1
|
Stephens JQ, Blas-Machado U, Sherrill C, Caudell D, Kock N, Davis AM, Whitfield JM, Hart B, Kavanagh K. Male mice treated with combined anti-fibrotic therapeutics, IPW5371 and tadalafil, are predisposed to adverse cardiovascular events. Front Pharmacol 2025; 16:1537494. [PMID: 40242438 PMCID: PMC12000068 DOI: 10.3389/fphar.2025.1537494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025] Open
Abstract
Fibrosis is a pathological process with few therapeutic options. Experimental molecules are being developed to counteract the fibrotic effects through TGFβ receptor inhibition. Additionally, phosphodiesterase 5 (PDE5) inhibitors also have anti-fibrotic effects; however, the mechanism of action remains unresolved. IPW5371 is an example of an experimental TGFβ-mediated anti-fibrotic compound, and tadalafil is an example of a PDE5 inhibitor. Irradiation increases the frequency of fibrotic lesions, driven by the activation of the TGFβ pathway. We hypothesized that the TGFβ receptor and PDE5 inhibitor agents would be additive in their ability to prevent fibrosis development in tissues in a sub-lethal whole-body irradiation mouse model. However, the combined use of anti-fibrotic agents, tadalafil and IPW5371, caused increased male mouse mortality associated with ascending and thoracic aortic rupture compared to mice that only received one of the drugs. Following histopathological analysis of the mouse hearts, we also observed that irradiation protected against lesions caused by the combination therapy as non-irradiated male mice had significantly worse outcomes as compared to irradiated male mice, substantiating the drug-drug interaction independent of the radiation effects. This important drug interaction needs further investigation as these agents are developed for anti-fibrosis therapy, and PDE5 inhibitors are commonly prescribed to male patients.
Collapse
Affiliation(s)
- Jazz Q. Stephens
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Population Health and Pathobiology, North Carolina College of Veterinary Medicine, Raleigh, NC, United States
- Division of Comparative Medicine and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- StageBio, Mt. Jackson, VA, United States
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nancy Kock
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ashley M. Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jordyn M. Whitfield
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Barry Hart
- Innovation Pathways, Palo Alto, CA, United States
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
2
|
Barnet IR, Emerzian SR, Behzad R, Brooks DJ, Tedtsen T, Granados M, Park S, Moore J, Olson JD, Karim L, Bouxsein ML, Cline JM, Willey JS. Total body irradiation is associated with long-term deficits in femoral bone structure but not mechanical properties in male rhesus macaques. Sci Rep 2024; 14:23379. [PMID: 39379502 PMCID: PMC11461916 DOI: 10.1038/s41598-024-75363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Exposure to ionizing radiation for oncological therapy increases the risk for late-onset fractures in survivors. However, the effects of total body irradiation (TBI) on adult bone are not well-characterized. The primary aim of this study was to quantify the long-term effects of TBI on bone microstructure, material composition, and mechanical behavior in skeletally mature rhesus macaque (Macaca mulatta) non-human primates. Femora were obtained post-mortem from animals exposed to an acute dose of TBI (6.0-6.75 Gy) nearly a decade earlier, age-matched non-irradiated controls, and non-irradiated young animals. The microstructure of femoral trabecular and cortical bone was assessed via micro-computed tomography. Material composition was evaluated by measuring total fluorescent advanced glycation end products (fAGEs). Cortical bone mechanical behavior was quantified via four-point bending and cyclic reference point indentation (cRPI). Animals exposed to TBI had slightly worse cortical microstructure, including lower cortical thickness (-11%, p = 0.037) and cortical area (-24%, p = 0.049), but similar fAGE content and mechanical properties as age-matched controls. Aging did not influence cortical microstructure, fAGE content, or cRPI measures but diminished femoral cortical post-yield properties, including toughness to fracture (-32%, p = 0.032). Because TBI was administered after the acquisition of peak bone mass, these results suggest that the skeletons of long-term survivors of adulthood TBI may be resilient, retaining or recovering their mechanical integrity during the post-treatment period, despite radiation-induced architectural deficits. Further investigation is necessary to better understand radiation-induced skeletal fragility in mature and immature bone to improve care for radiation patients of all ages.
Collapse
Affiliation(s)
| | - Shannon R Emerzian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ramina Behzad
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Trinity Tedtsen
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marcela Granados
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Sun Park
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Joseph Moore
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| |
Collapse
|
3
|
Szalanczy AM, Sherrill C, Fanning KM, Hart B, Caudell D, Davis AW, Whitfield J, Kavanagh K. A Novel TGFβ Receptor Inhibitor, IPW-5371, Prevents Diet-induced Hepatic Steatosis and Insulin Resistance in Irradiated Mice. Radiat Res 2024; 202:1-10. [PMID: 38772553 DOI: 10.1667/rade-23-00202.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
As the number of cancer survivors increases and the risk of accidental radiation exposure rises, there is a pressing need to characterize the delayed effects of radiation exposure and develop medical countermeasures. Radiation has been shown to damage adipose progenitor cells and increase liver fibrosis, such that it predisposes patients to developing metabolic-associated fatty liver disease (MAFLD) and insulin resistance. The risk of developing these conditions is compounded by the global rise of diets rich in carbohydrates and fats. Radiation persistently increases the signaling cascade of transforming growth factor β (TGFβ), leading to heightened fibrosis as characteristic of the delayed effects of radiation exposure. We investigate here a potential radiation medical countermeasure, IPW-5371, a small molecule inhibitor of TGFβRI kinase (ALK5). We found that mice exposed to sub-lethal whole-body irradiation and chronic Western diet consumption but treated with IPW-5371 had a similar body weight, food consumption, and fat mass compared to control mice exposed to radiation. The IPW-5371 treated mice maintained lower fibrosis and fat accumulation in the liver, were more responsive to insulin and had lower circulating triglycerides and better muscle endurance. Future studies are needed to verify the improvement by IPW-5371 on the structure and function of other metabolically active tissues such as adipose and skeletal muscle, but these data demonstrate that IPW-5371 protects liver and whole-body health in rodents exposed to radiation and a Western diet, and there may be promise in using IPW-5371 to prevent the development of MAFLD.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine M Fanning
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barry Hart
- Innovation Pathways, Palo Alto, California
| | - David Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ashley W Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jordyn Whitfield
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- College of Health and Medicine, University o f Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
4
|
Schaaf GW, Justice JN, Quillen EE, Cline JM. Resilience, aging, and response to radiation exposure (RARRE) in nonhuman primates: a resource review. GeroScience 2023; 45:3371-3379. [PMID: 37188889 PMCID: PMC10643677 DOI: 10.1007/s11357-023-00812-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The Wake Forest nonhuman primate (NHP) Radiation Late Effects Cohort (RLEC) is a unique and irreplaceable population of aging NHP radiation survivors which serves the nation's need to understand the late effects of radiation exposure. Over the past 16 years, Wake Forest has evaluated > 250 previously irradiated rhesus macaques (Macaca mulatta) that were exposed to single total body irradiation (IR) doses of 1.14-8.5 Gy or to partial body exposures of up to 10 Gy (5% bone marrow sparing) or 10.75 Gy (whole thorax). Though primarily used to examine IR effects on disease-specific processes or to develop radiation countermeasures, this resource provides insights on resilience across physiologic systems and its relationship with biological aging. Exposure to IR has well documented deleterious effects on health, but the late effects of IR are highly variable. Some animals exhibit multimorbidity and accumulated health deficits, whereas others remain relatively resilient years after exposure to total body IR. This provides an opportunity to evaluate biological aging at the nexus of resilient/vulnerable responses to a stressor. Consideration of inter-individual differences in response to this stressor can inform individualized strategies to manage late effects of radiation exposure, and provide insight into mechanisms underlying systemic resilience and aging. The utility of this cohort for age-related research questions was summarized at the 2022 Trans-NIH Geroscience Interest Group's Workshop on Animal Models for Geroscience. We present a brief review of radiation injury and its relationship to aging and resilience in NHPs with a focus on the RLEC.
