1
|
Beyls E, De Beul S, Bordon V, Ferster A, Haerynck F, Vral A, Baeyens A. Fibroblast-based radiosensitivity assays as a clinically valuable tool for (severe) combined immunodeficiency syndromes. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 902:503852. [PMID: 40044379 DOI: 10.1016/j.mrgentox.2025.503852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 05/13/2025]
Abstract
Genetic defects in one of the DNA double strand break (DSB) repair proteins lead to distinct human syndromes with severe clinical manifestations, including impaired neurological and immunological development, cancer proneness and sensitivity to ionizing radiation. Since diagnostic and therapeutic procedures frequently use DNA damaging agents, identification of radiosensitive individuals is imperative to optimize patient management. However, patients with a (severe) combined immunodeficiency (S)CID are often ineligible for lymphocyte-based radiosensitivity testing. Therefore, this study investigated the suitability of two fibroblast-based assays as alternative methods. DSB repair was evaluated following X-ray irradiation by an optimized cytokinesis-block micronucleus (MN) assay and the γH2AX focus test in fibroblasts from patients with a confirmed or suspected diagnosis of radiosensitive (S)CID. Using both assays, patients with a defect in Artemis were identified as radiosensitive while those with a RAG1/2 deficiency were not considered as radiosensitive. Although MN scoring was not feasible in irradiated fibroblasts deficient in XLF, LIG4 or NBS1, radiosensitivity could be readily demonstrated through impaired DNA DSB repair kinetics with the γH2AX focus assay in fibroblasts deficient in XLF or LIG4, but not in those deficient in NBS1. While both ATM defective fibroblasts clearly showed increased radiation-induced MN yields, one of the two fibroblast cell lines could not be identified as radiosensitive based on residual γH2AX focus levels. This study suggests that combining the fibroblast MN assay and γH2AX focus test can effectively exclude in vitro radiosensitivity in patients with a suspicion of radiosensitive (S)CID, particularly when lymphocyte-based radiosensitivity testing is not feasible.
Collapse
Affiliation(s)
- Elien Beyls
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium.
| | - Somara De Beul
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Alina Ferster
- Pediatric Hematology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent 9000, Belgium
| | - Ans Baeyens
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent 9000, Belgium
| |
Collapse
|
2
|
Li XM, Gao J, Li JG, Song JB, Li SJ. Experimental study of early evaluation of radiosensitivity in mouse models of lung cancers using 89Zr-anti-γH2AX-TAT PET imaging. EJNMMI Res 2024; 14:108. [PMID: 39543016 PMCID: PMC11564693 DOI: 10.1186/s13550-024-01178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Early evaluation of radiation sensitivity in lung cancer patients can facilitate the transition to personalized treatment strategies. To this end, we assessed the capability of 89Zr-anti-γH2AX-TAT microPET imaging in determining the radiosensitivity of lung cancer xenograft models. We prepared and conducted quality control on 89Zr-anti-γH2AX-TAT. The radiosensitivity of human non-small cell lung cancer cells (H460) and adenocarcinoma cells (A549) was analyzed through clonogenic survival experiments. Additionally, the role of γH2AX as a biomarker for radiosensitivity was validated by quantifying γH2AX foci via fluorescence staining. Subsequently, the H460 and A549 xenograft mouse models were subjected to irradiation, followed by 89Zr-anti-γH2AX-TAT microPET imaging. Concurrently, we performed immunofluorescence staining for γH2AX in tumor tissues to establish a correlation between the uptake of 89Zr-anti-γH2AX-TAT and γH2AX expression. RESULTS The surviving fraction 2 Gy (SF2) values of H460 and A549 indicating that A549 adenocarcinoma has higher radiosensitivity. The cell immunofluorescence experiment showed that the repair of γH2AX foci in H460 cells after irradiation was significantly higher than that in A549 cells, which also confirmed that A549 has higher radiosensitivity. The microPET imaging results showed the uptake of 89Zr-anti-γH2AX-TAT in the tumor of the A549 models after radiotherapy was higher than H460 models. The immunofluorescence staining of tumor tissue confirmed that the expression level of γH2AX was higher and the correlation with microPET imaging uptake was good. CONCLUSION 89Zr-anti-γH2AX-TAT allows PET imaging of radiosensitivity in lung cancer xenograft models, and is expected to become an early evaluation method for lung cancer radiosensitivity.
