultural and dietary factors and the prevalence of infection may reach 50% in parts of Thailand, Cambodia, and Laos. Treatment is generally dependent on the use of praziquantel or benzimidazole drugs but with the occurrence of anthelmintic resistance to these compounds it would be desirable to have an understanding of the diversity present in the echinostome populations within a given locality. This study deals with the systematics of echinostomes and informs various aspects of the epidemiology of echinostomiasis which may aid the development of future control strategies.
Collapse
|
44
|
Hopkins SR, Wyderko JA, Sheehy RR, Belden LK, Wojdak JM. Parasite predators exhibit a rapid numerical response to increased parasite abundance and reduce transmission to hosts. Ecol Evol 2013; 3:4427-38. [PMID: 24340184 PMCID: PMC3856743 DOI: 10.1002/ece3.634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/30/2013] [Accepted: 05/09/2013] [Indexed: 12/04/2022] Open
Abstract
Predators of parasites have recently gained attention as important parts of food webs and ecosystems. In aquatic systems, many taxa consume free-living stages of parasites, and can thus reduce parasite transmission to hosts. However, the importance of the functional and numerical responses of parasite predators to disease dynamics is not well understood. We collected host–parasite–predator cooccurrence data from the field, and then experimentally manipulated predator abundance, parasite abundance, and the presence of alternative prey to determine the consequences for parasite transmission. The parasite predator of interest was a ubiquitous symbiotic oligochaete of mollusks, Chaetogaster limnaei limnaei, which inhabits host shells and consumes larval trematode parasites. Predators exhibited a rapid numerical response, where predator populations increased or decreased by as much as 60% in just 5 days, depending on the parasite:predator ratio. Furthermore, snail infection decreased substantially with increasing parasite predator densities, where the highest predator densities reduced infection by up to 89%. Predators of parasites can play an important role in regulating parasite transmission, even when infection risk is high, and especially when predators can rapidly respond numerically to resource pulses. We suggest that these types of interactions might have cascading effects on entire disease systems, and emphasize the importance of considering disease dynamics at the community level.
Collapse
Affiliation(s)
- Skylar R Hopkins
- Department of Biological Sciences, Virginia Tech Blacksburg, Virginia ; Department of Biology, Radford University Radford, Virginia
| | | | | | | | | |
Collapse
|
45
|
Brant SV, Loker ES. Discovery-based studies of schistosome diversity stimulate new hypotheses about parasite biology. Trends Parasitol 2013; 29:449-59. [PMID: 23849836 DOI: 10.1016/j.pt.2013.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Abstract
This review provides an update of ongoing efforts to expand our understanding of the diversity inherent within the Schistosomatidae, the parasites responsible for causing schistosomiasis and cercarial dermatitis. By revealing more of the species present, particularly among understudied avian schistosomes, we gain increased understanding of patterns of schistosome diversification, and their abilities to colonize new hosts and habitats. Schistosomes reveal a surprising ability to switch into new snail and vertebrate host species, into new intrahost habitats, and may adopt novel body forms in the process. Often these changes are not associated with deep splits or long branches in their phylogeny, suggesting some are of relatively recent origin. Several hypotheses prompted by the new observations are discussed, helping to focus thinking on processes influencing not only schistosome diversification but also their pathogenicity and abundance.
Collapse
Affiliation(s)
- Sara V Brant
- Department of Biology, COBRE Center for Evolutionary and Theoretical Immunology, Museum of Southwestern Biology, Division of Parasitology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
46
|
Georgieva S, Selbach C, Faltýnková A, Soldánová M, Sures B, Skírnisson K, Kostadinova A. New cryptic species of the 'revolutum' group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit Vectors 2013; 6:64. [PMID: 23497579 PMCID: PMC3605289 DOI: 10.1186/1756-3305-6-64] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The digenean species of Echinostoma (Echinostomatidae) with 37 collar spines that comprise the so-called 'revolutum' species complex, qualify as cryptic due to the interspecific homogeneity of characters used to differentiate species. Only five species were considered valid in the most recent revision of the group but recent molecular studies have demonstrated a higher diversity within the group. In a study of the digeneans parasitising molluscs in central and northern Europe we found that Radix auricularia, R. peregra and Stagnicola palustris were infected with larval stages of two cryptic species of the 'revolutum' complex, one resembling E. revolutum and one undescribed species, Echinostoma sp. IG. This paper provides morphological and molecular evidence for their delimitation. METHODS Totals of 2,030 R. auricularia, 357 R. peregra and 577 S. palustris were collected in seven reservoirs of the River Ruhr catchment area in Germany and a total of 573 R. peregra was collected in five lakes in Iceland. Cercariae were examined and identified live and fixed in molecular grade ethanol for DNA isolation and in hot/cold 4% formaldehyde solution for obtaining measurements from fixed materials. Partial fragments of the mitochondrial gene nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) were amplified for 14 isolates. RESULTS Detailed examination of cercarial morphology allowed us to differentiate the cercariae of the two Echinostoma spp. of the 'revolutum' species complex. A total of 14 partial nad1 sequences was generated and aligned with selected published sequences for eight species of the 'revolutum' species complex. Both NJ and BI analyses resulted in consensus trees with similar topologies in which the isolates from Europe formed strongly supported reciprocally monophyletic lineages. The analyses also provided evidence that North American isolates identified as E. revolutum represent another cryptic species of the 'revolutum' species complex. CONCLUSION Our findings highlight the need for further analyses of patterns of interspecific variation based on molecular and morphological evidence to enhance the re-evaluation of the species and advance our understanding of the relationships within the 'revolutum' group of Echinostoma.
Collapse
Affiliation(s)
- Simona Georgieva
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
47
|
Wojdak JM, Clay L, Moore S, Williams T, Belden LK. Echinostoma trivolvis (Digenea: Echinostomatidae) second intermediate host preference matches host suitability. Parasitol Res 2012; 112:799-805. [PMID: 23239089 DOI: 10.1007/s00436-012-3203-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
Abstract
Many trematodes infect a single mollusk species as their first intermediate host, and then infect a variety of second intermediate host species. Determining the factors that shape host specificity is an important step towards understanding trematode infection dynamics. Toward this end, we studied two pond snails (Physa gyrina and Helisoma trivolvis) that can be infected as second intermediate hosts by the trematode Echinostoma trivolvis lineage a (ETa). We performed laboratory preference trials with ETa cercariae in the presence of both snail species and also characterized host suitability by quantifying encystment and excystment success for each host species alone. We tested the prediction that trematodes might preferentially infect species other than their obligate first intermediate host (in this case, H. trivolvis) as second intermediate hosts to avoid potentially greater host mortality associated with residing in first intermediate hosts. In our experiments, ETa had roughly equivalent encystment success in Helisoma and Physa snails, but greater excystment success in Physa, when offered each species in isolation. Also, the presence of the symbiotic oligochaete Chaetogaster limnaei in a subset of Helisoma snails reduced encystment success in those individuals. When both hosts were present, we found dramatically reduced infection prevalence and intensity in Helisoma-ETa cercariae strongly preferred Physa. Thus, the presence of either an alternative host, or a predator of free-living parasites, offered protection for Helisoma snails from E. trivolvis lineage a infection.
Collapse
Affiliation(s)
- Jeremy M Wojdak
- Department of Biology, Radford University, Radford, VA 24142, USA.
| | | | | | | | | |
Collapse
|