1
|
Pedroso LGA, Klimov PB, Mironov SV, OConnor BM, Braig HR, Pepato AR, Johnson KP, He Q, Hernandes FA. Horizontal transmission maintains host specificity and codiversification of symbionts in a brood parasitic host. Commun Biol 2023; 6:1171. [PMID: 37973862 PMCID: PMC10654585 DOI: 10.1038/s42003-023-05535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
In host-symbiont systems, interspecific transmissions create opportunities for host switches, potentially leading to cophylogenetic incongruence. In contrast, conspecific transmissions often result in high host specificity and congruent cophylogenies. In most bird-feather mite systems, conspecific transmission is considered dominant, while interspecific transmission is supposedly rare. However, while mites typically maintain high host specificity, incongruent cophylogenies are common. To explain this conundrum, we quantify the magnitude of conspecific vs. interspecific transmission in the brood parasitic shiny cowbird (Molothrus bonariensis). M. bonariensis lacks parental care, allowing the assessment of the role of horizontal transmission alone in maintaining host specificity. We found that despite frequent interspecific interactions via foster parental care, mite species dispersing via conspecific horizontal contacts are three times more likely to colonize M. bonariensis than mites transmitted vertically via foster parents. The results highlight the previously underappreciated rate of transmission via horizontal contacts in maintaining host specificity on a microevolutionary scale. On a macroevolutionary scale, however, host switches were estimated to have occurred as frequently as codivergences. This suggests that macroevolutionary patterns resulting from rare events cannot be easily generalized from short-term evolutionary trends.
Collapse
Affiliation(s)
- Luiz Gustavo A Pedroso
- Departamento de Zoologia, Av. 24-A, 1515, 13506-900, Universidade Estadual Paulista, Rio Claro, São Paulo State, Brazil.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA.
| | - Pavel B Klimov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Tyumen State University, 10 Semakova Str., 625003, Tyumen, Russia.
- Bangor University, Brambell 503, School of Natural Sciences, Bangor, LL57 2 UW, Wales, UK.
| | - Sergey V Mironov
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| | - Barry M OConnor
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Henk R Braig
- Bangor University, Brambell 503, School of Natural Sciences, Bangor, LL57 2 UW, Wales, UK
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, Argentina
| | - Almir R Pepato
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Fabio Akashi Hernandes
- Departamento de Zoologia, Av. 24-A, 1515, 13506-900, Universidade Estadual Paulista, Rio Claro, São Paulo State, Brazil
- Departamento de Ecologia e Zoologia, CCB/ECZ, Trindade, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
2
|
Boguslavsky DV, Sharova NP, Sharov KS. Evolutionary Challenges to Humanity Caused by Uncontrolled Carbon Emissions: The Stockholm Paradigm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16920. [PMID: 36554799 PMCID: PMC9778811 DOI: 10.3390/ijerph192416920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This review paper discusses the Stockholm Paradigm (SP) as a theoretical framework and practical computational instrument for studying and assessing the risk of emerging infectious diseases (EIDs) as a result of climate change. The SP resolves the long-standing parasite paradox and explains how carbon emissions in the atmosphere increase parasites' generalization and intensify host switches from animals to humans. The SP argues that the growing rate of novel EID occurrence caused by mutated zoonotic pathogens is related to the following factors brought together as a unified issue of humanity: (a) carbon emissions and consequent climate change; (b) resettlement/migration of people with hyper-urbanization; (c) overpopulation; and (d) human-induced distortion of the biosphere. The SP demonstrates that, in an evolutionary way, humans now play a role migratory birds once played in spreading parasite pathogens between the three Earth megabiotopes (northern coniferous forest belt; tropical/equatorial rainforest areas; and hot/cold deserts), i.e., the role of "super-spreaders" of parasitic viruses, bacteria, fungi and protozoa. This makes humans extremely vulnerable to the EID threat. The SP sees the +1.0-+1.2 °C limit as the optimal target for the slow, yet feasible curbing of the EID hazard to public health (150-200 years). Reaching merely the +2.0 °C level will obviously be an EID catastrophe, as it may cause two or three pandemics each year. We think it useful and advisable to include the SP-based research in the scientific repository of the Intergovernmental Panel on Climate Change, since EID appearance and spread are indirect but extremely dangerous consequences of climate change.