Collapse
Affiliation(s)
- George W Schaaf
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jamie N Justice
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, and Stich Center for Health Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ellen E Quillen
- Department of Internal Medicine, Section On Molecular Medicine, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J Mark Cline
- Department of Pathology, Section On Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Ruggiero AD, Vemuri R, Blawas M, Long M, DeStephanis D, Williams AG, Chen H, Justice JN, Macauley SL, Day SM, Kavanagh K. Long-term dasatinib plus quercetin effects on aging outcomes and inflammation in nonhuman primates: implications for senolytic clinical trial design. GeroScience 2023; 45:2785-2803. [PMID: 37261678 PMCID: PMC10643765 DOI: 10.1007/s11357-023-00830-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Cellular senescence increases with aging and results in secretion of pro-inflammatory factors that induce local and systemic tissue dysfunction. We conducted the first preclinical trial in a relevant middle-aged nonhuman primate (NHP) model to allow estimation of the main translatable effects of the senolytic combination dasatinib (D) and quercetin (Q), with and without caloric restriction (CR). A multi-systemic survey of age-related changes, including those on immune cells, adipose tissue, the microbiome, and biomarkers of systemic organ and metabolic health are reported. Age-, weight-, sex-, and glycemic control-matched NHPs (D + Q, n = 9; vehicle [VEH] n = 7) received two consecutive days of D + Q (5 mg/kg + 50 mg/kg) monthly for 6 months, where in month six, a 10% CR was implemented in both D + Q and VEH NHPs to induce equal weight reductions. D + Q reduced senescence marker gene expressions in adipose tissue and circulating PAI-1 and MMP-9. Improvements were observed in immune cell types with significant anti-inflammatory shifts and reductions in microbial translocation biomarkers, despite stable microbiomes. Blood urea nitrogen showed robust improvements with D + Q. CR resulted in significant positive body composition changes in both groups with further improvement in immune cell profiles and decreased GDF15 (p = 0.05), and the interaction of D + Q and CR dramatically reduced glycosylated hemoglobin A1c (p = 0.03). This work indicates that 6 months of intermittent D + Q exposure is safe and may combat inflammaging via immune benefits and improved intestinal barrier function. We also saw renal benefits, and with CR, improved metabolic health. These data are intended to provide direction for the design of larger controlled intervention trials in older patients.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Megan Blawas
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Masha Long
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Darla DeStephanis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Abigail G Williams
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jamie N Justice
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shannon L Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven M Day
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
6
|
Satyamitra MM, Cassatt DR, Molinar-Inglis O, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. The NIAID/RNCP Biodosimetry Program: An Overview. Cytogenet Genome Res 2023; 163:89-102. [PMID: 37742625 PMCID: PMC10946631 DOI: 10.1159/000534213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Established in 2004, the Radiation and Nuclear Countermeasures Program (RNCP), within the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health has the central mission to advance medical countermeasure mitigators/therapeutics, and biomarkers and technologies to assess, triage, and inform medical management of patients experiencing acute radiation syndrome and/or the delayed effects of acute radiation exposure. The RNCP biodosimetry mission space encompasses: (1) basic research to elucidate novel approaches for rapid and accurate assessment of radiation exposure, (2) studies to support advanced development for US Food and Drug Administration (FDA) clearance of promising triage or treatment devices/approaches, (3) characterization of biomarkers and/or assays to determine degree of tissue or organ dose that can predict outcome of radiation injuries (i.e., organ failure, morbidity, and/or mortality), and (4) outreach efforts to facilitate interactions with researchers developing cutting edge biodosimetry approaches. Thus far, no biodosimetry device has been FDA cleared for use during a radiological/nuclear incident. At NIAID, advancement of radiation biomarkers and biodosimetry approaches is facilitated by a variety of funding mechanisms (grants, contracts, cooperative and interagency agreements, and Small Business Innovation Research awards), with the objective of advancing devices and assays toward clearance, as outlined in the FDA's Radiation Biodosimetry Medical Countermeasure Devices Guidance. The ultimate goal of the RNCP biodosimetry program is to develop and establish accurate and reliable biodosimetry tools that will improve radiation preparedness and ultimately save lives during a radiological or nuclear incident.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), U.S. Department of Health and Human Services (HHS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, USA
| |
Collapse
|
7
|
Sills WS, Tooze JA, Olson JD, Caudell DL, Dugan GO, Johnson BJ, Kock ND, Andrews RN, Schaaf GW, Lang RA, Cline JM. Total-Body Irradiation Is Associated With Increased Incidence of Mesenchymal Neoplasia in a Radiation Late Effects Cohort of Rhesus Macaques (Macaca mulatta). Int J Radiat Oncol Biol Phys 2022; 113:661-674. [PMID: 35361520 PMCID: PMC9250621 DOI: 10.1016/j.ijrobp.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Cancer is a severe delayed effect of acute radiation exposure. Total-body irradiation has been associated with an increased risk of solid cancer and leukemia in Japanese atomic bomb survivors, and secondary malignancies, such as sarcoma, are a serious consequence of cancer radiation therapy. The radiation late effects cohort (RLEC) of rhesus macaques (Macaca mulatta) is a unique resource of more than 200 animals for studying the long-term consequences of total-body irradiation in an animal model that closely resembles humans at the genetic and physiologic levels. METHODS AND MATERIALS Using clinical records, clinical imaging, histopathology, and immunohistochemistry, this retrospective study characterized the incidence of neoplasia in the RLEC. RESULTS Since 2007, 61 neoplasms in 44 of 239 irradiated animals were documented (18.4% of the irradiated population). Only 1 neoplasm was diagnosed among the 51 nonirradiated controls of the RLEC (2.0%). The most common malignancies in the RLEC were sarcomas (38.3% of diagnoses), which are rare neoplasms in nonirradiated macaques. The most common sarcomas included malignant nerve sheath tumors and malignant glomus tumors. Carcinomas were less common (19.7% of diagnoses), and consisted primarily of renal cell and hepatocellular carcinomas. Neoplasia occurred in most major body systems, with the skin and subcutis being the most common site (40%). RNA analysis showed similarities in transcriptional profiles between RLEC and human malignant nerve sheath tumors. CONCLUSIONS This study indicates that total-body irradiation is associated with an increased incidence of neoplasia years following irradiation, at more than double the incidence described in aging, nonirradiated animals, and promotes tumor histotypes that are rarely observed in nonirradiated, aging rhesus macaques.
