1
|
Jouglar E, de Marzi L, Verrelle P, Créhange G, Ferrand R, Doz F, Prezado Y, Paoletti X. From pre-clinical studies to human treatment with proton-minibeam radiation therapy: adapted Idea, Development, Exploration, Assessment and Long-term evaluation (IDEAL) framework for innovation in radiotherapy. Clin Transl Radiat Oncol 2025; 52:100932. [PMID: 40124645 PMCID: PMC11928333 DOI: 10.1016/j.ctro.2025.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
The implementation and spread of new radiation therapy (RT) techniques are often rushed through before or without high-quality proof of a clinical benefit. The framework for phase 1, 2 and 3 trials, ideally designed for pharmaceutical evaluation, is not always appropriate for RT interventions. The IDEAL framework is a five-step process initially developed to enable the rapid implementation of surgical innovations while limiting risks for patients. IDEAL was subsequently adapted to RT. Proton-minibeam radiation therapy (pMBRT) is an innovative RT approach, using an array of parallel thin beams resulting in an outstanding increase in the therapeutic ratio. Cumulative preclinical evidence showed pMBRT was superior to standard RT regarding brain tolerance and provided equivalent or better local control in several glioblastoma models. We decided to adapt IDEAL to pMBRT to accelerate the implementation of this promising new technique in clinical care and present here some examples of possible upcoming studies.
Collapse
Affiliation(s)
- Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
- Paris-Saclay University, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Ludovic de Marzi
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
- Institut Curie, PSL Research University, Inserm U1288, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| | - Pierre Verrelle
- Institut Curie, PSL Research University, CNRS UMR9187, Inserm U1196, Orsay, France
| | - Gilles Créhange
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
- Institut Curie, PSL Research University, Inserm U1288, Laboratoire d’Imagerie Translationnelle en Oncologie (LITO), Orsay, France
| | - Regis Ferrand
- Institut Curie, PSL Research University, Department of Radiation Oncology - Paris and Orsay Protontherapy Center, Paris, France
| | - François Doz
- SIREDO Centre (Care, Innovation and Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, Paris and University Paris Cité, Paris, France
| | - Yolanda Prezado
- Paris-Saclay University, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Xavier Paoletti
- Institut Curie, PSL Research University, Biostatistic Unit, Paris, France
| |
Collapse
|
2
|
Bertho A, Graeff C, Ortiz R, Giorgi M, Schuy C, Juchaux M, Gilbert C, Espenon J, Oppermann J, Sokol O, Tinganelli W, Prezado Y. Carbon minibeam radiation therapy results in tumor growth delay in an osteosarcoma murine model. Sci Rep 2025; 15:7305. [PMID: 40025099 PMCID: PMC11873225 DOI: 10.1038/s41598-025-91872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Despite remarkable advances, radiation therapy (RT) remains inefficient for some bulky tumors, radioresistant tumors, and certain pediatric tumors. Minibeam radiation therapy (MBRT) has emerged as a promising approach, reducing normal tissue toxicity while enhancing immune responses. Preclinical studies using X-rays and proton MBRT have demonstrated enhanced therapeutic index for aggressive tumor models. Combining MBRT's advantages of spatial dose fractionation with the physical and biological benefits of carbon ions could be a step further toward unleashing the full potential of MBRT. This study aims to perform the first in vivo study of local and systemic responses of a subcutaneous mouse osteosarcoma (metastatic) model to carbon MBRT (C-MBRT) versus conventional carbon ion therapy (CT). Irradiations were conducted at the GSI Helmholtz Centre in Germany using 180 MeV/u 12C ions beam. All irradiated animals received an average dose (20 Gy) and displayed a significant and similar tumor growth delay in addition to a decreased metastasis score compared to the non-irradiated group. In the C-MBRT group, 70% of the tumor volume received the valley dose, which is a very low dose of 1.5 Gy. The remaining 30% of the tumor received the peak dose of 105 Gy, resulting in an average dose of 20 Gy. These results suggest that C-MBRT triggered distinct mechanisms from CT and encourage further investigations to confirm the potential of C-MBRT for efficient treatment of radioresistant tumors.
Collapse
Affiliation(s)
- Annaïg Bertho
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université PSL, 91400, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Christian Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ramon Ortiz
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université PSL, 91400, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Maria Giorgi
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université PSL, 91400, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marjorie Juchaux
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université PSL, 91400, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Cristèle Gilbert
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université PSL, 91400, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Julie Espenon
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université PSL, 91400, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Julius Oppermann
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Yolanda Prezado
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université PSL, 91400, Orsay, France.