Collapse
Affiliation(s)
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | | |
Collapse
|
3
|
Alcantara DMC, Graciolli G, Antunes Junior M, Toma R, Nihei SS. Biogeographical events, not cospeciation, might be the main drivers in the historical association between Noctiliostrebla species (Streblidae) and their bulldog bat hosts. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The genus Noctiliostrebla Wenzel (Diptera: Streblidae) stands out for its high degree of specificity exhibited in relation to bat species of the genus Noctilio Linnaeus and provides an exciting system for understanding the history behind host–parasite associations. Here, we present a phylogeny of Noctiliostrebla based on an analysis of DNA sequences and morphological characters, along with cophylogenetic and biogeographical analyses. Our results strongly support the monophyly of Noctiliostrebla, but with uncertainties within the genus. With a low frequency of cospeciation events explaining the associations between hosts and parasites, cophylogenetic analyses did not show an overall congruence between the host and parasite phylogenies. Indeed, two parallel histories were recovered in the host–parasite associations, which might indicate that niche segregation is determined evolutionarily, facilitating the coexistence of parasites and promoting diversification. Biogeographical analysis showed a strong spatial congruence between disjunct distributions of Noctiliostrebla and major river basins in South America and with areas of higher elevation, which might be associated with the glacial periods throughout the Pliocene and Pleistocene. Overall, our findings suggest an agreement with the expectations of the ‘Stockholm paradigm’ framework, in which biogeographical events and ecological factors act as important components to explain the associations, instead of cospeciation events.
Collapse
Affiliation(s)
- Daniel Maximo Correa Alcantara
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , São Paulo , Brazil
- Fundação Oswaldo Cruz de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul , Brazil
| | - Gustavo Graciolli
- Setor de Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul , Brazil
| | - Manuel Antunes Junior
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , São Paulo , Brazil
| | - Ronaldo Toma
- Fundação Oswaldo Cruz de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul , Brazil
| | - Silvio Shigueo Nihei
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
4
|
Lajoie G, Parfrey LW. Beyond specialization: re-examining routes of host influence on symbiont evolution. Trends Ecol Evol 2022; 37:590-598. [PMID: 35466020 DOI: 10.1016/j.tree.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
Abstract
Our understanding of host influence on microbial evolution has focused on symbiont specialization and the genomic streamlining that often accompanies it. However, a vast diversity of symbiotic lineages facultatively interact with hosts or associate with multiple hosts. Yet, there are no clear expectations for how host association influences the niche of these symbionts or their evolution. Here, we discuss how weak or variable selection on microbial symbiotic associations, horizontal transmission, and low costs of adaptation to novel host habitats are predicted to promote the expansion or maintenance of microbial niches. This broad perspective will aid in developing better and more general predictions for evolution in microbial symbioses.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4.
| | - Laura Wegener Parfrey
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
5
|
Cháves-González LE, Morales-Calvo F, Mora J, Solano-Barquero A, Verocai GG, Rojas A. What lies behind the curtain: Cryptic diversity in helminth parasites of human and veterinary importance. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100094. [PMID: 35800064 PMCID: PMC9253710 DOI: 10.1016/j.crpvbd.2022.100094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Parasite cryptic species are morphologically indistinguishable but genetically distinct organisms, leading to taxa with unclear species boundaries. Speciation mechanisms such as cospeciation, host colonization, taxon pulse, and oscillation may lead to the emergence of cryptic species, influencing host-parasite interactions, parasite ecology, distribution, and biodiversity. The study of cryptic species diversity in helminth parasites of human and veterinary importance has gained relevance, since their distribution may affect clinical and epidemiological features such as pathogenicity, virulence, drug resistance and susceptibility, mortality, and morbidity, ultimately affecting patient management, course, and outcome of treatment. At the same time, the need for recognition of cryptic species diversity has implied a transition from morphological to molecular diagnostic methods, which are becoming more available and accessible in parasitology. Here, we discuss the general approaches for cryptic species delineation and summarize some examples found in nematodes, trematodes and cestodes of medical and veterinary importance, along with the clinical implications of their taxonomic status. Lastly, we highlight the need for the correct interpretation of molecular information, and the correct use of definitions when reporting or describing new cryptic species in parasitology, since molecular and morphological data should be integrated whenever possible.