Collapse
Affiliation(s)
- W Shane Sills
- Department of Pathology, Section on Comparative Medicine
| | | | - John D Olson
- Department of Pathology, Section on Comparative Medicine
| | | | - Greg O Dugan
- Department of Pathology, Section on Comparative Medicine
| | | | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine
| | - Rachel N Andrews
- Department of Pathology, Section on Comparative Medicine; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Richard A Lang
- Department of Pathology, Section on Comparative Medicine
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
8
|
Little MP, Brenner AV, Grant EJ, Sugiyama H, Preston DL, Sakata R, Cologne J, Velazquez-Kronen R, Utada M, Mabuchi K, Ozasa K, Olson JD, Dugan GO, Pazzaglia S, Cline JM, Applegate KE. Age effects on radiation response: summary of a recent symposium and future perspectives. Int J Radiat Biol 2022; 98:1673-1683. [PMID: 35394411 PMCID: PMC9626395 DOI: 10.1080/09553002.2022.2063962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
One of the principal uncertainties when estimating population risk of late effects from epidemiological data is that few radiation-exposed cohorts have been followed up to extinction. Therefore, the relative risk model has often been used to estimate radiation-associated risk and to extrapolate risk to the end of life. Epidemiological studies provide evidence that children are generally at higher risk of cancer induction than adults for a given radiation dose. However, the strength of evidence varies by cancer site and questions remain about site-specific age at exposure patterns. For solid cancers, there is a large body of evidence that excess relative risk (ERR) diminishes with increasing age at exposure. This pattern of risk is observed in the Life Span Study (LSS) as well as in other radiation-exposed populations for overall solid cancer incidence and mortality and for most site-specific solid cancers. However, there are some disparities by endpoint in the degree of variation of ERR with exposure age, with some sites (e.g., colon, lung) in the LSS incidence data showing no variation, or even increasing ERR with increasing age at exposure. The pattern of variation of excess absolute risk (EAR) with age at exposure is often similar, with EAR for solid cancers or solid cancer mortality decreasing with increasing age at exposure in the LSS. We shall review the human data from the Japanese LSS cohort, and a variety of other epidemiological data sets, including a review of types of medical diagnostic exposures, also some radiobiological animal data, all bearing on the issue of variations of radiation late-effects risk with age at exposure and with attained age. The paper includes a summary of several oral presentations given in a Symposium on "Age effects on radiation response" as part of the 67th Annual Meeting of the Radiation Research Society, held virtually on 3-6 October 2021.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric J. Grant
- Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | - Ritsu Sakata
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John Cologne
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Raquel Velazquez-Kronen
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Mai Utada
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kotaro Ozasa
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John D. Olson
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory O. Dugan
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
9
|
Liu HX, Liu QJ. Logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration. Int J Radiat Biol 2022; 98:1595-1608. [PMID: 35384773 DOI: 10.1080/09553002.2022.2063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE With the development of radiation metabolomics, a large number of radiation-related metabolic biomarkers have been identified and validated. The L-carnitine and acylcarnitines have the potential to be the new promising candidate indicators of radiation exposure. This review summarizes the effect of carnitine shuttle system on the profile of acylcarnitines and correlates the radiation effects on upstream regulators of carnitine shuttle system with the change characteristics of L-carnitine and acylcarnitines after irradiation across different animal models as well as a few humans. CONCLUSIONS Studies report that acylcarnitines were ubiquitously elevated after irradiation, especially the free L-carnitine and short-chain acylcarnitines (C2-C5). However, the molecular mechanism underlying acylcarnitine alterations after irradiation is not fully investigated, and further studies are needed to explore the biological effect and its mechanism. The activity of the carnitine shuttle system plays a key role in the alteration of L-carnitine and acylcarnitines, and the upstream regulators of the system are known to be affected by irradiation. These evidences indicate that that there is a logistic role of carnitine shuttle system on radiation-induced L-carnitine and acylcarnitines alteration.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
10
|
Taliaferro LP, Cassatt DR, Horta ZP, Satyamitra MM. Meeting Report: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome. Radiat Res 2021; 196:436-446. [PMID: 34237144 PMCID: PMC8532024 DOI: 10.1667/rade-21-00048.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/03/2022]
Abstract
The National Institute of Allergy and Infectious Diseases, Radiation and Nuclear Countermeasures Program, was tasked by the United States Congress and the U.S. Department of Health and Human Services to identify and fund early-to-mid-stage development of medical countermeasures (MCMs) to treat radiation-induced injuries. In developing MCMs to treat various sub-syndromes (e.g., hematopoietic, gastrointestinal, lung), it is important to investigate whether a poly-pharmacy approach (i.e., drug cocktails) can provide additive benefits to mitigate injuries arising from the acute radiation syndrome (ARS). In addition, potential drug-drug interactions must be examined. For this reason, a workshop was held, which centered on understanding the current state of research investigating poly-pharmacy approaches to treat radiation injuries. The first session set the stage with an introduction to the concept of operations or support available for the response to a nuclear incident, as this is the key to any emergency response, including MCM availability and distribution. The second session followed the natural history of ARS in both humans and animal models to underscore the complexity of ARS and why a poly-pharmacy approach may be necessary. The third session featured talks from investigators conducting current MCM poly-pharmacy research. The meeting closed with a focus on regulatory considerations for the development of poly-pharmacy approaches or combination treatments for ARS.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | | | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
