1
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
2
|
Qian L, Li Q, Ding Z, Luo K, Su J, Chen J, Zhu G, Gan Z, Yu Q. Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56454-56470. [PMID: 36525559 DOI: 10.1021/acsami.2c14628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Clinical radiation therapy (RT) is often hindered by the low radiation energy absorption coefficient and the hypoxic features of tumor tissues. Among the tremendous efforts devoted to overcoming the barriers to efficient RT, the application of hypoxic radiosensitizers and cell-cycle-specific chemotherapeutics has shown great potential. However, their effectiveness is often compromised by their limited bioavailability, especially in the hypoxic region, which plays a major role in radioresistance. Herein, to simultaneously improve the delivery efficacy of both hypoxic radiosensitizer and cell-cycle-specific drug, a gambogic acid (GA) metronidazole (MN) prodrug (GM) was designed and synthesized based on GA, a naturally occurring chemotherapeutic and multiple pathway inhibitor, and MN, a typical hypoxic radiosensitizer. In combination with MN-containing block copolymers, the prodrug nanosensitizer (NS) of GM was obtained. Owing to the bioreduction of MN, the as-designed prodrug could be efficiently delivered to hypoxic cells and act on mitochondria to cause the accumulation of reactive oxygen species. The strong G2/M phase arrest caused by the prodrug NS could further sensitize treated cells to external radiation under hypoxic conditions by increasing DNA damage and delaying DNA repair. After coadministration of the NS with a well-established tissue-penetrating peptide, efficient tumor accumulation, deep tumor penetration, and highly potent chemoradiotherapy could be achieved.
Collapse
Affiliation(s)
- Lili Qian
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qian Li
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing100029, China
| | - Kejun Luo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiamin Su
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiawei Chen
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Guangying Zhu
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qingsong Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
3
|
Tirinato L, Onesto V, Garcia-Calderon D, Pagliari F, Spadea MF, Seco J, Gentile F. Human lung-cancer-cell radioresistance investigated through 2D network topology. Sci Rep 2022; 12:12980. [PMID: 35902618 PMCID: PMC9334295 DOI: 10.1038/s41598-022-17018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation therapy (RT) is now considered to be a main component of cancer therapy, alongside surgery, chemotherapy and monoclonal antibody-based immunotherapy. In RT, cancer tissues are exposed to ionizing radiation causing the death of malignant cells and favoring cancer regression. However, the efficiency of RT may be hampered by cell-radioresistance (RR)—that is a feature of tumor cells of withstanding RT. To improve the RT performance, it is decisive developing methods that can help to quantify cell sensitivity to radiation. In acknowledgment of the fact that none of the existing methods to assess RR are based on cell graphs topology, in this work we have examined how 2D cell networks, within a single colony, from different human lung cancer lines (H460, A549 and Calu-1) behave in response to doses of ionizing radiation ranging from 0 to 8 Gy. We measured the structure of resulting cell-graphs using well-assessed networks-analysis metrics, such as the clustering coefficient (cc), the characteristic path length (cpl), and the small world coefficient (SW). Findings of the work illustrate that the clustering characteristics of cell-networks show a marked sensitivity to the dose and cell line. Higher-than-one values of SW coefficient, clue of a discontinuous and inhomogeneous cell spatial layout, are associated to elevated levels of radiation and to a lower radio-resistance of the treated cell line. Results of the work suggest that topology could be used as a quantitative parameter to assess the cell radio-resistance and measure the performance of cancer radiotherapy.
Collapse
Affiliation(s)
- Luca Tirinato
- Department of Experimental and Clinical Medicine, Nanotechnology Research Center, University of Magna Graecia, 88100, Catanzaro, Italy.,Division of Biomedical Physics in Radiation Oncology, DKFZ - German Cancer Research Center, Heidelberg, Germany
| | - Valentina Onesto
- Department of Experimental and Clinical Medicine, Nanotechnology Research Center, University of Magna Graecia, 88100, Catanzaro, Italy
| | - Daniel Garcia-Calderon
- Division of Biomedical Physics in Radiation Oncology, DKFZ - German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, DKFZ - German Cancer Research Center, Heidelberg, Germany
| | - Maria-Francesca Spadea
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, DKFZ - German Cancer Research Center, Heidelberg, Germany. .,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
| | - Francesco Gentile
- Department of Experimental and Clinical Medicine, Nanotechnology Research Center, University of Magna Graecia, 88100, Catanzaro, Italy.
| |
Collapse
|
4
|
Classifier Spot Count Optimization of Automated Fluorescent Slide Scanning System. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Abstract
Purpose: Ionizing radiation induced foci (IRIF) known also as DNA repair foci represent the most sensitive endpoint for assessing DNA double strand breaks (DSB). IRIF are usually visualized and enumerated with the aid of fluorescence microscopy using antibodies to γH2AX and 53BP1. Although several approaches and software packages were developed for the quantification of IRIF, not one of them was commonly accepted and inter-laboratory variability in the outputs was reported. In this study, the sensitization of Metafer software to counting also small appearing IRIF was validated.
Materials and Methods: Human lymphocytes were γ-irradiated at a dose of 2 Gy. The cells were fixed at 0.5, 1, 2, and 18 hours post-irradiation, permeabilized and IRIF were immunostained using appropriate antibodies. Cell images were acquired with the automatic Metafer system. Radiation-induced γH2AX and 53BP1 foci were enumerated using either manual counting (JCountPro program) or the Metafer software (after its classifier optimization has been done) and compared. The statistical analysis was performed using One-way ANOVA.
Results: The enumeration of 53BP1, γH2AX foci manually by JCountPro did not statistically significantly differ from the automatic one performed with the optimized Metafer classifier. A detailed step-by-step protocol of this successful optimization is described in this study.