Collapse
Affiliation(s)
- Luis Enrique Cháves-González
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Fernando Morales-Calvo
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Alberto Solano-Barquero
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
6
|
Beer A, Burns E, Randhawa HS. Natural history collections: collaborative opportunities and important sources of information about helminth biodiversity in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2067190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Haseeb S. Randhawa
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- South Atlantic Environmental Research Institute, Stanley, Falkland Islands
- New Brunswick Museum, Saint John, Canada
| |
Collapse
|
7
|
Trivellone V, Hoberg EP, Boeger WA, Brooks DR. Food security and emerging infectious disease: risk assessment and risk management. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211687. [PMID: 35223062 PMCID: PMC8847898 DOI: 10.1098/rsos.211687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 05/03/2023]
Abstract
Climate change, emerging infectious diseases (EIDs) and food security create a dangerous nexus. Habitat interfaces, assumed to be efficient buffers, are being disrupted by human activities which in turn accelerate the movement of pathogens. EIDs threaten directly and indirectly availability and access to nutritious food, affecting global security and human health. In the next 70 years, food-secure and food-insecure countries will face EIDs driving increasingly unsustainable costs of production, predicted to exceed national and global gross domestic products. Our modern challenge is to transform this business as usual and embrace an alternative vision of the biosphere formalized in the Stockholm paradigm (SP). First, a pathogen-centric focus shifts our vision of risk space, determining how pathogens circulate in realized and potential fitness space. Risk space and pathogen exchange are always heightened at habitat interfaces. Second, apply the document-assess-monitor-act (DAMA) protocol developing strategic data for EID risk, to be translated, synthesized and broadcast as actionable information. Risk management is realized through targeted interventions focused around information exchanged among a community of scientists, policy practitioners of food and public health security and local populations. Ultimately, SP and DAMA protect human rights, supporting food security, access to nutritious food, health interventions and environmental integrity.
Collapse
Affiliation(s)
- Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Eric P. Hoberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI 53716, USA
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Walter A. Boeger
- Biological Interactions, Universidade Federal do Paraná, Cx Postal 19073, Curitiba, Brazil
| | - Daniel R. Brooks
- Department of Ecology and Evolutionary Biology, University of Toronto (emeritus), Toronto, ON, Canada
- Harold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln, NE 68588-0514, USA
- Institute for Evolution, Centre for Ecological Research, Karolina ut 29, Budapest, Hungary H-1113
| |
Collapse
|
8
|
Pfenning-Butterworth AC, Davies TJ, Cressler CE. Identifying co-phylogenetic hotspots for zoonotic disease. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200363. [PMID: 34538148 PMCID: PMC8450626 DOI: 10.1098/rstb.2020.0363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
The incidence of zoonotic diseases is increasing worldwide, which makes identifying parasites likely to become zoonotic and hosts likely to harbour zoonotic parasites a critical concern. Prior work indicates that there is a higher risk of zoonotic spillover accruing from closely related hosts and from hosts that are infected with a high phylogenetic diversity of parasites. This suggests that host and parasite evolutionary history may be important drivers of spillover, but identifying whether host-parasite associations are more strongly structured by the host, parasite or both requires co-phylogenetic analyses that combine host-parasite association data with host and parasite phylogenies. Here, we use host-parasite datasets containing associations between helminth taxa and free-range mammals in combination with phylogenetic models to explore whether host, parasite, or both host and parasite evolutionary history influences host-parasite associations. We find that host phylogenetic history is most important for driving patterns of helminth-mammal association, indicating that zoonoses are most likely to come from a host's close relatives. More broadly, our results suggest that co-phylogenetic analyses across broad taxonomic scales can provide a novel perspective for surveying potential emerging infectious diseases. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
| | - T. Jonathan Davies
- Departments of Botany, Forest, and Conservation Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
9
|
Switch, disperse, repeat: host specificity is highly flexible in rodent-associated Eimeria. Int J Parasitol 2021; 51:977-984. [PMID: 34089715 DOI: 10.1016/j.ijpara.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023]
Abstract
Interplay between conserved host specificity and occasional host switches is an important process determining the evolution of host-parasite systems. Here, we address the dynamics of host switches at the population level in rodent-associated Eimeria. Focusing mainly on two ecologically similar host groups, Murinae and Arvicolinae, we show that the Eimeria infecting those hosts form a complex system of many genetic lineages with different host specificities. The broad geographic distribution of lineages indicates that they are well-established genetic forms which retained their host specificities while spreading across large geographic areas. We also demonstrate that genetic structure is only partially reflected by morphological traits.