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France.
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706, Santiago de Compostela, A Coruña, Spain.
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain.
- Institut Curie Centre de Recherche, Rue Henri Becquerel, 91410, Orsay, France.
| |
Collapse
|
3
|
Zhang W, Hong X, Wu W, Wang C, Johnson D, Gan GN, Lin Y, Gao H. Multi-collimator proton minibeam radiotherapy with joint dose and PVDR optimization. Med Phys 2025; 52:1182-1192. [PMID: 39607058 DOI: 10.1002/mp.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The clinical translation of proton minibeam radiation therapy (pMBRT) presents significant challenges, particularly in developing an optimal treatment planning technique. A uniform target dose is crucial for maximizing anti-tumor efficacy and facilitating the clinical acceptance of pMBRT. However, achieving a high peak-to-valley dose ratio (PVDR) in organs-at-risk (OAR) is essential for sparing normal tissue. This balance becomes particularly difficult when OARs are located distal to the beam entrance or require patient-specific collimators. PURPOSE This work proposes a novel pMBRT treatment planning method that can achieve high PVDR at OAR and uniform dose at target simultaneously, via multi-collimator pMBRT (MC-pMBRT) treatment planning method with joint dose and PVDR optimization (JDPO). METHODS MC-pMBRT utilizes a set of generic and premade multi-slit collimators with different center-to-center distances and does not need patient-specific collimators. The collimator selection per field is OAR-specific and tailored to maximize PVDR in OARs while preserving target dose uniformity. Then, the inverse optimization method JDPO is utilized to jointly optimize target dose uniformity, PVDR, and other dose-volume-histogram based dose objectives, which is solved by iterative convex relaxation optimization algorithm and alternating direction method of multipliers. RESULTS The need and efficacy of MC-pMBRT is demonstrated by comparing the single-collimator (SC) approach with the multi-collimator (MC) approach. While SC degraded either PVDR for OAR or dose uniformity for the target, MC provided a good balance of PVDR and target dose uniformity. The proposed JDPO method is validated in comparison with the dose-only optimization (DO) method for MC-pMBRT, in reference to the conventional (CONV) proton RT (no pMBRT). Compared to CONV, MC-pMBRT (DO and JDPO) preserved target dose uniformity and plan quality, while providing unique PVDR in OAR. Compared to DO, JDPO further improved PVDR via PVDR optimization during treatment planning. CONCLUSION A novel pMBRT treatment planning method called MC-pMBRT is proposed that utilizes a set of generic and premade collimators with joint dose and PVDR optimization algorithm to optimize OAR-specific PVDR and target dose uniformity simultaneously.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xue Hong
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wei Wu
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Chao Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Johnson
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
González-Vegas R, Seksek O, Bertho A, Bergs J, Hirayama R, Inaniwa T, Matsufuji N, Shimokawa T, Prezado Y, Yousef I, Martínez-Rovira I. Synchrotron-based infrared microspectroscopy unveils the biomolecular response of healthy and tumour cell lines to neon minibeam radiation therapy. Analyst 2025; 150:342-352. [PMID: 39668677 PMCID: PMC11638702 DOI: 10.1039/d4an01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Radioresistant tumours remain complex to manage with current radiotherapy (RT) techniques. Heavy ion beams were proposed for their treatment given their advantageous radiobiological properties. However, previous studies with patients resulted in serious adverse effects in the surrounding healthy tissues. Heavy ion RT could therefore benefit from the tissue-sparing effects of minibeam radiation therapy (MBRT). To investigate the potential of this combination, here we assessed the biochemical response to neon MBRT (NeMBRT) through synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM). Healthy (BJ) and tumour (B16-F10) cell lines were subjected to seamless (broad beam) neon RT (NeBB) and NeMBRT at HIMAC. SR-FTIRM measurements were conducted at the MIRAS beamline of ALBA Synchrotron. Principal component analysis (PCA) permitted to assess the biochemical effects after the irradiations and 24 hours post-irradiation for the different RT modalities and doses. For the healthy cells, NeMBRT resulted in the most dissimilar spectral signatures from non-irradiated cells early after irradiations, mainly due to protein conformational modifications. Nevertheless, most of the damage appeared to recover one day post-RT; conversely, protein- and nucleic acid-related IR bands were strongly affected by NeBB 24 hours after treatment, suggesting superior oxidative damage and nucleic acid degradation. Tumour cells appeared to be less sensitive to NeBB than to NeMBRT shortly after RT. Still, after one day, both NeBB and the high-dose NeMBRT regions yielded important spectral modifications, suggestive of cell death processes, protein oxidation or oxidative stress. Lipid-associated spectral changes, especially due to the NeBB and NeMBRT peak groups for the tumour cell line, were consistent with reactive oxygen species attacks.