Conclusions: We concluded that the Metafer software after the optimization was efficient in objectively enumerating IRIF, having a potential for usage in clinics and molecular epidemiology.
Collapse
|
5
|
A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation. Sci Rep 2022; 12:5527. [PMID: 35365702 PMCID: PMC8975967 DOI: 10.1038/s41598-022-09180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal form of damage to cells from irradiation. γ-H2AX (phosphorylated form of H2AX histone variant) has become one of the most reliable and sensitive biomarkers of DNA DSBs. However, the γ-H2AX foci assay still has limitations in the time consumed for manual scoring and possible variability between scorers. This study proposed a novel automated foci scoring method using a deep convolutional neural network based on a You-Only-Look-Once (YOLO) algorithm to quantify γ-H2AX foci in peripheral blood samples. FociRad, a two-stage deep learning approach, consisted of mononuclear cell (MNC) and γ-H2AX foci detections. Whole blood samples were irradiated with X-rays from a 6 MV linear accelerator at 1, 2, 4 or 6 Gy. Images were captured using confocal microscopy. Then, dose-response calibration curves were established and implemented with unseen dataset. The results of the FociRad model were comparable with manual scoring. MNC detection yielded 96.6% accuracy, 96.7% sensitivity and 96.5% specificity. γ-H2AX foci detection showed very good F1 scores (> 0.9). Implementation of calibration curve in the range of 0-4 Gy gave mean absolute difference of estimated doses less than 1 Gy compared to actual doses. In addition, the evaluation times of FociRad were very short (< 0.5 min per 100 images), while the time for manual scoring increased with the number of foci. In conclusion, FociRad was the first automated foci scoring method to use a YOLO algorithm with high detection performance and fast evaluation time, which opens the door for large-scale applications in radiation triage.
Collapse
|
6
|
Noubissi FK, McBride AA, Leppert HG, Millet LJ, Wang X, Davern SM. Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay. Sci Rep 2021; 11:8945. [PMID: 33903655 PMCID: PMC8076281 DOI: 10.1038/s41598-021-88296-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the histone protein H2AX to form γ-H2AX foci directly represents DNA double-strand break formation. Traditional γ-H2AX detection involves counting individual foci within individual nuclei. The novelty of this work is the application of a time-resolved fluorescence assay using dissociation-enhanced lanthanide fluorescence immunoassay for quantitative measurements of γ-H2AX. For comparison, standard fluorescence detection was employed and analyzed either by bulk fluorescent measurements or by direct foci counting using BioTek Spot Count algorithm and Gen 5 software. Etoposide induced DNA damage in A549 carcinoma cells was compared across all test platforms. Time resolved fluorescence detection of europium as a chelated complex enabled quantitative measurement of γ-H2AX foci with nanomolar resolution. Comparative bulk fluorescent signals achieved only micromolar sensitivity. Lanthanide based immunodetection of γ-H2AX offers superior detection and a user-friendly workflow. These approaches have the potential to improve screening of compounds that either enhance DNA damage or protect against its deleterious effects.
Collapse
Affiliation(s)
| | - Amber A McBride
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hannah G Leppert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Larry J Millet
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Sandra M Davern
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
7
|
Ren Y, Rosch JG, Landry MR, Winter H, Khan S, Pratx G, Sun C. Tb-Doped core-shell-shell nanophosphors for enhanced X-ray induced luminescence and sensitization of radiodynamic therapy. Biomater Sci 2021; 9:496-505. [PMID: 33006335 PMCID: PMC7855282 DOI: 10.1039/d0bm00897d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of radiation responsive materials, such as nanoscintillators, enables a variety of exciting new theranostic applications. In particular, the ability of nanophosphors to serve as molecular imaging agents in novel modalities, such as X-ray luminescence computed tomography (XLCT), has gained significant interest recently. Here, we present a radioluminescent nanoplatform consisting of Tb-doped nanophosphors with an unique core/shell/shell (CSS) architecture for improved optical emission under X-ray excitation. Owing to the spatial confinement and separation of luminescent activators, these CSS nanophosphors exhibited bright optical luminescence upon irradiation. In addition to standard physiochemical characterization, these CSS nanophosphors were evaluated for their ability to serve as energy mediators in X-ray stimulated photodynamic therapy, also known as radiodynamic therapy (RDT), through attachment of a photosensitizer, rose bengal (RB). Furthermore, cRGD peptide was used as a model targeting agent against U87 MG glioblastoma cells. In vitro RDT efficacy studies suggested the RGD-CSS-RB in combination with X-ray irradiation could induce enhanced DNA damage and increased cell killing, while the nanoparticles alone are well tolerated. These studies support the utility of CSS nanophosphors and warrants their further development for theranostic applications.