Collapse
|
10
|
Frias L, Hasegawa H, Chua TH, Sipangkui S, Stark DJ, Salgado-Lynn M, Goossens B, Keuk K, Okamoto M, MacIntosh AJJ. Parasite community structure in sympatric Bornean primates. Int J Parasitol 2021; 51:925-933. [PMID: 33862059 DOI: 10.1016/j.ijpara.2021.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
Parasites are important components of ecosystems, influencing trophic networks, competitive interactions and biodiversity patterns. Nonetheless, we are not nearly close to disentangling their complex roles in natural systems. Southeast Asia falls within global areas targeted as most likely to source parasites with zoonotic potential, where high rates of land conversion and fragmentation have altered the circulation of wildlife species and their parasites, potentially resulting in altered host-parasite systems. Although the overall biodiversity in the region predicts equally high, or even higher, parasite diversity, we know surprisingly little about wild primate parasites, even though this constitutes the first step towards a more comprehensive understanding of parasite transmission processes. Here, we characterise the gastrointestinal helminth parasite assemblages of a community of Bornean primates living along the Kinabatangan floodplain in Sabah (Malaysian Borneo), including two species endemic to the island. Through parasitological analyses, and by using several measures of parasite infection as proxies for parasite diversity and distribution, we show that (i) most parasite taxonomic groups are not limited to a single host, suggesting a greater flexibility for habitat disturbance, (ii) parasite infracommunities of nocturnal primates differ from their diurnal counterparts, reflecting both phylogenetic and ecological constraints, and (iii) soil-transmitted helminths such as whipworm, threadworm and nodule worm are widespread across the primate community. This study also provides new parasite records for southern pig-tailed macaques (Macaca nemestrina), silvered langurs (Trachypithecus cristatus) and Western tarsiers (Cephalopachus bancanus) in the wild, while adding to the limited records for the other primate species in the community. Given the information gap regarding primate-parasite associations in the region, the information presented here should prove relevant for future studies of parasite biodiversity and infectious disease ecology in Asia and elsewhere.
Collapse
Affiliation(s)
- Liesbeth Frias
- Asian School of the Environment, Nanyang Technological University, Singapore; Primate Research Institute, Kyoto University, Inuyama, Japan; Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia.
| | - Hideo Hasegawa
- Department of Biomedicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Danica J Stark
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Milena Salgado-Lynn
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK; Wildlife Health, Genetic and Forensic Laboratory, Kota Kinabalu, Sabah, Malaysia; Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Benoit Goossens
- Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia; Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia; Cardiff School of Biosciences, Cardiff University, Cardiff, UK; Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Kenneth Keuk
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | - Andrew J J MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan; Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
11
|
Galbreath KE, Toman HM, Li C, Hoberg EP. When parasites persist: tapeworms survive host extinction and reveal waves of dispersal across Beringia. Proc Biol Sci 2020; 287:20201825. [PMID: 33352070 DOI: 10.1098/rspb.2020.1825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigations of intercontinental dispersal between Asia and North America reveal complex patterns of geographic expansion, retraction and isolation, yet historical reconstructions are largely limited by the depth of the record that is retained in patterns of extant diversity. Parasites offer a tool for recovering deep historical insights about the biosphere, improving the resolution of past community-level interactions. We explored biogeographic hypotheses regarding the history of dispersal across Beringia, the region intermittently linking Asia and North America, through large-scale multi-locus phylogenetic analyses of the genus Schizorchis, an assemblage of host-specific cestodes in pikas (Lagomorpha: Ochotonidae). Our genetic data support palaeontological evidence for two separate geographic expansions into North America by Ochotona in the late Tertiary, a history that genomic evidence from extant pikas does not record. Pikas descending from the first colonization of Miocene age persisted into the Pliocene, subsequently coming into contact with a second wave of Nearctic colonists from Eurasia before going extinct. Spatial and temporal overlap of historically independent pika populations provided a window for host colonization, allowing persistence of an early parasite lineage in the contemporary fauna following the extinction of its ancestral hosts. Empirical evidence for ancient 'ghost assemblages' of hosts and parasites demonstrates how complex mosaic faunas are assembled in the biosphere through episodes of faunal mixing encompassing parasite lineages across deep and shallow time.