11
|
Satyamitra MM, Cassatt DR, Taliaferro LP. Meeting Commentary: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome (ARS). Radiat Res 2021; 196:423-428. [PMID: 34270773 PMCID: PMC8522554 DOI: 10.1667/rade-21-00053.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
12
|
DiCarlo AL. Scientific research and product development in the United States to address injuries from a radiation public health emergency. JOURNAL OF RADIATION RESEARCH 2021; 62:752-763. [PMID: 34308479 PMCID: PMC8438480 DOI: 10.1093/jrr/rrab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The USA has experienced one large-scale nuclear incident in its history. Lessons learned during the Three-Mile Island nuclear accident provided government planners with insight into property damage resulting from a low-level release of radiation, and an awareness concerning how to prepare for future occurrences. However, if there is an incident resulting from detonation of an improvised nuclear device or state-sponsored device/weapon, resulting casualties and the need for medical treatment could overwhelm the nation's public health system. After the Cold War ended, government investments in radiation preparedness declined; however, the attacks on 9/11 led to re-establishment of research programs to plan for the possibility of a nuclear incident. Funding began in earnest in 2004, to address unmet research needs for radiation biomarkers, devices and products to triage and treat potentially large numbers of injured civilians. There are many biodosimetry approaches and medical countermeasures (MCMs) under study and in advanced development, including those to address radiation-induced injuries to organ systems including bone marrow, the gastrointestinal (GI) tract, lungs, skin, vasculature and kidneys. Biomarkers of interest in determining level of radiation exposure and susceptibility of injury include cytogenetic changes, 'omics' technologies and other approaches. Four drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of acute radiation syndrome (ARS), with other licensures being sought; however, there are still no cleared devices to identify radiation-exposed individuals in need of treatment. Although many breakthroughs have been made in the efforts to expand availability of medical products, there is still work to be done.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Corresponding author. Radiation and Nuclear Countermeasures Program, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Room 7B13, Rockville, MD, USA. Office Phone: 1-240-627-3492; Office Fax: 1-240-627-3113;
| |
Collapse
|
13
|
Late Health Effects of Partial Body Irradiation Injury in a Minipig Model Are Associated with Changes in Systemic and Cardiac IGF-1 Signaling. Int J Mol Sci 2021; 22:ijms22063286. [PMID: 33807089 PMCID: PMC8005067 DOI: 10.3390/ijms22063286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Clinical, epidemiological, and experimental evidence demonstrate non-cancer, cardiovascular, and endocrine effects of ionizing radiation exposure including growth hormone deficiency, obesity, metabolic syndrome, diabetes, and hyperinsulinemia. Insulin-like growth factor-1 (IGF-1) signaling perturbations are implicated in development of cardiovascular disease and metabolic syndrome. The minipig is an emerging model for studying radiation effects given its high analogy to human anatomy and physiology. Here we use a minipig model to study late health effects of radiation by exposing male Göttingen minipigs to 1.9–2.0 Gy X-rays (lower limb tibias spared). Animals were monitored for 120 days following irradiation and blood counts, body weight, heart rate, clinical chemistry parameters, and circulating biomarkers were assessed longitudinally. Collagen deposition, histolopathology, IGF-1 signaling, and mRNA sequencing were evaluated in tissues. Our findings indicate a single exposure induced histopathological changes, attenuated circulating IGF-1, and disrupted cardiac IGF-1 signaling. Electrolytes, lipid profiles, liver and kidney markers, and heart rate and rhythm were also affected. In the heart, collagen deposition was significantly increased and transforming growth factor beta-1 (TGF-beta-1) was induced following irradiation; collagen deposition and fibrosis were also observed in the kidney of irradiated animals. Our findings show Göttingen minipigs are a suitable large animal model to study long-term effects of radiation exposure and radiation-induced inhibition of IGF-1 signaling may play a role in development of late organ injuries.
Collapse
|
14
|
Andrews RN, Bloomer EG, Olson JD, Hanbury DB, Dugan GO, Whitlow CT, Cline JM. Non-Human Primates Receiving High-Dose Total-Body Irradiation are at Risk of Developing Cerebrovascular Injury Years Postirradiation. Radiat Res 2020; 194:277-287. [PMID: 32942304 PMCID: PMC7583660 DOI: 10.1667/rade-20-00051.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
Nuclear accidents and acts of terrorism have the potential to expose thousands of people to high-dose total-body iradiation (TBI). Those who survive the acute radiation syndrome are at risk of developing chronic, degenerative radiation-induced injuries [delayed effects of acute radiation (DEARE)] that may negatively affect quality of life. A growing body of literature suggests that the brain may be vulnerable to radiation injury at survivable doses, yet the long-term consequences of high-dose TBI on the adult brain are unclear. Herein we report the occurrence of lesions consistent with cerebrovascular injury, detected by susceptibility-weighted magnetic resonance imaging (MRI), in a cohort of non-human primate [(NHP); rhesus macaque, Macaca mulatta] long-term survivors of high-dose TBI (1.1-8.5 Gy). Animals were monitored longitudinally with brain MRI (approximately once every three years). Susceptibility-weighted images (SWI) were reviewed for hypointensities (cerebral microbleeds and/or focal necrosis). SWI hypointensities were noted in 13% of irradiated NHP; lesions were not observed in control animals. A prior history of exposure was correlated with an increased risk of developing a lesion detectable by MRI (P = 0.003). Twelve of 16 animals had at least one brain lesion present at the time of the first MRI evaluation; a subset of animals (n = 7) developed new lesions during the surveillance period (3.7-11.3 years postirradiation). Lesions occurred with a predilection for white matter and the gray-white matter junction. The majority of animals with lesions had one to three SWI hypointensities, but some animals had multifocal disease (n = 2). Histopathologic evaluation of deceased animals within the cohort (n = 3) revealed malformation of the cerebral vasculature and remodeling of the blood vessel walls. There was no association between comorbid diabetes mellitus or hypertension with SWI lesion status. These data suggest that long-term TBI survivors may be at risk of developing cerebrovascular injury years after irradiation.