Collapse
Affiliation(s)
- Yufu Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Justin G Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Madeleine R Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Hayden Winter
- Department of Chemistry, College of Liberal Arts & Sciences, Portland State University, 1719 SW 10th Ave, Portland, OR 97201, USA
| | - Syamantak Khan
- Department of Radiation Oncology, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Guillem Pratx
- Department of Radiation Oncology, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA and Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1911. [PMID: 32992722 PMCID: PMC7601632 DOI: 10.3390/nano10101911] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Changes in the genetic material can lead to serious human health defects, as mutations in somatic cells may cause cancer and can contribute to other chronic diseases. Genotoxic events can appear at both the DNA, chromosomal or (during mitosis) whole genome level. The study of mechanisms leading to genotoxicity is crucially important, as well as the detection of potentially genotoxic compounds. We consider the current state of the art and describe here the main endpoints applied in standard human in vitro models as well as new advanced 3D models that are closer to the in vivo situation. We performed a literature review of in vitro studies published from 2000-2020 (August) dedicated to the genotoxicity of nanomaterials (NMs) in new models. Methods suitable for detection of genotoxicity of NMs will be presented with a focus on advances in miniaturization, organ-on-a-chip and high throughput methods.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Espen Mariussen
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Naouale El Yamani
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Eleonora Marta Longhin
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| |
Collapse
|
9
|
Hohmann T, Kessler J, Vordermark D, Dehghani F. Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay. PLoS One 2020; 15:e0229620. [PMID: 32101565 PMCID: PMC7043763 DOI: 10.1371/journal.pone.0229620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation induces amongst other the most critical type of DNA damage: double-strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and genomic stability. The analysis of DSB associated foci assays is often performed manually or with automatic systems. Manual evaluation is time consuming and subjective, while most automatic approaches are prone to changes in experimental conditions or to image artefacts. Here, we examined multiple machine learning models, namely a multi-layer perceptron classifier (MLP), linear support vector machine classifier (SVM), complement naive bayes classifier (cNB) and random forest classifier (RF), to correctly classify γH2AX foci in manually labeled images containing multiple types of artefacts. All models yielded reasonable agreements to the manual rating on the training images (Matthews correlation coefficient >0.4). Afterwards, the best performing models were applied on images obtained under different experimental conditions. Thereby, the MLP model produced the best results with an F1 Score >0.9. As a consequence, we have demonstrated that the used approach is sufficient to mimic manual counting and is robust against image artefacts and changes in experimental conditions.
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Germany
- * E-mail:
| | - Jacqueline Kessler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Germany
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Germany
| |
Collapse
|
10
|
Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. NANOSCALE 2019; 11:13458-13468. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials.
Collapse
Affiliation(s)
- D Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - M Wegmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany. and MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - T Jochum
- Fraunhofer-Zentrum für Angewandte Nanotechnologie CAN, Grindelallee 117, 20146 Hamburg, Germany
| | - V Somma
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - M Sowa
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - J Scholz
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - E Fröhlich
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - K Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - J Niehaus
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - D Roggenbuck
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany and Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Germany
| | - U Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
11
|
Zhang S, Gupta S, Fitzgerald TJ, Bogdanov AA. Dual radiosensitization and anti-STAT3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells. Nanotheranostics 2018; 2:1-11. [PMID: 29291159 PMCID: PMC5743834 DOI: 10.7150/ntno.22335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Constitutively activated signal transducer and activator of transcription 3 (STAT3) factor is an important therapeutic target in head and neck cancer (HNC). Despite early promising results, a reliable systemic delivery system for STAT3- targeted oligonucleotide (ODN) drugs is still needed for future clinical translation of anti-STAT3 therapies. We engineered and tested a novel ODN duplex/gold nanoparticle (AuNP)-based system carrying a therapeutic STAT3 decoy (STAT3d) payload. This strategy is two-pronged because of the additive STAT3 antagonism and radiosensitizing properties of AuNP. The specificity to head and neck cancer cell surface was imparted by using a nucleolin aptamer (NUAP) that was linked to AuNP for taking the advantage of an aberrant presentation of a nuclear protein nucleolin on the cell surface. STAT3d and nucleolin aptamer constructs were independently linked to AuNPs via Au-S bonds. The synthesized AuNP constructs (AuNP-NUAP-STAT3d) exhibited internalization in cells that was quantified by using radiolabeled STAT3d. AuNP-NUAP-STAT3d showed radiosensitizing effect in human HNC FaDu cell culture experiments that resulted in an increase of cell DNA damage as determined by measuring γ-H2AX phosphorylation levels by flow cytometry. The radiosensitization study also demonstrated that AuNP-NUAP-STAT3d as well as STAT3d alone resulted in the efficient inhibition of A431 cell proliferation. While FaDu cells did not show instant proliferation inhibition after incubating with AuNP-NUAP-STAT3d, the cell DNA damage in these cells showed nearly a 50% increase in AuNP-NUAP-STAT3d group after treating with radiation. Compared with anti-EGFR humanized antibody (Cetuximab), AuNP-NUAP-STAT3d system had an overall stronger radiosensitization effect in both A431 and FaDu cells.
Collapse
Affiliation(s)
- Surong Zhang
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| | - Suresh Gupta
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester MA, USA
| | - Alexei A Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
| |
Collapse
|
12
|
Jakl L, Lobachevsky P, Vokálová L, Durdík M, Marková E, Belyaev I. Validation of JCountPro software for efficient assessment of ionizing radiation-induced foci in human lymphocytes. Int J Radiat Biol 2016; 92:766-773. [PMID: 27648492 DOI: 10.1080/09553002.2016.1222093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Ionizing radiation-induced foci (IRIF) known also as DNA repair foci represent the most sensitive and specific assay for assessing DNA double-strand break (DSB). IRIF are usually visualized and enumerated with the aid of fluorescence microscopy using antibodies to phosphorylated γH2AX and 53BP1. Although several approaches and software packages were developed for quantification of IRIF, not one of them was commonly accepted and inter-laboratory variability in the outputs was reported. In this study, JCountPro software was validated for IRIF enumeration in two independent laboratories. MATERIALS AND METHODS Human lymphocytes were γ-irradiated at doses of 0, 2, 5, 10 and 50 cGy. The cells were fixed, permeabilized and IRIF were immunostained using appropriate antibodies. Cell images were acquired with automatic Metafer system. Endogenous and radiation-induced γH2AX and 53BP1 foci were enumerated using JCountPro. This analysis was performed from the same cell galleries by the researchers from two laboratories. Yield of foci was analyzed by either arithmetic mean (AM) value (foci/cell) or principal average (PA) derived from the approximation of foci distribution with Poisson statistics. Statistical analysis was performed using factorial ANOVA. RESULTS Enumeration of 53BP1, γH2AX and co-localized 53BP1/γH2AX foci by JCountPro was essentially the same between laboratories. IRIF were detected at all doses and linear dose response was obtained in the studied dose range. PA values from Poisson distribution fitted the data better as compared to AM values and were more powerful and sensitive for IRIF analysis than the AM values. All JCountPro data were confirmed by visual focus enumeration. CONCLUSIONS We concluded that the JCountPro software was efficient in objectively enumerating IRIF regardless of an individual researcher's bias and has a potential for usage in clinics and molecular epidemiology.