Collapse
Affiliation(s)
- Xiao-Min Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jie Gao
- China Institute for Radiation Protection, No. 102 Xuefu Str, Taiyuan, 030006, Shanxi, China
- China National Atomic Energy Agency nuclear technology (Nonclinical evaluation of radiopharmaceuticals) research and Development Center, No. 102 Xuefu Str, Taiyuan, 030006, Shanxi, China
| | - Jian-Guo Li
- China Institute for Radiation Protection, No. 102 Xuefu Str, Taiyuan, 030006, Shanxi, China
- China National Atomic Energy Agency nuclear technology (Nonclinical evaluation of radiopharmaceuticals) research and Development Center, No. 102 Xuefu Str, Taiyuan, 030006, Shanxi, China
| | - Jian-Bo Song
- Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Si-Jin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
3
|
Kumar A, Goel HL, Wisniewski CA, Wang T, Geng Y, Wang M, Goel S, Hu K, Li R, Zhu LJ, Clark JL, Ferreira LM, Brehm MA, FitzGerald TJ, Mercurio AM. Neuropilin-2-expressing breast cancer cells mitigate radiation-induced oxidative stress through nitric oxide signaling. J Clin Invest 2024; 134:e181368. [PMID: 39352757 PMCID: PMC11563673 DOI: 10.1172/jci181368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on subpopulations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1. NRP2-expressing tumor cells serve as a hub to produce nitric oxide (NO), an autocrine and paracrine signaling metabolite, which promotes cysteine-nitrosylation of Kelch-like ECH-associated protein 1 (KEAP1) and, consequently, nuclear factor erythroid 2-related factor 2-mediated (NFE2L2-mediated) transcription of antioxidant response genes. Inhibiting VEGF binding to NRP2, using a humanized mAb, results in NFE2L2 degradation via KEAP1, rendering cell lines and organoids vulnerable to irradiation. Importantly, treatment of patient-derived xenografts with the NRP2 mAb and radiation resulted in significant tumor necrosis and regression compared with radiation alone. Together, these findings reveal a targetable mechanism of radioresistance, and they support the use of NRP2 mAb as an effective radiosensitizer in TNBC.
Collapse
Affiliation(s)
- Ayush Kumar
- Department of Molecular, Cell and Cancer Biology
| | | | | | - Tao Wang
- Department of Radiation Oncology
| | | | - Mengdie Wang
- Department of Molecular, Cell and Cancer Biology
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology
| | - Lihua J. Zhu
- Department of Molecular, Cell and Cancer Biology
| | | | - Lindsay M. Ferreira
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael A. Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
4
|
Schumann S, Scherthan H, Pfestroff K, Schoof S, Pfestroff A, Hartrampf P, Hasenauer N, Buck AK, Luster M, Port M, Lassmann M, Eberlein U. DNA damage and repair in peripheral blood mononuclear cells after internal ex vivo irradiation of patient blood with 131I. Eur J Nucl Med Mol Imaging 2021; 49:1447-1455. [PMID: 34773472 PMCID: PMC8940852 DOI: 10.1007/s00259-021-05605-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023]
Abstract
Aim The aim of this study was to provide a systematic approach to characterize DNA damage induction and repair in isolated peripheral blood mononuclear cells (PBMCs) after internal ex vivo irradiation with [131I]NaI. In this approach, we tried to mimic ex vivo the irradiation of patient blood in the first hours after radioiodine therapy. Material and methods Blood of 33 patients of two centres was collected immediately before radioiodine therapy of differentiated thyroid cancer (DTC) and split into two samples. One sample served as non-irradiated control. The second sample was exposed to ionizing radiation by adding 1 ml of [131I]NaI solution to 7 ml of blood, followed by incubation at 37 °C for 1 h. PBMCs of both samples were isolated, split in three parts each and (i) fixed in 70% ethanol and stored at − 20 °C directly (0 h) after irradiation, (ii) after 4 h and (iii) 24 h after irradiation and culture in RPMI medium. After immunofluorescence staining microscopically visible co-localizing γ-H2AX + 53BP1 foci were scored in 100 cells per sample as biomarkers for radiation-induced double-strand breaks (DSBs). Results Thirty-two of 33 blood samples could be analysed. The mean absorbed dose to the blood in all irradiated samples was 50.1 ± 2.3 mGy. For all time points (0 h, 4 h, 24 h), the average number of γ-H2AX + 53BP1 foci per cell was significantly different when compared to baseline and the other time points. The average number of radiation-induced foci (RIF) per cell after irradiation was 0.72 ± 0.16 at t = 0 h, 0.26 ± 0.09 at t = 4 h and 0.04 ± 0.09 at t = 24 h. A monoexponential fit of the mean values of the three time points provided a decay rate of 0.25 ± 0.05 h−1, which is in good agreement with data obtained from external irradiation with γ- or X-rays. Conclusion This study provides novel data about the ex vivo DSB repair in internally irradiated PBMCs of patients before radionuclide therapy. Our findings show, in a large patient sample, that efficient repair occurs after internal irradiation with 50 mGy absorbed dose, and that the induction and repair rate after 131I exposure is comparable to that of external irradiation with γ- or X-rays.