Collapse
Affiliation(s)
- R González-Vegas
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - O Seksek
- IJCLab, French National Centre for Scientific Research, 91450 Orsay, France
| | - A Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - J Bergs
- Radiology Department, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - R Hirayama
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - T Inaniwa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - N Matsufuji
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - T Shimokawa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - Y Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - I Yousef
- MIRAS Beamline, ALBA Synchrotron, 08209 Cerdanyola del Vallès, Barcelona, Spain
| | - I Martínez-Rovira
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
5
|
Potiron S, Iturri L, Juchaux M, Espenon J, Gilbert C, McGarrigle J, Ortiz Catalan R, Fernandez-Rodriguez A, Sebrié C, Jourdain L, De Marzi L, Créhange G, Prezado Y. The significance of dose heterogeneity on the anti-tumor response of minibeam radiation therapy. Radiother Oncol 2024; 201:110577. [PMID: 39393469 DOI: 10.1016/j.radonc.2024.110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND PURPOSE Proton Minibeam Radiation Therapy (pMBRT) is an unconventional radiation technique based on a strong modulation of the dose deposition. Due to its specific pattern, pMBRT involves several dosimetry (peak and valley doses, peak-to-valley dose ratio (PVDR)) and geometrical parameters (beam width, spacing) that can influence the biological response. This study aims at contributing to the efforts to deepen the comprehension of how the various parameters relate to central biological mechanisms, particularly anti-tumor immunity, and how these correlations affect treatment outcomes with the goal to fully unleash the potential of pMBRT. We also evaluated the effects of X-ray MBRT to further elucidate the influence of peak dose and dose heterogeneity. METHODS AND MATERIALS An orthotopic rat model of glioblastoma underwent several pMBRT configurations. The impact of different dosimetric parameters on survival and on the modulation of crucial mechanisms for pMBRT, such as immune response, was investigated. The latter was assessed by immunohistochemistry and flow cytometry at 7 days post-irradiation. RESULTS Survival was improved across the various pMBRT regimens via maintaining a minimum valley dose as well as a higher dose heterogeneity, which is driven by peak dose. While the mean dose did not impact immune infiltration, a higher PVDR promoted a less immunosuppressive microenvironment. CONCLUSIONS Our results suggest that both tumor eradication, and immune infiltration are associated with higher dose heterogeneity. Higher dose heterogeneity was achieved by optimizing the peak dose, as well as maintaining a minimum valley dose. These parameters contributed to direct tumor eradication as well as reduction of immunosuppression, which is a departure from the more immunosuppressive tumor environment found in conventional proton therapy that delivers uniform dose distributions.
Collapse
Affiliation(s)
- Sarah Potiron
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Julie Espenon
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Cristèle Gilbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Josie McGarrigle
- Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Ramon Ortiz Catalan
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Alfredo Fernandez-Rodriguez
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Catherine Sebrié
- Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, BIOMAPS Universite Paris-Saclay, Orsay, France
| | - Laurène Jourdain
- Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, BIOMAPS Universite Paris-Saclay, Orsay, France
| | - Ludovic De Marzi
- Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), 91898 Orsay, France; Institut Curie, Radiation Oncology Department, PSL Research University, 25 rue d'Ulm 75005, Paris/Orsay, France
| | - Gilles Créhange
- Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), 91898 Orsay, France; Institut Curie, Radiation Oncology Department, PSL Research University, 25 rue d'Ulm 75005, Paris/Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| |
Collapse
|
6
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
7
|
Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol 2024; 69:10TR02. [PMID: 38648789 DOI: 10.1088/1361-6560/ad4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, E-15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology, F-75005, Paris and Orsay Protontherapy Center, F-91400, Orsay, France
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Auto`noma de Barcelona, E-08193, Cerdanyola del Valle`s (Barcelona), Spain
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - Joao Seco
- Division of Biomedical physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sha Chang
- Dept of Radiation Oncology and Department of Biomedical Engineering, University of North Carolina School of Medicine, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolin State University, United States of America
| |
Collapse
|
8
|
Tubin S, Vozenin M, Prezado Y, Durante M, Prise K, Lara P, Greco C, Massaccesi M, Guha C, Wu X, Mohiuddin M, Vestergaard A, Bassler N, Gupta S, Stock M, Timmerman R. Novel unconventional radiotherapy techniques: Current status and future perspectives - Report from the 2nd international radiation oncology online seminar. Clin Transl Radiat Oncol 2023; 40:100605. [PMID: 36910025 PMCID: PMC9996385 DOI: 10.1016/j.ctro.2023.100605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
•Improvement of therapeutic ratio by novel unconventional radiotherapy approaches.•Immunomodulation using high-dose spatially fractionated radiotherapy.•Boosting radiation anti-tumor effects by adding an immune-mediated cell killing.