Collapse
Affiliation(s)
- Lukáš Jakl
- a Laboratory of Radiobiology , Cancer Research Institute, Biomedical Research Centre SAS, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Pavel Lobachevsky
- b Molecular Radiation Biology Laboratory , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Lenka Vokálová
- a Laboratory of Radiobiology , Cancer Research Institute, Biomedical Research Centre SAS, Slovak Academy of Sciences , Bratislava , Slovakia.,c Institute of Physiology, Faculty of Medicine Comenius University , Bratislava , Slovakia
| | - Matúš Durdík
- a Laboratory of Radiobiology , Cancer Research Institute, Biomedical Research Centre SAS, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Eva Marková
- a Laboratory of Radiobiology , Cancer Research Institute, Biomedical Research Centre SAS, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Igor Belyaev
- a Laboratory of Radiobiology , Cancer Research Institute, Biomedical Research Centre SAS, Slovak Academy of Sciences , Bratislava , Slovakia.,d Laboratory of Radiobiology , General Physics Institute, Russian Academy of Science , Moscow , Russia
| |
Collapse
|
13
|
Wang J, Yin L, Zhang J, Zhang Y, Zhang X, Ding D, Gao Y, Li Q, Chen H. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:359-70. [PMID: 27260225 DOI: 10.1007/s00411-016-0653-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Lina Yin
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Junxiang Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Yaping Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Xuxia Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Defang Ding
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Yun Gao
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Qiang Li
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Honghong Chen
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
14
|
Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats. Sci Rep 2016; 6:30018. [PMID: 27445126 PMCID: PMC4957115 DOI: 10.1038/srep30018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Abstract
The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.
Collapse
|
15
|
Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C, Estrela-Lopis I, Cimpan MR, Ibrahim M, Cimpan E, Ostermann M, Sauter A, Yamani NE, Shaposhnikov S, Chevillard S, Paget V, Grall R, Delic J, de-Cerio FG, Suarez-Merino B, Fessard V, Hogeveen KN, Fjellsbø LM, Pran ER, Brzicova T, Topinka J, Silva MJ, Leite PE, Ribeiro AR, Granjeiro JM, Grafström R, Prina-Mello A, Dusinska M. High throughput toxicity screening and intracellular detection of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27273980 PMCID: PMC5215403 DOI: 10.1002/wnan.1413] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read‐across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter‐experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM‐cell interactions. Validation of in vitroHTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose‐ and time‐dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label‐free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance‐based monitoring, Multiplex analysis of secreted products, and genotoxicity methods—namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andrew R Collins
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway
| | | | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Spain
| | - Marco Dorn
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Carolin Merker
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Emil Cimpan
- Department of Electrical Engineering, Faculty of Engineering, Bergen University College, Norway
| | - Melanie Ostermann
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Alexander Sauter
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Naouale El Yamani
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway.,Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Sylvie Chevillard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Vincent Paget
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Romain Grall
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Jozo Delic
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | | | | | - Valérie Fessard
- ANSES Fougères Laboratory, Contaminant Toxicology Unit, France
| | | | - Lise Maria Fjellsbø
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Elise Runden Pran
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Tana Brzicova
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge and Centre for Toxicogenomics and Human Health, NMS/FCM, UNL, Lisbon, Portugal
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - J M Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adriele Prina-Mello
- Nanomedicine Group, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maria Dusinska
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
16
|
Viau M, Testard I, Shim G, Morat L, Normil MD, Hempel WM, Sabatier L. Global quantification of γH2AX as a triage tool for the rapid estimation of received dose in the event of accidental radiation exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:123-31. [DOI: 10.1016/j.mrgentox.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
17
|
Garty G, Bigelow AW, Repin M, Turner HC, Bian D, Balajee AS, Lyulko OV, Taveras M, Yao YL, Brenner DJ. An automated imaging system for radiation biodosimetry. Microsc Res Tech 2015; 78:587-98. [PMID: 25939519 PMCID: PMC4479970 DOI: 10.1002/jemt.22512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/26/2015] [Accepted: 04/11/2015] [Indexed: 11/07/2022]
Abstract
We describe here an automated imaging system developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry. The imaging system is built around a fast, sensitive sCMOS camera and rapid switchable LED light source. It features complete automation of all the steps of the imaging process and contains built-in feedback loops to ensure proper operation. The imaging system is intended as a back end to the RABiT-a robotic platform for radiation biodosimetry. It is intended to automate image acquisition and analysis for four biodosimetry assays for which we have developed automated protocols: The Cytokinesis Blocked Micronucleus assay, the γ-H2AX assay, the Dicentric assay (using PNA or FISH probes) and the RABiT-BAND assay.