Collapse
Affiliation(s)
- Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| | - Heather M Toman
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| | - Chenhong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Eric P Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, CERIA Building, MSC03 2020, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Frias L, Hasegawa H, Stark DJ, Lynn MS, Nathan SK, Chua TH, Goossens B, Okamoto M, MacIntosh AJJ. A pinworm's tale: The evolutionary history of Lemuricola (Protenterobius) nycticebi. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 8:25-32. [PMID: 30619706 PMCID: PMC6299129 DOI: 10.1016/j.ijppaw.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
Abstract
Lemuricola (Protenterobius) nycticebi is the only pinworm species known to infect strepsirrhine primates outside Africa, and the only pinworm species yet described in slow lorises. Here, we provided a detailed morphological comparison of female and male worms, and a first description of fourth-stage larvae collected from free-living slow lorises (Nycticebus menagensis) in Sabah, Malaysian Borneo. Using mitochondrial and nuclear markers, we also reconstructed the species' phylogenetic relationship with other pinworms infecting primates. Both morphological and molecular results indicated a distinct association between L. (P.) nycticebi and its host. However, while taxonomy identified this species as a member of the Lemuricola clade and grouped pinworms infecting lemurs and slow lorises together, phylogenetic reconstruction split them, placing L. (P.) nycticebi within the Enterobius clade. Our results suggest that L. (P.) nycticebi may represent a different taxon altogether, and that it is more closely related to pinworm species infecting Old World primates outside Madagascar. Pongobius pongoi (Foitová et al., 2008) n. comb. is also proposed. Pinworms and their primate hosts have a long history of association. L. (P.) nycticebi was recovered from slow lorises in the wild. L. (P.) nycticebi was taxonomy classified within the Lemuricola clade. However, molecular phylogenetics placed it within the Enterobius clade. Taxonomic and molecular identifications should complement species descriptions.
Collapse
Affiliation(s)
- Liesbeth Frias
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hideo Hasegawa
- Department of Biomedicine and Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Danica J Stark
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.,Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia
| | - Milena Salgado Lynn
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.,Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia.,Wildlife Health, Genetic and Forensic Laboratory, Kota Kinabalu, Sabah, Malaysia.,Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | | | - Tock H Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Benoit Goossens
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.,Danau Girang Field Centre, Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia.,Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia.,Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | | | - Andrew J J MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
13
|
Nylin S, Agosta S, Bensch S, Boeger WA, Braga MP, Brooks DR, Forister ML, Hambäck PA, Hoberg EP, Nyman T, Schäpers A, Stigall AL, Wheat CW, Österling M, Janz N. Embracing Colonizations: A New Paradigm for Species Association Dynamics. Trends Ecol Evol 2018; 33:4-14. [DOI: 10.1016/j.tree.2017.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/30/2023]
|
14
|
Alcala N, Jenkins T, Christe P, Vuilleumier S. Host shift and cospeciation rate estimation from co‐phylogenies. Ecol Lett 2017; 20:1014-1024. [DOI: 10.1111/ele.12799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Alcala
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
- Department of Biology Stanford University Stanford CA94305‐5020 USA
| | - Tania Jenkins
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
| | - Séverine Vuilleumier
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
- School of Life Sciences Ecole Polytechnique Fédérale de Lausanne CH‐1015 Lausanne Switzerland
- School of Nursing Sciences, La Source University of Applied Sciences & Arts of Western Switzerland CH‐1004 Lausanne Switzerland
| |
Collapse
|
15
|
Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate. J Helminthol 2017; 91:409-421. [DOI: 10.1017/s0022149x17000347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AbstractClimate oscillations and episodic processes interact with evolution, ecology and biogeography to determine the structure and complex mosaic that is the biosphere. Parasites and parasite–host assemblages are key components in a general explanatory paradigm for global biodiversity. We explore faunal assembly in the context of Quaternary time frames of the past 2.6 million years, a period dominated by episodic shifts in climate. Climate drivers cross a continuum from geological to contemporary timescales and serve to determine the structure and distribution of complex biotas. Cycles within cycles are apparent, with drivers that are layered, multifactorial and complex. These cycles influence the dynamics and duration of shifts in environmental structure on varying temporal and spatial scales. An understanding of the dynamics of high-latitude systems, the history of the Beringian nexus (the intermittent land connection linking Eurasia and North America) and downstream patterns of diversity depend on teasing apart the complexity of biotic assembly and persistence. Although climate oscillations have dominated the Quaternary, contemporary dynamics are driven by tipping points and shifting balances emerging from anthropogenic forces that are disrupting ecological structure. Climate change driven by anthropogenic forcing has supplanted a history of episodic variation and is eliminating ecological barriers and constraints on development and distribution for pathogen transmission. A framework to explore interactions of episodic processes on faunal structure and assembly is the Stockholm Paradigm, which appropriately shifts the focus from cospeciation to complexity and contingency in explanations of diversity.
Collapse
|
16
|
Clark NJ, Clegg SM. Integrating phylogenetic and ecological distances reveals new insights into parasite host specificity. Mol Ecol 2017; 26:3074-3086. [PMID: 28295937 DOI: 10.1111/mec.14101] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 01/01/2023]
Abstract
The range of hosts a pathogen infects (host specificity) is a key element of disease risk that may be influenced by both shared phylogenetic history and shared ecological attributes of prospective hosts. Phylospecificity indices quantify host specificity in terms of host relatedness, but can fail to capture ecological attributes that increase susceptibility. For instance, similarity in habitat niche may expose phylogenetically unrelated host species to similar pathogen assemblages. Using a recently proposed method that integrates multiple distances, we assess the relative contributions of host phylogenetic and functional distances to pathogen host specificity (functional-phylogenetic host specificity). We apply this index to a data set of avian malaria parasite (Plasmodium and Haemoproteus spp.) infections from Melanesian birds to show that multihost parasites generally use hosts that are closely related, not hosts with similar habitat niches. We also show that host community phylogenetic ß-diversity (Pßd) predicts parasite Pßd and that individual host species carry phylogenetically clustered Haemoproteus parasite assemblages. Our findings were robust to phylogenetic uncertainty, and suggest that phylogenetic ancestry of both hosts and parasites plays important roles in driving avian malaria host specificity and community assembly. However, restricting host specificity analyses to either recent or historical timescales identified notable exceptions, including a 'habitat specialist' parasite that infects a diversity of unrelated host species with similar habitat niches. This work highlights that integrating ecological and phylogenetic distances provides a powerful approach to better understand drivers of pathogen host specificity and community assembly.
Collapse
Affiliation(s)
- Nicholas J Clark
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia.,Environmental Futures Research Institute, Griffith University, Gold Coast, Qld, 4111, Australia
| | - Sonya M Clegg
- Department of Zoology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
17
|
Cloutman DG, McAllister CT. Aethycteron robisoni n. sp. (Monogenea: Ancyrocephalidae) from the sunburst darter, Etheostoma mihileze Mayden (Perciformes: Percidae), in Arkansas, USA. Syst Parasitol 2017; 94:145-150. [PMID: 28062995 DOI: 10.1007/s11230-016-9687-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Abstract
Aethycteron robisoni n. sp. is described from the sunburst darter, Etheostoma mihileze Mayden (Perciformes: Percidae), in the Arkansas River Drainage of the Ozark Region in the Central Highlands of Arkansas, USA. Aethycteron robisoni morphologically most closely resembles A. caerulei Suriano & Beverley-Burton, 1982, A. moorei (Mizelle, 1940) and A. nigrei Suriano & Beverly-Burton, 1982, by possessing a male copulatory organ with a distinct distal curvature and spiraling sheath. The haptoral sclerites of A. robisoni, with the exception of the hooks, are distinctly larger than those of the other three species. This is the first time a monogenean parasite has been reported from E. mihileze as well as the first time the genus Aethycteron Suriano & Beverley-Burton, 1982 has been reported from Arkansas, USA.