Collapse
Affiliation(s)
- Rachel N. Andrews
- Department of Radiation Oncology, Section of Radiation Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Department of Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Ethan G. Bloomer
- University of Florida, College of Veterinary Medicine, Gainesville, Florida 32608
| | - John D. Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - David B. Hanbury
- Department of Psychology, Averett University, Danville, Virginia 24541
| | - Gregory O. Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Christopher T. Whitlow
- Department of Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Department of Radiology, Section of Neuroradiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Department of Biomedical Engineering, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| |
Collapse
|
15
|
Whole Body Irradiation Induces Diabetes and Adipose Insulin Resistance in Nonhuman Primates. Int J Radiat Oncol Biol Phys 2020; 106:878-886. [DOI: 10.1016/j.ijrobp.2019.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 01/06/2023]
|
16
|
Gebauer J, Higham C, Langer T, Denzer C, Brabant G. Long-Term Endocrine and Metabolic Consequences of Cancer Treatment: A Systematic Review. Endocr Rev 2019; 40:711-767. [PMID: 30476004 DOI: 10.1210/er.2018-00092] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023]
Abstract
The number of patients surviving ≥5 years after initial cancer diagnosis has significantly increased during the last decades due to considerable improvements in the treatment of many cancer entities. A negative consequence of this is that the emergence of long-term sequelae and endocrine disorders account for a high proportion of these. These late effects can occur decades after cancer treatment and affect up to 50% of childhood cancer survivors. Multiple predisposing factors for endocrine late effects have been identified, including radiation, sex, and age at the time of diagnosis. A systematic literature search has been conducted using the PubMed database to offer a detailed overview of the spectrum of late endocrine disorders following oncological treatment. Most data are based on late effects of treatment in former childhood cancer patients for whom specific guidelines and recommendations already exist, whereas current knowledge concerning late effects in adult-onset cancer survivors is much less clear. Endocrine sequelae of cancer therapy include functional alterations in hypothalamic-pituitary, thyroid, parathyroid, adrenal, and gonadal regulation as well as bone and metabolic complications. Surgery, radiotherapy, chemotherapy, and immunotherapy all contribute to these sequelae. Following irradiation, endocrine organs such as the thyroid are also at risk for subsequent malignancies. Although diagnosis and management of functional and neoplastic long-term consequences of cancer therapy are comparable to other causes of endocrine disorders, cancer survivors need individually structured follow-up care in specialized surveillance centers to improve care for this rapidly growing group of patients.
Collapse
Affiliation(s)
- Judith Gebauer
- Experimental and Clinical Endocrinology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Claire Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom.,Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Thorsten Langer
- Division of Pediatric Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Christian Denzer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany
| | - Georg Brabant
- Experimental and Clinical Endocrinology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Department of Endocrinology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
17
|
Visentin S, Michel G, Oudin C, Cousin B, Gaborit B, Abdesselam I, Maraninchi M, Nowicki M, Valéro R, Guye M, Bernard M, Auquier P, Chambost H, Alessi MC, Béliard S. Lipodystrophy-like features after total body irradiation among survivors of childhood acute leukemia. Endocr Connect 2019; 8:349-359. [PMID: 30844749 PMCID: PMC6454302 DOI: 10.1530/ec-18-0497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVE The number of long-term survivors of childhood acute leukemia (AL) is substantially growing. These patients are at high risk for metabolic syndrome (MS), especially those who received total body irradiation (TBI). The consequences of children's irradiation on adipose tissue (AT) development in adulthood are currently unknown. The objective of this study is to assess the impact of TBI on AT of childhood AL survivors. DESIGN We compared the morphological and functional characteristics of AT among survivors of childhood AL who developed MS and received (n = 12) or not received (n = 12) TBI. SUBJECTS/METHODS Body fat distribution and ectopic fat stores (abdominal visceral and liver fat) were evaluated by DEXA, MRI and 1H-spectroscopy. Functional characteristics of subcutaneous AT were investigated by studying gene expression and pre-adipocyte differentiation in culture. RESULTS Patients who have received TBI exhibited a lower BMI (minus 5 kg/m2) and a lower waist circumference (minus 14 cm), especially irradiated women. Despite the lower quantity of intra-abdominal AT, irradiated patient displayed a nearly two-fold greater content of liver fat when compared to non-irradiated patient (17 vs 9%, P = 0.008). These lipodystrophic-like features are supplemented by molecular abnormalities in subcutaneous AT of irradiated patients: decrease of gene expression of SREBP1 (minus 39%, P = 0.01) and CIDEA (minus 36%, P = 0.004) and a clear alteration of pre-adipocyte differentiation. CONCLUSIONS These results strongly support the direct effect of irradiation on AT, especially in women, leading to specific nonalcoholic fatty liver disease, despite lower BMI. A long-term appropriate follow-up is necessary for these patients.