Collapse
Affiliation(s)
- Guy Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, P.O. Box 21, Irvington, NY 10533,USA
| | - Alan W. Bigelow
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, P.O. Box 21, Irvington, NY 10533,USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Dakai Bian
- Department of Mechanical Engineering, Columbia University, 500 West 120th St. New York, NY 10027, USA
| | - Adayabalam S. Balajee
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Oleksandra V. Lyulko
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, P.O. Box 21, Irvington, NY 10533,USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Y. Lawrence Yao
- Department of Mechanical Engineering, Columbia University, 500 West 120th St. New York, NY 10027, USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| |
Collapse
|
18
|
Joh DY, Sun L, Stangl M, Al Zaki A, Murty S, Santoiemma PP, Davis JJ, Baumann BC, Alonso-Basanta M, Bhang D, Kao GD, Tsourkas A, Dorsey JF. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One 2013; 8:e62425. [PMID: 23638079 PMCID: PMC3640092 DOI: 10.1371/journal.pone.0062425] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/21/2013] [Indexed: 11/23/2022] Open
Abstract
Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.
Collapse
Affiliation(s)
- Daniel Y. Joh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lova Sun
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Melissa Stangl
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ajlan Al Zaki
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Surya Murty
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip P. Santoiemma
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James J. Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. Baumann
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dongha Bhang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary D. Kao
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jay F. Dorsey
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Furia L, Pelicci PG, Faretta M. A computational platform for robotized fluorescence microscopy (II): DNA damage, replication, checkpoint activation, and cell cycle progression by high-content high-resolution multiparameter image-cytometry. Cytometry A 2013; 83:344-55. [PMID: 23463591 DOI: 10.1002/cyto.a.22265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 01/09/2013] [Accepted: 01/22/2013] [Indexed: 12/12/2022]
Abstract
Dissection of complex molecular-networks in rare cell populations is limited by current technologies that do not allow simultaneous quantification, high-resolution localization, and statistically robust analysis of multiple parameters. We have developed a novel computational platform (Automated Microscopy for Image CytOmetry, A.M.I.CO) for quantitative image-analysis of data from confocal or widefield robotized microscopes. We have applied this image-cytometry technology to the study of checkpoint activation in response to spontaneous DNA damage in nontransformed mammary cells. Cell-cycle profile and active DNA-replication were correlated to (i) Ki67, to monitor proliferation; (ii) phosphorylated histone H2AX (γH2AX) and 53BP1, as markers of DNA-damage response (DDR); and (iii) p53 and p21, as checkpoint-activation markers. Our data suggest the existence of cell-cycle modulated mechanisms involving different functions of γH2AX and 53BP1 in DDR, and of p53 and p21 in checkpoint activation and quiescence regulation during the cell-cycle. Quantitative analysis, event selection, and physical relocalization have been then employed to correlate protein expression at the population level with interactions between molecules, measured with Proximity Ligation Analysis, with unprecedented statistical relevance.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus for Oncogenomics, Milan 20139, Italy
| | | | | |
Collapse
|
20
|
Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 2012; 327:123-33. [PMID: 22198208 PMCID: PMC3329565 DOI: 10.1016/j.canlet.2011.12.025] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/11/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
Formation of γ-H2AX in response to DNA double stranded breaks (DSBs) provides the basis for a sensitive assay of DNA damage in human biopsies. The review focuses on the application of γ-H2AX-based methods to translational studies to monitor the clinical response to DNA targeted therapies such as some forms of chemotherapy, external beam radiotherapy, radionuclide therapy or combinations thereof. The escalating attention on radiation biodosimetry has also highlighted the potential of the assay including renewed efforts to assess the radiosensitivity of prospective radiotherapy patients. Finally the γ-H2AX response has been suggested as a basis for an in vivo imaging modality.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Asako J. Nakamura
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Roger F. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olga A. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
21
|
Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:258-286. [DOI: 10.1016/j.mrrev.2012.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 02/07/2023]
|
22
|
Fu S, Yang Y, Tirtha D, Yen Y, Zhou BS, Zhou MM, Ohlmeyer M, Ko EC, Cagan R, Rosenstein BS, Chen SH, Kao J. γ-H2AX kinetics as a novel approach to high content screening for small molecule radiosensitizers. PLoS One 2012; 7:e38465. [PMID: 22768044 PMCID: PMC3387170 DOI: 10.1371/journal.pone.0038465] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Persistence of γ-H2AX after ionizing radiation (IR) or drug therapy is a robust reporter of unrepaired DNA double strand breaks in treated cells. METHODS DU-145 prostate cancer cells were treated with a chemical library ±IR and assayed for persistence of γ-H2AX using an automated 96-well immunocytochemistry assay at 4 hours after treatment. Hits that resulted in persistence of γ-H2AX foci were tested for effects on cell survival. The molecular targets of hits were validated by molecular, genetic and biochemical assays and in vivo activity was tested in a validated Drosophila cancer model. RESULTS We identified 2 compounds, MS0019266 and MS0017509, which markedly increased persistence of γ-H2AX, apoptosis and radiosensitization in DU-145 cells. Chemical evaluation demonstrated that both compounds exhibited structurally similar and biochemical assays confirmed that these compounds inhibit ribonucleotide reductase. DNA microarray analysis and immunoblotting demonstrates that MS0019266 significantly decreased polo-like kinase 1 gene and protein expression. MS0019266 demonstrated in vivo antitumor activity without significant whole organism toxicity. CONCLUSIONS MS0019266 and MS0017509 are promising compounds that may be candidates for further development as radiosensitizing compounds as inhibitors of ribonucleotide reductase.