Collapse
Affiliation(s)
| | - Chris T McAllister
- Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK, 74745, USA.
| |
Collapse
|
18
|
Blasco-Costa I, Locke SA. Life History, Systematics and Evolution of the Diplostomoidea Poirier, 1886: Progress, Promises and Challenges Emerging From Molecular Studies. ADVANCES IN PARASITOLOGY 2017; 98:167-225. [PMID: 28942769 DOI: 10.1016/bs.apar.2017.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Members of the Diplostomoidea mature in amniotes and employ vertebrates, annelids and molluscs as second intermediate hosts. Diplostomoid life cycles generally follow a three-host pattern typical of digeneans, but novelties have arisen in some species, including obligate four-host life cycles, vertical transmission, and intracellular parasitism. In this review, we summarize the basic biology of diplostomoids with reference to molecular studies, and present challenges, gaps and areas where molecular data could address long-standing questions. Our analysis of published studies revealed that most molecular surveys find more diplostomoid species than expected, but this tendency is influenced by how much effort goes into examining specimens morphologically and the number of sequenced worms. To date, molecular work has concentrated disproportionately on intraspecific or species-level diversity of larval stages in the Diplostomidae in temperate northern regions. Although the higher taxonomy of the superfamily is recognized to be in need of revision, little molecular work has been conducted at this level. Our phylogenetic analysis indicates several families and subfamilies require reconsideration, and that larval morphotypes are more reflective of evolutionary relationships than definitive hosts. The host associations of adult diplostomoids result from host-switching processes, whereas molecular surveys indicate that larval diplostomoid metacercariae have narrow ranges of second intermediate hosts, consistent with coevolution. Molecular data are often used to link diplostomoid developmental stages, and we provide data from adult Neodiplostomum and Mesoophorodiplostomum that correct earlier misidentifications of their larval stages and propose alternatives to collecting definitive hosts.
Collapse
|
19
|
Bell KC, Calhoun KL, Hoberg EP, Demboski JR, Cook JA. Temporal and spatial mosaics: deep host association and shallow geographic drivers shape genetic structure in a widespread pinworm, Rauschtineria eutamii. Biol J Linn Soc Lond 2016; 119:397-413. [PMID: 27725785 PMCID: PMC5055073 DOI: 10.1111/bij.12833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Climate and host demographic cycling often shape both parasite genetic diversity and host distributions, processes that transcend a history of strict host-parasite association. We explored host associations and histories based on an evaluation of mitochondrial and nuclear sequences to reveal the underlying history and genetic structure of a pinworm, Rauschtineria eutamii, infecting 10 species of western North American chipmunks (Rodentia:Tamias, subgenus Neotamias). Rauschtineria eutamii contains divergent lineages influenced by the diversity of hosts and variation across the complex topography of western North America. We recovered six reciprocally monophyletic R. eutamii mitochondrial clades, largely supported by nuclear gene trees, exhibiting divergence levels comparable to intraspecific variation reported for other nematodes. Phylogenetic relationships among pinworm clades suggest that R. eutamii colonized an ancestral lineage of western chipmunks and lineages persisted during historical isolation in diverging Neotamias species or species groups. Pinworm diversification, however, is incongruent and asynchronous relative to host diversification. Secondarily, patterns of shallow divergence were shaped by geography through events of episodic colonization reflecting an interaction of taxon pulses and ecological fitting among assemblages in recurrent sympatry. Pinworms occasionally infect geographically proximal host species; however, host switching may be unstable or ephemeral, as there is no signal of host switching in the deeper history of R. eutamii.