Collapse
Affiliation(s)
- S. Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - M.C. Vozenin
- Radiation Oncology Laboratory, Radiation Oncology Service, Oncology Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Y. Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
| | - M. Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt 64291, Germany
- Technsiche Universität Darmstadt, Institute for Condensed Matter Physics, Darmstadt, Germany
| | - K.M. Prise
- Patrick G Johnston Centre for Cancer Research Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - P.C. Lara
- Canarian Comprehensive Cancer Center, San Roque University Hospital & Fernando Pessoa Canarias University, C/Dolores de la Rocha 9, Las Palmas GC 35001, Spain
| | - C. Greco
- Department of Radiation Oncology Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - M. Massaccesi
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C. Guha
- Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States
| | - X. Wu
- Executive Medical Physics Associates, 19470 NE 22nd Road, Miami, FL 33179, United States
| | - M.M. Mohiuddin
- Northwestern Medicine Cancer Center Warrenville and Northwestern Medicine Proton Center, 4455 Weaver Pkwy, Warrenville, IL 60555, United States
| | - A. Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - N. Bassler
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - S. Gupta
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - M. Stock
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
- Karl Landsteiner University of Health Sciences, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - R. Timmerman
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Inwood Road Dallas, TX 2280, United States
| |
Collapse
|
9
|
Bertho A, Iturri L, Brisebard E, Juchaux M, Gilbert C, Ortiz R, Sebrie C, Jourdain L, Lamirault C, Ramasamy G, Pouzoulet F, Prezado Y. Evaluation of the Role of the Immune System Response After Minibeam Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 115:426-439. [PMID: 35985455 DOI: 10.1016/j.ijrobp.2022.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is an innovative technique that uses a spatial dose modulation. The dose distribution consists of high doses (peaks) in the path of the minibeam and low doses (valleys). The underlying biological mechanism associated with MBRT efficacy remains currently unclear and thus we investigated the potential role of the immune system after treatment with MBRT. METHODS AND MATERIALS Rats bearing an orthotopic glioblastoma cell line were treated with 1 fraction of high dose conventional radiation therapy (30 Gy) or 1 fraction of the same mean dose in MBRT. Both immunocompetent (F344) and immunodeficient (Nude) rats were analyzed in survival studies. Systemic and intratumoral immune cell population changes were studied with flow cytometry and immunohistochemistry (IHC) 2 and 7 days after the irradiation. RESULTS The absence of response of Nude rats after MBRT suggested that T cells were key in the mode of action of MBRT. An inflammatory phenotype was observed in the blood 1 week after irradiation compared with conventional irradiation. Tumor immune cell analysis by flow cytometry showed a substantial infiltration of lymphocytes, specifically of CD8 T cells and B cells in both conventional and MBRT-treated animals. IHC revealed that MBRT induced a faster recruitment of CD8 and CD4 T cells. Animals that were cured by radiation therapy did not suffer tumor growth after reimplantation of tumoral cells, proving the long-term immunity response generated after a high dose of radiation. CONCLUSIONS Our findings show that MBRT can elicit a robust antitumor immune response in glioblastoma while avoiding the high toxicity of a high dose of conventional radiation therapy.