Collapse
Affiliation(s)
- Sandrine Visentin
- Department of Pediatric Hematology and Oncology, AP-HM, Timone Enfants Hospital, Marseille, France
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
- Correspondence should be addressed to S Visentin:
| | - Gérard Michel
- Department of Pediatric Hematology and Oncology, AP-HM, Timone Enfants Hospital, Marseille, France
- Research Unit EA 3279 and Department of Public Health, Aix-Marseille University, Marseille, France
| | - Claire Oudin
- Department of Pediatric Hematology and Oncology, AP-HM, Timone Enfants Hospital, Marseille, France
- Research Unit EA 3279 and Department of Public Health, Aix-Marseille University, Marseille, France
| | - Béatrice Cousin
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, UPS, Toulouse, France
| | | | - Inès Abdesselam
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | | | - Marion Nowicki
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - René Valéro
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
- Nutrition, Metabolic Diseases and Endocrinology Department, AP-HM, La Conception Hospital, Marseille, France
| | | | - Monique Bernard
- AP-HM, Timone, CEMEREM, Marseille, France
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
| | - Pascal Auquier
- Research Unit EA 3279 and Department of Public Health, Aix-Marseille University, Marseille, France
| | - Hervé Chambost
- Department of Pediatric Hematology and Oncology, AP-HM, Timone Enfants Hospital, Marseille, France
| | | | - Sophie Béliard
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
- Nutrition, Metabolic Diseases and Endocrinology Department, AP-HM, La Conception Hospital, Marseille, France
| |
Collapse
|
18
|
Andrews RN, Dugan GO, Peiffer AM, Hawkins GA, Hanbury DB, Bourland JD, Hampson RE, Deadwyler SA, Cline JM. White Matter is the Predilection Site of Late-Delayed Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res 2019; 191:217-231. [PMID: 30694733 PMCID: PMC6422025 DOI: 10.1667/rr15263.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fractionated whole-brain irradiation for the treatment of intracranial neoplasia causes progressive neurodegeneration and neuroinflammation. The long-term consequences of single-fraction high-dose irradiation to the brain are unknown. To assess the late effects of brain irradiation we compared transcriptomic gene expression profiles from nonhuman primates (NHP; rhesus macaques Macaca mulatta) receiving single-fraction total-body irradiation (TBI; n = 5, 6.75-8.05 Gy, 6-9 years prior to necropsy) to those receiving fractionated whole-brain irradiation (fWBI; n = 5, 40 Gy, 8 × 5 Gy fractions; 12 months prior to necropsy) and control comparators (n = 5). Gene expression profiles from the dorsolateral prefrontal cortex (DLPFC), hippocampus (HC) and deep white matter (WM; centrum semiovale) were compared. Stratified analyses by treatment and region revealed that radiation-induced transcriptomic alterations were most prominent in animals receiving fWBI, and primarily affected white matter in both TBI and fWBI groups. Unsupervised canonical and ontologic analysis revealed that TBI or fWBI animals demonstrated shared patterns of injury, including white matter neuroinflammation, increased expression of complement factors and T-cell activation. Both irradiated groups also showed evidence of impaired glutamatergic neurotransmission and signal transduction within white matter, but not within the dorsolateral prefrontal cortex or hippocampus. Signaling pathways and structural elements involved in extracellular matrix (ECM) deposition and remodeling were noted within the white matter of animals receiving fWBI, but not of those receiving TBI. These findings indicate that those animals receiving TBI are susceptible to neurological injury similar to that observed after fWBI, and these changes persist for years postirradiation. Transcriptomic profiling reaffirmed that macrophage/microglial-mediated neuroinflammation is present in radiation-induced brain injury (RIBI), and our data provide novel evidence that the complement system may contribute to the pathogenesis of RIBI. Finally, these data challenge the assumption that the hippocampus is the predilection site of injury in RIBI, and indicate that impaired glutamatergic neurotransmission may occur in white matter injury.
Collapse
Affiliation(s)
- Rachel N. Andrews
- Departments of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Gregory O. Dugan
- Departments of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Ann M. Peiffer
- Departments of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Gregory A. Hawkins
- Departments of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - David B. Hanbury
- Department of Psychology, Averett University, Danville, Virginia 24541
| | - J. Daniel Bourland
- Departments of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Robert E. Hampson
- Departments of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - Samuel A. Deadwyler
- Departments of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| | - J. Mark Cline
- Departments of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
- Departments of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157
| |
Collapse
|
19
|
Fractionated whole body gamma irradiation modulates the hepatic response in type II diabetes of high fat diet model rats. Mol Biol Rep 2019; 46:2273-2283. [PMID: 30747384 DOI: 10.1007/s11033-019-04681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
HFD animals were exposed to a low rate of different fractionated whole body gamma irradiation doses (0.5, 1 and 2 Gy, three fractions per week for two consecutive months) and the expression of certain genes involved in type 2 diabetes mellitus (T2DM) in livers and brains of HFD Wistar rats was investigated. Additionally, levels of diabetes-related proteins encoded by the studied genes were analyzed. Results indicated that mRNA level of incretin glucagon like peptite-1 receptor (GLP-1R) was augmented in livers and brains exposed to 1 and 2 Gy doses. Moreover, the mitochondrial uncoupling proteins 2 and 3 (UCP2/3) expressions in animals fed on HFD compared to those fed on normal chow diet were significantly increased at all applied doses. GLP-1R and UCP3 protein levels were up regulated in livers. Total protein content increased at 0.5 and 1 Gy gamma irradiation exposure and returned to its normal level at 2 Gy dose. Results could be an indicator of type 2 diabetes delayed development during irradiation exposure and support the importance of GLP-1R as a target gene in radiotherapy against T2DM and its chronic complications. A new hypothesis of brain-liver and intestine interface is speculated by which an increase in the hepatic GLP-1R is influenced by the effect of fractionated whole body gamma irradiation.
Collapse
|
20
|
Micewicz ED, Iwamoto KS, Ratikan JA, Nguyen C, Xie MW, Cheng G, Boxx GM, Deriu E, Damoiseaux RD, Whitelegge JP, Ruchala PP, Avetisyan R, Jung ME, Lawson G, Nemeth E, Ganz T, Sayre JW, McBride WH, Schaue D. The Aftermath of Surviving Acute Radiation Hematopoietic Syndrome and its Mitigation. Radiat Res 2019; 191:323-334. [PMID: 30730284 DOI: 10.1667/rr15231.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensive research is underway to find new agents that can successfully mitigate the acute effects of radiation exposure. This is primarily in response to potential counterthreats of radiological terrorism and nuclear accidents but there is some hope that they might also be of value for cancer patients treated with radiation therapy. Research into mitigation countermeasures typically employs classic animal models of acute radiation syndromes (ARS) that develop after whole-body irradiation (WBI). While agents are available that successfully mitigate ARS when given after radiation exposure, their success raises questions as to whether they simply delay lethality or unmask potentially lethal radiation pathologies that may appear later in time. Life shortening is a well-known consequence of WBI in humans and experimental animals, but it is not often examined in a mitigation setting and its causes, other than cancer, are not well-defined. This is in large part because delayed effects of acute radiation exposure (DEARE) do not follow the strict time-dose phenomena associated with ARS and present as a diverse range of symptoms and pathologies with low mortality rates that can be evaluated only with the use of large cohorts of subjects, as in this study. Here, we describe chronically increased mortality rates up to 660 days in large numbers of mice given LD70/30 doses of WBI. Systemic myeloid cell activation after WBI persists in some mice and is associated with late immunophenotypic changes and hematopoietic imbalance. Histopathological changes are largely of a chronic inflammatory nature and variable incidence, as are the clinical symptoms, including late diarrhea that correlates temporally with changes in the content of the microbiome. We also describe the acute and long-term consequences of mitigating hematopoietic ARS (H-ARS) lethality after LD70/30 doses of WBI in multiple cohorts of mice treated uniformly with radiation mitigators that have a common 4-nitro-phenylsulfonamide (NPS) pharmacophore. Effective NPS mitigators dramatically decrease ARS mortality. There is slightly increased subacute mortality, but the rate of late mortalities is slowed, allowing some mice to live a normal life span, which is not the case for WBI controls. The study has broad relevance to radiation late effects and their potential mitigation and epitomizes the complex interaction between radiation-damaged tissues and immune homeostasis.