Collapse
Affiliation(s)
- Shibo Fu
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Radiation Biology, Jilin University School of Public Health, Changchun, China
| | - Ying Yang
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Das Tirtha
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yun Yen
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, California, United States of America
| | - Bing-sen Zhou
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, Duarte, California, United States of America
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Michael Ohlmeyer
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Eric C. Ko
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ross Cagan
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Barry S. Rosenstein
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Shu-hsia Chen
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Johnny Kao
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Radiation Oncology, Good Samaritan Hospital Medical Center, West Islip, New York, United States of America
| |
Collapse
|
23
|
Garcia-Canton C, Anadón A, Meredith C. γH2AX as a novel endpoint to detect DNA damage: applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 2012; 26:1075-86. [PMID: 22735693 DOI: 10.1016/j.tiv.2012.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/17/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023]
Abstract
Histone H2AX is rapidly phosphorylated to become γH2AX after exposure to DNA-damaging agents that cause double-strand DNA breaks (DSBs). γH2AX can be detected and quantified by numerous methods, giving a direct correlation with the number of DSBs. This relationship has made γH2AX an increasingly utilised endpoint in multiple scientific fields since its discovery in 1998. Applications include its use in pre-clinical drug assessment, as a biomarker of DNA damage and in in vitro mechanistic studies. Here, we review current in vitro regulatory and non-regulatory genotoxicity assays proposing the γH2AX assay as a potential complement to the current test battery. Additionally, we evaluate the use of the γH2AX assay to measure DSBs in vitro in tobacco product testing.
Collapse
Affiliation(s)
- Carolina Garcia-Canton
- British American Tobacco, Group Research and Development, Regents Park Road, Southampton, Hampshire SO15 8TL, UK.
| | | | | |
Collapse
|
24
|
Runge R, Hiemann R, Wendisch M, Kasten-Pisula U, Storch K, Zoephel K, Fritz C, Roggenbuck D, Wunderlich G, Conrad K, Kotzerke J. Fully automated interpretation of ionizing radiation-induced γH2AX foci by the novel pattern recognition system AKLIDES®. Int J Radiat Biol 2012; 88:439-47. [DOI: 10.3109/09553002.2012.658468] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
McVean A, Kent S, Bakanov A, Hobbs T, Anderson R. Development and validation of 'AutoRIF': software for the automated analysis of radiation-induced foci. Genome Integr 2012; 3:1. [PMID: 22281239 PMCID: PMC3305396 DOI: 10.1186/2041-9414-3-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/26/2012] [Indexed: 01/23/2023] Open
Abstract
Background The quantification of radiation-induced foci (RIF) to investigate the induction and subsequent repair of DNA double strands breaks is now commonplace. Over the last decade systems specific for the automatic quantification of RIF have been developed for this purpose, however to ask more mechanistic questions on the spatio-temporal aspects of RIF, an automated RIF analysis platform that also quantifies RIF size/volume and relative three-dimensional (3D) distribution of RIF within individual nuclei, is required. Results A java-based image analysis system has been developed (AutoRIF) that quantifies the number, size/volume and relative nuclear locations of RIF within 3D nuclear volumes. Our approach identifies nuclei using the dynamic Otsu threshold and RIF by enhanced Laplacian filtering and maximum entropy thresholding steps and, has an application 'batch optimisation' process to ensure reproducible quantification of RIF. AutoRIF was validated by comparing output against manual quantification of the same 2D and 3D image stacks with results showing excellent concordance over a whole range of sample time points (and therefore range of total RIF/nucleus) after low-LET radiation exposure. Conclusions This high-throughput automated RIF analysis system generates data with greater depth of information and reproducibility than that which can be achieved manually and may contribute toward the standardisation of RIF analysis. In particular, AutoRIF is a powerful tool for studying spatio-temporal relationships of RIF using a range of DNA damage response markers and can be run independently of other software, enabling most personal computers to perform image analysis. Future considerations for AutoRIF will likely include more complex algorithms that enable multiplex analysis for increasing combinations of cellular markers.
Collapse
Affiliation(s)
- Andrew McVean
- Centre for Cell Chromosome Biology, Division of Biosciences, Brunel University, Uxbridge UB8 3PH, UK.
| | | | | | | | | |
Collapse
|
26
|
Valente M, Voisin P, Laloi P, Roy L, Roch-Lefèvre S. Automated gamma-H2AX focus scoring method for human lymphocytes after ionizing radiation exposure. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Garty G, Chen Y, Turner HC, Zhang J, Lyulko OV, Bertucci A, Xu Y, Wang H, Simaan N, Randers-Pehrson G, Lawrence Yao Y, Brenner DJ. The RABiT: a rapid automated biodosimetry tool for radiological triage. II. Technological developments. Int J Radiat Biol 2011; 87:776-90. [PMID: 21557703 PMCID: PMC3176460 DOI: 10.3109/09553002.2011.573612] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. MATERIALS AND METHODS The RABiT analyses fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cut-off dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. RESULTS We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. CONCLUSIONS Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day.
Collapse
Affiliation(s)
- Guy Garty
- Radiological Research Accelerator Facility, Columbia University, New York, NY 10533, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res 2011; 711:49-60. [PMID: 21216255 PMCID: PMC3101310 DOI: 10.1016/j.mrfmmm.2010.12.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 12/31/2010] [Indexed: 11/26/2022]
Abstract
The γH2AX focus assay represents a fast and sensitive approach for the detection of one of the critical types of DNA damage - double-strand breaks (DSB) induced by various cytotoxic agents including ionising radiation. Apart from research applications, the assay has a potential in clinical medicine/pathology, such as assessment of individual radiosensitivity, response to cancer therapies, as well as in biodosimetry. Given that generally there is a direct relationship between numbers of microscopically visualised γH2AX foci and DNA DSB in a cell, the number of foci per nucleus represents the most efficient and informative parameter of the assay. Although computational approaches have been developed for automatic focus counting, the tedious and time consuming manual focus counting still remains the most reliable way due to limitations of computational approaches. We suggest a computational approach and associated software for automatic focus counting that minimises these limitations. Our approach, while using standard image processing algorithms, maximises the automation of identification of nuclei/cells in complex images, offers an efficient way to optimise parameters used in the image analysis and counting procedures, optionally invokes additional procedures to deal with variations in intensity of the signal and background in individual images, and provides automatic batch processing of a series of images. We report results of validation studies that demonstrated correlation of manual focus counting with results obtained using our computational algorithm for mouse jejunum touch prints, mouse tongue sections and human blood lymphocytes as well as radiation dose response of γH2AX focus induction for these biological specimens.