Collapse
Affiliation(s)
- Annaig Bertho
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France.
| | - Lorea Iturri
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | | | - Marjorie Juchaux
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Cristèle Gilbert
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Ramon Ortiz
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Catherine Sebrie
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurene Jourdain
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Charlotte Lamirault
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Gabriel Ramasamy
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Frédéric Pouzoulet
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France; Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie, Institut Curie, PSL University, Université Paris-Saclay, Orsay, France
| | - Yolanda Prezado
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| |
Collapse
|
10
|
Mentzel F, Kröninger K, Lerch M, Nackenhorst O, Rosenfeld A, Tsoi AC, Weingarten J, Hagenbuchner M, Guatelli S. Small beams, fast predictions: a comparison of machine learning dose prediction models for proton minibeam therapy. Med Phys 2022; 49:7791-7801. [PMID: 36309820 DOI: 10.1002/mp.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Dose calculations for novel radiotherapy cancer treatments such as proton minibeam radiation therapy is often done using full Monte Carlo (MC) simulations. As MC simulations can be very time consuming for this kind of application, deep learning models have been considered to accelerate dose estimation in cancer patients. PURPOSE This work systematically evaluates the dose prediction accuracy, speed and generalization performance of three selected state-of-the-art deep learning models for dose prediction applied to the proton minibeam therapy. The strengths and weaknesses of those models are thoroughly investigated, helping other researchers to decide on a viable algorithm for their own application. METHODS The following recently published models are compared: first, a 3D U-Net model trained as a regression network, second, a 3D U-Net trained as a generator of a generative adversarial network (GAN) and third, a dose transformer model which interprets the dose prediction as a sequence translation task. These models are trained to emulate the result of MC simulations. The dose depositions of a proton minibeam with a diameter of 800μm and an energy of 20-100 MeV inside a simple head phantom calculated by full Geant4 MC simulations are used as a case study for this comparison. The spatial resolution is 0.5 mm. Special attention is put on the evaluation of the generalization performance of the investigated models. RESULTS Dose predictions with all models are produced in the order of a second on a GPU, the 3D U-Net models being fastest with an average of 130 ms. An investigated 3D U-Net regression model is found to show the strongest performance with overall 61.0 % ± $\%\pm$ 0.5% of all voxels exhibiting a deviation in energy deposition prediction of less than 3% compared to full MC simulations with no spatial deviation allowed. The 3D U-Net models are observed to show better generalization performance for target geometry variations, while the transformer-based model shows better generalization with regard to the proton energy. CONCLUSIONS This paper reveals that (1) all studied deep learning models are significantly faster than non-machine learning approaches predicting the dose in the order of seconds compared to hours for MC, (2) all models provide reasonable accuracy, and (3) the regression-trained 3D U-Net provides the most accurate predictions.
Collapse
Affiliation(s)
- F Mentzel
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - K Kröninger
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - M Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - O Nackenhorst
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - A Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - A C Tsoi
- School of Computing and Information Technology, University of Wollongong, Wollongong, New South Wales, Australia
| | - J Weingarten
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - M Hagenbuchner
- School of Computing and Information Technology, University of Wollongong, Wollongong, New South Wales, Australia
| | - S Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
11
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
12
|
Proton Minibeam Radiation Therapy and Arc Therapy: Proof of Concept of a Winning Alliance. Cancers (Basel) 2021; 14:cancers14010116. [PMID: 35008280 PMCID: PMC8749801 DOI: 10.3390/cancers14010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Normal tissue’s morbidity continues to limit the increase in the therapeutic index in radiation therapy. This study explores the potential advantages of combining proton arc therapy and proton minibeam radiation therapy, which have already individually shown a significant normal tissue’s sparing. This alliance aims to integrate the benefits of those techniques in a single approach. Abstract (1) Background: Proton Arc Therapy and Proton Minibeam Radiation Therapy are two novel therapeutic approaches with the potential to lower the normal tissue complication probability, widening the therapeutic window for radioresistant tumors. While the benefits of both modalities have been individually evaluated, their combination and its potential advantages are being assessed in this proof-of-concept study for the first time. (2) Methods: Monte Carlo simulations were employed to evaluate the dose and LET distributions in brain tumor irradiations. (3) Results: a net reduction in the dose to normal tissues (up to 90%), and the preservation of the spatial fractionation of the dose were achieved for all configurations evaluated. Additionally, Proton Minibeam Arc Therapy (pMBAT) reduces the volumes exposed to high-dose and high-LET values at expense of increased low-dose and intermediate-LET values. (4) Conclusions: pMBAT enhances the individual benefits of proton minibeams while keeping those of conventional proton arc therapy. These results might facilitate the path towards patients’ treatments since lower peak doses in normal tissues would be needed than in the case of a single array of proton minibeams.