Collapse
Affiliation(s)
- Ewa D Micewicz
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Keisuke S Iwamoto
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Josephine A Ratikan
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Christine Nguyen
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Michael W Xie
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Genhong Cheng
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Gayle M Boxx
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Elisa Deriu
- b Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California
| | - Robert D Damoiseaux
- g Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California
| | - Julian P Whitelegge
- h Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California
| | - Piotr P Ruchala
- h Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California
| | - Rozeta Avetisyan
- c Department of Anesthesiology, University of California at Los Angeles, Los Angeles, California
| | - Michael E Jung
- d Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Greg Lawson
- e Department of Laboratory Animal Medicine, University of California at Los Angeles, Los Angeles, California
| | - Elizabeta Nemeth
- f Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Tomas Ganz
- f Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - James W Sayre
- i School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California
| | - William H McBride
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| | - Dörthe Schaue
- a Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Friedman DN, Tonorezos ES, Cohen P. Diabetes and Metabolic Syndrome in Survivors of Childhood Cancer. Horm Res Paediatr 2019; 91:118-127. [PMID: 30650414 PMCID: PMC6610586 DOI: 10.1159/000495698] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Endocrine complications, including diabetes and metabolic syndrome, are highly prevalent in childhood cancer survivors. These metabolic derangements may contribute to survivors' risk of excess cardiovascular morbidity and premature mortality. This review summarizes existing knowledge on risk of diabetes and metabolic syndrome among childhood cancer survivors, focusing specifically on known risk factors, potential mechanisms, and screening recommendations. Early diagnosis via standardized risk-based screening can improve long-term outcomes in this population. Additional work is needed to elucidate the mechanisms underlying these metabolic complications and to inform the design of risk-reducing interventions and optimize long-term cardiometabolic health among survivors of childhood cancer.
Collapse
Affiliation(s)
| | - Emily S. Tonorezos
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Paul Cohen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States,Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, United States
| |
Collapse
|
22
|
Nakagawa R, Hosokawa-Tsuji A, Aoki Y, Takasawa K, Maru M, Nakajima K, Sutani A, Miyakawa Y, Tomizawa D, Kashimada K, Morio T. Total body irradiation for hematopoietic stem cell transplantation during early childhood is associated with the risk for diabetes mellitus. Endocrine 2018; 61:76-82. [PMID: 29691808 DOI: 10.1007/s12020-018-1595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is a curative treatment for life-threatening malignancies and related diseases. Recently, the long-term prognosis of HSCT during childhood has greatly improved; however, the late adverse effects of HSCT have been found to cause substantial morbidity among long-term survivors. Although metabolic complications, such as diabetes mellitus (DM) and hyperlipidemia (HL), are the major late effects of pediatric HSCT, the clinical details are not clarified sufficiently. METHODS From 1983 to 2013, 75 participants underwent HSCT in our institute because of malignant or other related diseases. We retrospectively evaluated metabolic complications of eligible 22 participants (14 men and 8 women), and their clinical backgrounds. RESULTS Among 22 participants, 4 and 9 participants developed DM and HL after HSCT, respectively, and all participants with DM developed HL. None of the participants with DM were obese, and all had substantial insulin resistance. Total body irradiation (TBI) was performed in 10 participants, including 4 participants with DM and 5 participants with HL, revealing that TBI is an independent risk factor for DM. The age at TBI for participants with DM was significantly lower than that for participants without DM (p = 0.01), and all participants with DM received TBI before the age of 6. CONCLUSIONS Our data suggested that TBI was a risk factor for DM after HSCT, and TBI before the age of six increased the possibility of DM without obesity.
Collapse
Affiliation(s)
- Ryuichi Nakagawa
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
| | - Atsumi Hosokawa-Tsuji
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
| | - Yuki Aoki
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
- Department of Pediatric Oncology, National Cancer Center Hospital, Chuou-Ward, Tokyo, 104-0045, Japan
| | - Kei Takasawa
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
| | - Mitsue Maru
- School of Healthcare Science, Faculty of Medicine, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
- International Nursing Development, Faculty of Nursing and Rehabilitation, Konan Women's University, Kobe City, Hyogo Prefecture, 658-0001, Japan
| | - Keisuke Nakajima
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
| | - Akito Sutani
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
| | - Yuichi Miyakawa
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
| | - Daisuke Tomizawa
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
- Children's Cancer Center, National Center for Child Health and Development, Setagaya-Ward, Tokyo, 157-8535, Japan
| | - Kenichi Kashimada
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan.
| | - Tomohiro Morio
- Division of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Bunkyo-Ward, Tokyo, 113-8510, Japan
| |
Collapse
|
23
|
Khalil A, Omran H. The role of gut in type 2 diabetes mellitus during whole body gamma irradiation in high-fat diet Wistar rats. Int J Radiat Biol 2017; 94:137-149. [PMID: 29252073 DOI: 10.1080/09553002.2018.1419300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The effects of a low rate (100 mGy/min) fractionated whole body gamma irradiation (FWBGI) at different doses were assessed using a real-time PCR technique on the expression of some target genes implicated in the development of type 2 diabetes mellitus in high-fat diet (HFD) Wistar rats. METHOD HFD Wistar rats were exposed to different doses (12, 24 and 48 Gy) divided into 24 fractions (three times a week for two months), thus, the daily doses were 0.5, 1, 2 Gy, respectively. Total RNA was extracted and the expression of target genes was measured in the four intestinal segments (duodenum, jejunum, ileum and colon). RESULTS The pre-diabetic state already induced by HFD was found to be improved by irradiation exposure. This irradiation effect occurs mainly via altered anti-diabetic gene expressions (mRNA and protein levels) of the incretin glucagon-like peptide-1 (GLP-1) overall bowel segments except the colon which has its own specific response to irradiation exposure by the induction of the insulin receptor substrate 4 (IRS-4) and the uncoupling protein 3 (UCP3). CONCLUSIONS Results could be of great importance suggesting for the first time, a protective role for FWBGI on HFD animal models by increasing GLP-1 and UCP3 levels.