Collapse
Affiliation(s)
- Kayce C. Bell
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87108, USA
| | - Kendall L. Calhoun
- Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, California 94720, USA
| | - Eric P. Hoberg
- US National Parasite Collection, USDA, Agricultural Research Service, Beltsville Area Research Center, BARC East 1180, 10300 Baltimore Avenue, Beltsville, Maryland 20715, USA
| | - John R. Demboski
- Department of Zoology, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, Colorado 80205, USA
| | - Joseph A. Cook
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87108, USA
| |
Collapse
|
20
|
Weaver HJ, Monks S, Gardner SL. Phylogeny and biogeography of species of Syphacia Seurat, 1916 (Nemata : Oxyurida : Oxyuridae) from the Australian Bioregion. AUST J ZOOL 2016. [DOI: 10.1071/zo15080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pinworm nematodes of the genus Syphacia (Nemata : Oxyurida : Oxyuridae) have a global distribution, and infect the caecum of rodents. Within the Australian Bioregion, 17 species of Syphacia infect a range of rodent hosts. Pinworms are traditionally thought to have coevolutionary relationships with their hosts, but the evolution and dispersal of Australian rodents and their helminths remains unclear. This combination of factors allowed us to investigate the likely relationships of Australian Syphacia species based on phylogenetic analysis, overlaid with the ecology and relationships of host species. We conducted a phylogenetic analysis using morphological characters of the species of Syphacia from the Australian Bioregion in order to examine the relationships between species, and to investigate how host evolution and phylogeny could inform (or be informed) by parasite phylogeny. Application of the taxon pulse theory of parasite speciation by matching host species to parasites shed some light on the timing of speciation of rodent hosts. We found that species of Syphacia had reasonably close host–parasite relationships, with additional evidence for ecological fitting or host switching occurring. Evidence provided here suggests strongly that most elements of the Stockholm Paradigm are at play in structuring the relationships we observe in this pinworm–mammal system.
Collapse
|
21
|
Galbreath KE, Hoberg EP. Host responses to cycles of climate change shape parasite diversity across North America's Intermountain West. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i3.a4.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kurt E. Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, U.S.A.
| | - Eric P. Hoberg
- United States National Parasite Collection, ARS USDA, Animal Parasitic Diseases Laboratory, BARC East 1180, Beltsville, MD 20705, U.S.A.
| |
Collapse
|
22
|
Haukisalmi V, Hardman LM, Fedorov VB, Hoberg EP, Henttonen H. Molecular systematics and
H
olarctic phylogeography of cestodes of the genus
A
noplocephaloides
Baer, 1923 s. s. (
C
yclophyllidea,
A
noplocephalidae) in lemmings (
L
emmus
,
S
ynaptomys
). ZOOL SCR 2015. [DOI: 10.1111/zsc.12136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Voitto Haukisalmi
- Finnish Museum of Natural History Luomus University of Helsinki P. Rautatiekatu 13 00014 Helsinki Finland
| | | | - Vadim B. Fedorov
- Institute of Arctic Biology University of Alaska Fairbanks AK 99775 USA
| | - Eric P. Hoberg
- Animal Parasitic Diseases Laboratory USDA ARS BARC East 1180 10300 Baltimore Avenue Beltsville MD 20715 USA
| | - Heikki Henttonen
- Natural Resources Institute Finland (Luke) Jokiniemenkuja 1 01370 Vantaa Finland
| |
Collapse
|
23
|
Hoberg EP, Brooks DR. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130553. [PMID: 25688014 PMCID: PMC4342959 DOI: 10.1098/rstb.2013.0553] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization.
Collapse
Affiliation(s)
- Eric P Hoberg
- US National Parasite Collection, Agricultural Research Service, USDA, Beltsville Area Research Center, BARC East 1180 Beltsville, MD 20705, USA
| | - Daniel R Brooks
- H.W. Manter Laboratory of Parasitology, University of Nebraska State Museum of Natural History, University of Nebraska-Lincoln, Lincoln, NE 68588-0514, USA
| |
Collapse
|