Collapse
Affiliation(s)
- Alesia N. Ivashkevich
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Olga A. Martin
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892, USA
| | - Andrea J. Smith
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892, USA
| | - William M. Bonner
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892, USA
| | - Roger F. Martin
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| | - Pavel N. Lobachevsky
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3002, Australia
| |
Collapse
|
29
|
Alloni D, Campa A, Belli M, Esposito G, Mariotti L, Liotta M, Friedland W, Paretzke H, Ottolenghi A. Monte Carlo evaluation of DNA fragmentation spectra induced by different radiation qualities. RADIATION PROTECTION DOSIMETRY 2011; 143:226-231. [PMID: 21084331 DOI: 10.1093/rpd/ncq384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The PARTRAC code has been developed constantly in the last several years. It is a Monte Carlo code based on an event-by-event description of the interactions taking place between the ionising radiation and liquid water, and in the present version simulates the transport of photons, electrons, protons, helium and heavier ions. This is combined with an atom-by-atom representation of the biological target, i.e. the DNA target model of a diploid human fibroblast in its interphase (genome of 6 Gigabase pairs). DNA damage is produced by the events of energy depositions, either directly, if they occur in the volume occupied by the sugar-phosphate backbone, or indirectly, if this volume is reached by radiation-induced radicals. This requires the determination of the probabilities of occurrence of DNA damage. Experimental data are essential for this determination. However, after the adjustment of the relevant parameters through the comparison of the simulation data with the DNA fragmentation induced by photon irradiation, the code has been used without further parameter adjustments, and the comparison with the fragmentation induced by charged particle beams has validated the code. In this paper, the results obtained for the DNA fragmentation induced by gamma rays and by charged particle beams of various LET are shown, with a particular attention to the production of very small fragments that are not detected in experiments.
Collapse
Affiliation(s)
- D Alloni
- LENA, Laboratory of Applied Nuclear Energy, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mah LJ, Orlowski C, Ververis K, Vasireddy RS, El-Osta A, Karagiannis TC. Evaluation of the efficacy of radiation-modifying compounds using γH2AX as a molecular marker of DNA double-strand breaks. Genome Integr 2011; 2:3. [PMID: 21261999 PMCID: PMC3037297 DOI: 10.1186/2041-9414-2-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/25/2011] [Indexed: 12/23/2022] Open
Abstract
Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.
Collapse
Affiliation(s)
- Li-Jeen Mah
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian Orlowski
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Katherine Ververis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Raja S Vasireddy
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia.,Epigenomic Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Turner HC, Brenner DJ, Chen Y, Bertucci A, Zhang J, Wang H, Lyulko OV, Xu Y, Shuryak I, Schaefer J, Simaan N, Randers-Pehrson G, Yao YL, Amundson SA, Garty G. Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1. Technological aspects. Radiat Res 2010; 175:282-90. [PMID: 21388271 DOI: 10.1667/rr2125.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The immunofluorescence-based detection of γ-H2AX is a reliable and sensitive method for quantitatively measuring DNA double-strand breaks (DSBs) in irradiated samples. Since H2AX phosphorylation is highly linear with radiation dose, this well-established biomarker is in current use in radiation biodosimetry. At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool), that can be used to measure γ-H2AX yields from fingerstick-derived samples of blood. The RABIT workstation has been designed to fully automate the γ-H2AX immunocytochemical protocol, from the isolation of human blood lymphocytes in heparin-coated PVC capillaries to the immunolabeling of γ-H2AX protein and image acquisition to determine fluorescence yield. High throughput is achieved through the use of purpose-built robotics, lymphocyte handling in 96-well filter-bottomed plates, and high-speed imaging. The goal of the present study was to optimize and validate the performance of the RABIT system for the reproducible and quantitative detection of γ-H2AX total fluorescence in lymphocytes in a multiwell format. Validation of our biodosimetry platform was achieved by the linear detection of a dose-dependent increase in γ-H2AX fluorescence in peripheral blood samples irradiated ex vivo with γ rays over the range 0 to 8 Gy. This study demonstrates for the first time the optimization and use of our robotically based biodosimetry workstation to successfully quantify γ-H2AX total fluorescence in irradiated peripheral lymphocytes.