Collapse
Affiliation(s)
- Ayman Khalil
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| | - Hasan Omran
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| |
Collapse
|
24
|
Fanning KM, Pfisterer B, Davis AT, Presley TD, Williams IM, Wasserman DH, Cline JM, Kavanagh K. Changes in microvascular density differentiate metabolic health outcomes in monkeys with prior radiation exposure and subsequent skeletal muscle ECM remodeling. Am J Physiol Regul Integr Comp Physiol 2017; 313:R290-R297. [PMID: 28701320 DOI: 10.1152/ajpregu.00108.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Radiation exposure accelerates the onset of age-related diseases such as diabetes, cardiovascular disease, and neoplasia and, thus, lends insight into in vivo mechanisms common to these disorders. Fibrosis and extracellular matrix (ECM) remodeling, which occur with aging and overnutrition and following irradiation, are risk factors for development of type 2 diabetes mellitus. We previously demonstrated an increased incidence of skeletal muscle insulin resistance and type 2 diabetes mellitus in monkeys that had been exposed to whole body irradiation 5-9 yr prior. We hypothesized that irradiation-induced fibrosis alters muscle architecture, predisposing irradiated animals to insulin resistance and overt diabetes. Rhesus macaques (Macaca mulatta, n = 7-8/group) grouped as nonirradiated age-matched controls (Non-Rad-CTL), irradiated nondiabetic monkeys (Rad-CTL), and irradiated monkeys that subsequently developed diabetes (Rad-DM) were compared. Prior radiation exposure resulted in persistent skeletal muscle ECM changes, including a relative overabundance of collagen IV and a trend toward increased transforming growth factor-β1. Preservation of microvascular markers differentiated the irradiated diabetic and nondiabetic groups. Microvascular density and plasma nitrate and heat shock protein 90 levels were lower in Rad-DM than Rad-CTL. These results are consistent with a protective effect of abundant microvasculature in maintaining glycemic control within radiation-induced fibrotic muscle.
Collapse
Affiliation(s)
- K M Fanning
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - B Pfisterer
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - A T Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - T D Presley
- Department of Chemistry, Winston Salem State University, Winston-Salem, North Carolina; and
| | - I M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - D H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - J M Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - K Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
25
|
DeBo RJ, Lees CJ, Dugan GO, Caudell DL, Michalson KT, Hanbury DB, Kavanagh K, Cline JM, Register TC. Late Effects of Total-Body Gamma Irradiation on Cardiac Structure and Function in Male Rhesus Macaques. Radiat Res 2016; 186:55-64. [PMID: 27333082 PMCID: PMC5068576 DOI: 10.1667/rr14357.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart disease is an increasingly recognized, serious late effect of radiation exposure, most notably among breast cancer and Hodgkin's disease survivors, as well as the Hiroshima and Nagasaki atomic bomb survivors. The purpose of this study was to evaluate the late effects of total-body irradiation (TBI) on cardiac morphology, function and selected circulating biomarkers in a well-established nonhuman primate model. For this study we used male rhesus macaques that were exposed to a single total-body dose of ionizing gamma radiation (6.5-8.4 Gy) 5.6-9.7 years earlier at ages ranging from ∼3-10 years old and a cohort of nonirradiated controls. Transthoracic echocardiography was performed annually for 3 years on 20 irradiated and 11 control animals. Myocardium was examined grossly and histologically, and myocardial fibrosis/collagen was assessed microscopically and by morphometric analysis of Masson's trichrome-stained sections. Serum/plasma from 27 irradiated and 13 control animals was evaluated for circulating biomarkers of cardiac damage [N-terminal pro B-type natriuretic protein (nt-proBNP) and troponin-I], inflammation (CRP, IL-6, MCP-1, sICAM) and microbial translocation [LPS-binding protein (LBP) and sCD14]. A higher prevalence of histological myocardial fibrosis was observed in the hearts obtained from the irradiated animals (9/14) relative to controls (0/3) (P = 0.04, χ(2)). Echocardiographically determined left ventricular end diastolic and systolic diameters were significantly smaller in irradiated animals (repeated measures ANOVA, P < 0.001 and P < 0.008, respectively). Histomorphometric analysis of trichrome-stained sections of heart tissue demonstrated ∼14.9 ± 1.4% (mean ± SEM) of myocardial area staining for collagen in irradiated animals compared to 9.1 ± 0.9 % in control animals. Circulating levels of MCP-1 and LBP were significantly higher in irradiated animals (P < 0.05). A high incidence of diabetes in the irradiated animals was associated with higher plasma triglyceride and lower HDLc but did not appear to be associated with cardiovascular phenotypes. These results demonstrate that single total-body doses of 6.5-8.4 Gy produced long-term effects including a high incidence of myocardial fibrosis, reduced left ventricular diameter and elevated systemic inflammation. Additional prospective studies are required to define the time course and mechanisms underlying radiation-induced heart disease in this model.
Collapse
Affiliation(s)
| | - Cynthia J. Lees
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Greg O. Dugan
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - David L. Caudell
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kris T. Michalson
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - David B. Hanbury
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
26
|
Barnea D, Raghunathan N, Friedman DN, Tonorezos ES. Obesity and Metabolic Disease After Childhood Cancer. ONCOLOGY (WILLISTON PARK, N.Y.) 2015; 29:849-855. [PMID: 26568532 PMCID: PMC4756633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As care for the childhood cancer patient has improved significantly, there is an increasing incidence of treatment-related late effects. Obesity and type 2 diabetes mellitus are common and significant metabolic conditions in some populations of adult survivors of childhood cancer. Results from the Childhood Cancer Survivor Study and other large cohorts of childhood cancer survivors reveal that long-term survivors of acute lymphoblastic leukemia and those who received total body irradiation or abdominal radiotherapy are at highest risk. The potential mechanisms for the observed increase in risk, including alterations in leptin and adiponectin, pancreatic insufficiency, poor dietary habits, sedentary lifestyle, and perhaps changes in the composition of the gut microbiota, are reviewed. Discussion of exercise and diet intervention studies shows that further research about the barriers to a healthy lifestyle and other interventions in childhood cancer survivors is warranted.
Collapse
Affiliation(s)
- Dana Barnea
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nirupa Raghunathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Emily S. Tonorezos
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|