Collapse
|
13
|
Cavallone M, Prezado Y, De Marzi L. Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept. Cancers (Basel) 2021; 14:cancers14010026. [PMID: 35008189 PMCID: PMC8750079 DOI: 10.3390/cancers14010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Proton MiniBeam Radiation Therapy (pMBRT) is a novel strategy that combines the benefits of minibeam radiation therapy with the more precise ballistics of protons to further optimize the dose distribution and reduce radiation side effects. The aim of this study is to investigate possible strategies to couple pMBRT with dipole magnetic fields to generate a converging minibeam pattern and increase the center-to-center distance between minibeams. Magnetic field optimization was performed so as to obtain the same transverse dose profile at the Bragg peak position as in a reference configuration with no magnetic field. Monte Carlo simulations reproducing realistic pencil beam scanning settings were used to compute the dose in a water phantom. We analyzed different minibeam generation techniques, such as the use of a static multislit collimator or a dynamic aperture, and different magnetic field positions, i.e., before or within the water phantom. The best results were obtained using a dynamic aperture coupled with a magnetic field within the water phantom. For a center-to-center distance increase from 4 mm to 6 mm, we obtained an increase of peak-to-valley dose ratio and decrease of valley dose above 50%. The results indicate that magnetic fields can be effectively used to improve the spatial modulation at shallow depth for enhanced healthy tissue sparing.
Collapse
Affiliation(s)
- Marco Cavallone
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Institut Curie, Campus Universitaire, PSL Research University, 91898 Orsay, France
- Correspondence: (M.C.); (L.D.M.)
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France;
| | - Ludovic De Marzi
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Institut Curie, Campus Universitaire, PSL Research University, 91898 Orsay, France
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO, 91898 Orsay, France
- Correspondence: (M.C.); (L.D.M.)
| |
Collapse
|
14
|
Prezado Y. Proton minibeam radiation therapy: a promising therapeutic approach for radioresistant tumors. C R Biol 2021; 344:409-420. [DOI: 10.5802/crbiol.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
|
15
|
Leite AMM, Ronga MG, Giorgi M, Ristic Y, Perrot Y, Trompier F, Prezado Y, Créhange G, De Marzi L. Secondary neutron dose contribution from pencil beam scanning, scattered and spatially fractionated proton therapy. Phys Med Biol 2021; 66. [PMID: 34673555 DOI: 10.1088/1361-6560/ac3209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
The Orsay Proton therapy Center (ICPO) has a long history of intracranial radiotherapy using both double scattering (DS) and pencil beam scanning (PBS) techniques, and is actively investigating a promising modality of spatially fractionated radiotherapy using proton minibeams (pMBRT). This work provides a comprehensive comparison of the organ-specific secondary neutron dose due to each of these treatment modalities, assessed using Monte Carlo (MC) algorithms and measurements. A MC model of a universal nozzle was benchmarked by comparing the neutron ambient dose equivalent,H*(10), in the gantry room with measurements obtained using a WENDI-II counter. The secondary neutron dose was evaluated for clinically relevant intracranial treatments of patients of different ages, in which secondary neutron doses were scored in anthropomorphic phantoms merged with the patients' images. The MC calculatedH*(10) values showed a reasonable agreement with the measurements and followed the expected tendency, in which PBS yields the lowest dose, followed by pMBRT and DS. Our results for intracranial treatments show that pMBRT yielded a higher secondary neutron dose for organs closer to the target volume, while organs situated furthest from the target volume received a greater quantity of neutrons from the passive scattering beam line. To the best of our knowledge, this is the first study to compare MC secondary neutron dose estimates in clinical treatments between these various proton therapy modalities and to realistically quantify the secondary neutron dose contribution of clinical pMBRT treatments. The method established in this study will enable epidemiological studies of the long-term effects of intracranial treatments at ICPO, notably radiation-induced second malignancies.