Collapse
Affiliation(s)
- Helen C Turner
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates. PLoS One 2010; 5:e15544. [PMID: 21124906 PMCID: PMC2990755 DOI: 10.1371/journal.pone.0015544] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/13/2010] [Indexed: 02/07/2023] Open
Abstract
Background There is a crucial shortage of methods capable of determining the extent of accidental exposures of human beings to ionizing radiation. However, knowledge of individual exposures is essential for early triage during radiological incidents to provide optimum possible life-sparing medical procedures to each person. Methods and Findings We evaluated immunocytofluorescence-based quantitation of γ-H2AX foci as a biodosimeter of total-body radiation exposure (60Co γ-rays) in a rhesus macaque (Macaca mulatta) model. Peripheral blood lymphocytes and plucked hairs were collected from 4 cohorts of macaques receiving total body irradiation doses ranging from 1 Gy to 8.5 Gy. Each cohort consisted of 6 experimental and 2 control animals. Numbers of residual γ-H2AX foci were proportional to initial irradiation doses and statistically significant responses were obtained until 1 day after 1 Gy, 4 days after 3.5 and 6.5 Gy, and 14 days after 8.5 Gy in lymphocytes and until 1 day after 1 Gy, at least 2 days after 3.5 and 6.5 Gy, and 9 days after 8.5 Gy in plucked hairs. Conclusion These findings indicate that quantitation of γ-H2AX foci may make a robust biodosimeter for analyzing total-body exposure to ionizing radiation in humans. This tool would help clinicians prescribe appropriate types of medical intervention for optimal individual outcome. These results also demonstrate that the use of a high throughput γ-H2AX biodosimeter would be useful for days post-exposure in applications like large-scale radiological events or radiation therapy. In addition, this study validates a possibility to use plucked hair in future clinical trials investigating genotoxic effects of drugs and radiation treatments.
Collapse
Affiliation(s)
- Christophe E Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Roch-Lefèvre S, Mandina T, Voisin P, Gaëtan G, Mesa JEG, Valente M, Bonnesoeur P, García O, Voisin P, Roy L. Quantification of gamma-H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiat Res 2010; 174:185-94. [PMID: 20681785 DOI: 10.1667/rr1775.1] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have suggested that visualization of gamma-H2AX nuclear foci can be used to estimate exposure to very low doses of ionizing radiation. Although this approach is widely used for various purposes, its suitability for individual human biodosimetry has not yet been assessed. We therefore conducted such an assessment with the help of available software for observing and automatically scoring gamma-H2AX foci. The presence of gamma-H2AX foci was evaluated in human peripheral blood lymphocytes exposed ex vivo to gamma rays in a dose range of 0.02 to 2 Gy. We analyzed the response of gamma-H2AX to ionizing radiation in relation to dose, time after exposure, and individual variability. We constructed dose-effect calibration curves at 0.5, 8 and 16 h after exposure and evaluated the threshold of detection of the technique. The results show the promise of automatic gamma-H2AX scoring for a reliable assessment of radiation doses in a dose range of 0.6 Gy to 2 Gy up to 16 h after exposure. This gamma-H2AX-based assay may be useful for biodosimetry, especially for triage to distinguish promptly among individuals the ones who have received negligible doses from those with significantly exposures who are in need of immediate medical attention. However, additional in vivo experiments are needed for validation.
Collapse
Affiliation(s)
- Sandrine Roch-Lefèvre
- Institut de Radioprotection et de Sûreté Nucléaire, 92262 Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Suzuki K, Nakashima M, Yamashita S. Dynamics of ionizing radiation-induced DNA damage response in reconstituted three-dimensional human skin tissue. Radiat Res 2010; 174:415-23. [PMID: 20726705 DOI: 10.1667/rr2007.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ATM-dependent DNA damage checkpoint plays a pivotal role in cellular response to ionizing radiation. Although amplification of the DNA damage signal through multifactorial protein complex formation of DNA damage checkpoint factors is crucial for proper DNA damage response in two-dimensionally cultured cells, the dynamics of the DNA damage response in three-dimensional tissues or organs remained to be determined. Here we used a model of reconstituted human skin and investigated the spatiotemporal dynamics of focus formation of DNA damage checkpoint factors after X irradiation. We found that DNA damage-induced foci were differentially formed in different layers. All cells in basal layers and approximately 40% of cells in spinous layers displayed foci. In basal cells, the foci showed linear dose relationships, and the number of foci decreased with increasing time after irradiation. We found that the initial foci grew within a few hours after irradiation, and persistent signals developed large foci. Colocalization of phosphorylated ATM, phosphorylated histone H2AX, MDC1 and 53BP1 foci was detected, and all of them showed simultaneous focus growth, indicating amplification of DNA damage signals. These results confirmed a dynamic DNA damage response in three-dimensional tissue, which provides a practical model for studying DNA damage response in vivo.
Collapse
Affiliation(s)
- Keiji Suzuki
- Atomic Bomb Disease Institute, Course of Life Sciences and Radiation Research, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | | | | |
Collapse
|
35
|
De Vos WH, Van Neste L, Dieriks B, Joss GH, Van Oostveldt P. High content image cytometry in the context of subnuclear organization. Cytometry A 2010; 77:64-75. [PMID: 19821512 DOI: 10.1002/cyto.a.20807] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The organization of proteins in space and time is essential to their function. To accurately quantify subcellular protein characteristics in a population of cells with regard for the stochasticity of events in a natural context, there is a fast-growing need for image-based cytometry. Simultaneously, the massive amount of data that is generated by image-cytometric analyses, calls for tools that enable pattern recognition and automated classification. In this article, we present a general approach for multivariate phenotypic profiling of individual cell nuclei and quantification of subnuclear spots using automated fluorescence mosaic microscopy, optimized image processing tools, and supervised classification. We demonstrate the efficiency of our analysis by determination of differential DNA damage repair patterns in response to genotoxic stress and radiation, and we show the potential of data mining in pinpointing specific phenotypes after transient transfection. The presented approach allowed for systematic analysis of subnuclear features in large image data sets and accurate classification of phenotypes at the level of the single cell. Consequently, this type of nuclear fingerprinting shows potential for high-throughput applications, such as functional protein assays or drug compound screening.
Collapse
Affiliation(s)
- W H De Vos
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | | | | | | | | |
Collapse
|