Collapse
Affiliation(s)
- A M M Leite
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, F-91898 Orsay, France.,Institut Curie, PSL Research University, University Paris Saclay, Inserm U 1021- CNRS UMR 3347, F-91898 Orsay, France
| | - M G Ronga
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, F-91898 Orsay, France
| | - M Giorgi
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, F-91898 Orsay, France
| | - Y Ristic
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Dosimétrie, Laboratoire de Dosimétrie des Rayonnements Ionisants, F-92262 Fontenay-aux-Roses Cedex, France
| | - Y Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Dosimétrie, Laboratoire de Dosimétrie des Rayonnements Ionisants, F-92262 Fontenay-aux-Roses Cedex, France
| | - F Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Dosimétrie, Laboratoire de Dosimétrie des Rayonnements Ionisants, F-92262 Fontenay-aux-Roses Cedex, France
| | - Y Prezado
- Institut Curie, PSL Research University, University Paris Saclay, Inserm U 1021- CNRS UMR 3347, F-91898 Orsay, France
| | - G Créhange
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, F-91898 Orsay, France
| | - L De Marzi
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, F-91898 Orsay, France.,Institut Curie, PSL Research University, University Paris Saclay, Inserm LITO, F-91898 Orsay, France
| |
Collapse
|
16
|
Bertho A, Ortiz R, Juchaux M, Gilbert C, Lamirault C, Pouzoulet F, Polledo L, Liens A, Warfving N, Sebrie C, Jourdain L, Patriarca A, de Marzi L, Prezado Y. First Evaluation of Temporal and Spatial Fractionation in Proton Minibeam Radiation Therapy of Glioma-Bearing Rats. Cancers (Basel) 2021; 13:cancers13194865. [PMID: 34638352 PMCID: PMC8507607 DOI: 10.3390/cancers13194865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Proton minibeam radiation therapy (pMBRT) is a novel therapeutic approach based on a distinct dose delivery method: the dose distributions follow a pattern with regions of peaks (high doses) and valleys (low doses). pMBRT was shown to be able to widen the therapeutic window in glioma-bearing rats. In previous studies the irradiation was performed in one single fraction. The work reported in this manuscript is the first evaluation detailing the response of glioma-bearing rats to a temporal fractionation in proton minibeam radiation therapy, delivered under a crossfire geometry. A significant increase of the median survival time was obtained when the dose was delivered over two sessions as opposed to in a single fraction. This result could facilitate the path towards pMBRT treatments. Abstract (1) Background: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy technique using spatially modulated narrow proton beams. pMBRT results in a significantly reduced local tissue toxicity while maintaining or even increasing the tumor control efficacy as compared to conventional radiotherapy in small animal experiments. In all the experiments performed up to date in tumor bearing animals, the dose was delivered in one single fraction. This is the first assessment on the impact of a temporal fractionation scheme on the response of glioma-bearing animals to pMBRT. (2) Methods: glioma-bearing rats were irradiated with pMBRT using a crossfire geometry. The response of the irradiated animals in one and two fractions was compared. An additional group of animals was also treated with conventional broad beam irradiations. (3) Results: pMBRT delivered in two fractions at the biological equivalent dose corresponding to one fraction resulted in the highest median survival time, with 80% long-term survivors free of tumors. No increase in local toxicity was noted in this group with respect to the other pMBRT irradiated groups. Conventional broad beam irradiations resulted in the most severe local toxicity. (4) Conclusion: Temporal fractionation increases the therapeutic index in pMBRT and could ease the path towards clinical trials.
Collapse
Affiliation(s)
- Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (A.B.); (R.O.); (M.J.); (C.G.)
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Ramon Ortiz
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (A.B.); (R.O.); (M.J.); (C.G.)
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (A.B.); (R.O.); (M.J.); (C.G.)
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Cristèle Gilbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (A.B.); (R.O.); (M.J.); (C.G.)
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Charlotte Lamirault
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, 91400 Orsay, France; (C.L.); (F.P.)
| | - Frederic Pouzoulet
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, 91400 Orsay, France; (C.L.); (F.P.)
| | - Laura Polledo
- AnaPath GmbH, AnaPath Services, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (A.L.); (N.W.)
| | - Alethea Liens
- AnaPath GmbH, AnaPath Services, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (A.L.); (N.W.)
| | - Nils Warfving
- AnaPath GmbH, AnaPath Services, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (A.L.); (N.W.)
| | - Catherine Sebrie
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, 91401 Orsay, France; (C.S.); (L.J.)
| | - Laurène Jourdain
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, 91401 Orsay, France; (C.S.); (L.J.)
| | - Annalisa Patriarca
- Centre de Protonthérapie d’Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (A.P.); (L.d.M.)
| | - Ludovic de Marzi
- Centre de Protonthérapie d’Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (A.P.); (L.d.M.)
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO, 91898 Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; (A.B.); (R.O.); (M.J.); (C.G.)
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Correspondence:
| |
Collapse
|
17
|
Sotiropoulos M, Prezado Y. A scanning dynamic collimator for spot-scanning proton minibeam production. Sci Rep 2021; 11:18321. [PMID: 34526628 PMCID: PMC8443660 DOI: 10.1038/s41598-021-97941-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
In proton minibeam radiation therapy, proton minibeams are typically produced by modulating a uniform field using a multislit collimator. Multislit collimators produce minibeams of fixed length and width, and a new collimator has to be manufactured each time a new minibeam array is required, limiting its flexibility. In this work, we propose a scanning dynamic collimator for the generation of proton minibeams arrays. The new collimator system proposed is able to produce any minibeam required on an on-line basis by modulating the pencil beam spots of modern proton therapy machines, rather than a uniform field. The new collimator is evaluated through Monte Carlo simulations and the produced proton minibeams are compared with that of a multislit collimator. Furthermore, a proof of concept experiment is conducted to demonstrate the feasibility of producing a minibeam array by repositioning (i.e. scanning) a collimator. It is concluded that besides the technical challenges, the new collimator design is producing equivalent minibeam arrays to the multislit collimator, whilst is flexible to produce any minibeam array desired.
Collapse
Affiliation(s)
- Marios Sotiropoulos
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400, Orsay, France.
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400, Orsay, France
| |
Collapse
|
18
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
19
|
Prezado Y, Hirayama R, Matsufuji N, Inaniwa T, Martínez-Rovira I, Seksek O, Bertho A, Koike S, Labiod D, Pouzoulet F, Polledo L, Warfving N, Liens A, Bergs J, Shimokawa T. A Potential Renewed Use of Very Heavy Ions for Therapy: Neon Minibeam Radiation Therapy. Cancers (Basel) 2021; 13:cancers13061356. [PMID: 33802835 PMCID: PMC8002595 DOI: 10.3390/cancers13061356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary The treatment of hypoxic tumours continues to be one of the main challenges for radiation therapy. Minibeam radiation therapy (MBRT) shows a highly promising reduction of to-xicity in normal tissue, so that very heavy ions, such as Neon (Ne) or Argon (Ar), with extremely high LET, might become applicable to clinical situations. The high LET in the target would be unrivalled to overcome hypoxia, while MBRT might limit the side effects normally preventing the use of those heavy ions in a conventional radiotherapeutic setting. The work reported in this manuscript is the first experimental proof of the remarkable reduction of normal tissue (skin) toxicities after Ne MBRT irradiations as compared to conventional Ne irradiations. This result might allow for a renewed use of very heavy ions for cancer therapy. Abstract (1) Background: among all types of radiation, very heavy ions, such as Neon (Ne) or Argon (Ar), are the optimum candidates for hypoxic tumor treatments due to their reduced oxygen enhancement effect. However, their pioneering clinical use in the 1970s was halted due to severe side effects. The aim of this work was to provide a first proof that the combination of very heavy ions with minibeam radiation therapy leads to a minimization of toxicities and, thus, opening the door for a renewed use of heavy ions for therapy; (2) Methods: mouse legs were irradiated with either Ne MBRT or Ne broad beams at the same average dose. Skin toxicity was scored for a period of four weeks. Histopathology evaluations were carried out at the end of the study; (3) Results: a significant difference in toxicity was observed between the two irradiated groups. While severe da-mage, including necrosis, was observed in the broad beam group, only light to mild erythema was present in the MBRT group; (4) Conclusion: Ne MBRT is significantly better tolerated than conventional broad beam irradiations.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France;
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Correspondence:
| | - Ryochi Hirayama
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
| | - Naruhiro Matsufuji
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Taku Inaniwa
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Immaculada Martínez-Rovira
- Ionizing Radiation Research Group, Physics Department, Universitat Autònoma de Barcelona (UAB), E-08193 Cerdanyola del Vallès, Spain;
| | - Olivier Seksek
- Université Paris-Saclay, CNRS/IN2P3, Université de Paris, IJCLab, Pole Santé, 91405 Orsay, France;
| | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France;
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Sachiko Koike
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Dalila Labiod
- Experimental Radiotherapy Platform, Translational Research Department, Institut Curie, Université Paris Saclay, 91400 Orsay, France; (D.L.); (F.P.)
| | - Frederic Pouzoulet
- Experimental Radiotherapy Platform, Translational Research Department, Institut Curie, Université Paris Saclay, 91400 Orsay, France; (D.L.); (F.P.)
| | - Laura Polledo
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (N.W.); (A.L.)
| | - Nils Warfving
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (N.W.); (A.L.)
| | - Aléthéa Liens
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (N.W.); (A.L.)
| | - Judith Bergs
- Department of Radiology Charité—Universitätsmedizin Berlin, CCM Charitéplatz 1, 10117 Berlin, Germany;
| | - Takashi Shimokawa
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|