Collapse
Affiliation(s)
- S Schumann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - H Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - K Pfestroff
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - S Schoof
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - A Pfestroff
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - P Hartrampf
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - N Hasenauer
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - A K Buck
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - M Luster
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - M Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - U Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Guhlich M, Hubert L, Mergler CPN, Rave-Fraenk M, Dröge LH, Leu M, Schmidberger H, Rieken S, Hille A, Schirmer MA. Identification of Risk Loci for Radiotoxicity in Prostate Cancer by Comprehensive Genotyping of TGFB1 and TGFBR1. Cancers (Basel) 2021; 13:cancers13215585. [PMID: 34771749 PMCID: PMC8582951 DOI: 10.3390/cancers13215585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Genetic variability in transforming growth factor beta pathway (TGFB) was suggested to affect adverse events of radiotherapy. We investigated comprehensive variability in TGFB1 (gene coding for TGFβ1 ligand) and TGFBR1 (TGFβ receptor-1) in relation to radiotoxicity. Prostate cancer patients treated with primary radiotherapy (n = 240) were surveyed for acute and late toxicity. Germline polymorphisms (n = 40) selected to cover the common genetic variability in TGFB1 and TGFBR1 were analyzed in peripheral blood cells. Human lymphoblastoid cell lines (LCLs) were used to evaluate a possible impact of TGFB1 and TGFBR1 genetic polymorphisms to DNA repair capacity following single irradiation with 3 Gy. Upon adjustment for multiplicity testing, rs10512263 in TGFBR1 showed a statistically significant association with acute radiation toxicity. Carriers of the Cytosine (C)-variant allele (n = 35) featured a risk ratio of 2.17 (95%-CI 1.41-3.31) for acute toxicity ≥ °2 compared to Thymine/Thymine (TT)-wild type individuals (n = 205). Reduced DNA repair capacity in the presence of the C-allele of rs10512263 might be a mechanistic explanation as demonstrated in LCLs following irradiation. The risk for late radiotoxicity was increased by carrying at least two risk genotypes at three polymorphic sites, including Leu10Pro in TGFB1. Via comprehensive genotyping of TGFB1 and TGFBR1, promising biomarkers for radiotoxicity in prostate cancer were identified.
Collapse
Affiliation(s)
- Manuel Guhlich
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.G.); (M.R.-F.); (L.H.D.); (M.L.); (S.R.); (A.H.)
| | - Laura Hubert
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.H.); (C.P.N.M.)
| | | | - Margret Rave-Fraenk
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.G.); (M.R.-F.); (L.H.D.); (M.L.); (S.R.); (A.H.)
| | - Leif Hendrik Dröge
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.G.); (M.R.-F.); (L.H.D.); (M.L.); (S.R.); (A.H.)
| | - Martin Leu
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.G.); (M.R.-F.); (L.H.D.); (M.L.); (S.R.); (A.H.)
| | - Heinz Schmidberger
- Department of Radiation Oncology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Stefan Rieken
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.G.); (M.R.-F.); (L.H.D.); (M.L.); (S.R.); (A.H.)
| | - Andrea Hille
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.G.); (M.R.-F.); (L.H.D.); (M.L.); (S.R.); (A.H.)
| | - Markus Anton Schirmer
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.G.); (M.R.-F.); (L.H.D.); (M.L.); (S.R.); (A.H.)
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.H.); (C.P.N.M.)
- Correspondence: ; Tel.: +49-551-39-64505
| |
Collapse
|
6
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
7
|
Nikolova E, Tonev D, Zhelev N, Neychev V. Prospects for Radiopharmaceuticals as Effective and Safe Therapeutics in Oncology and Challenges of Tumor Resistance to Radiotherapy. Dose Response 2021; 19:1559325821993665. [PMID: 33716590 PMCID: PMC7923993 DOI: 10.1177/1559325821993665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid advances in nuclear medicine have resulted in significant advantages for the field of oncology. The focus is on the application of radiopharmaceuticals as therapeuticals. In addition, the latest developments in cell biology (the understanding of the cell structure, function, metabolism, genetics, signaling, transformation) have given a strong scientific boost to radiation oncology. In this regard, the article discusses what is soon going to be a new jump in radiation oncology based on the already accumulated considerable knowledge at the cellular level about the mechanisms of cell transformation and tumor progression, cell response to radiation, cell resistance to apoptosis and radiation and cell radio-sensitivity. The mechanisms of resistance of tumor cells to radiation and the genetically determined individual sensitivity to radiation in patients (which creates the risk of radiation-induced acute and late side effects) are the 2 major challenges to overcome in modern nuclear medicine. The paper focuses on these problems and makes a detailed summary of the significance of the differences in the ionizing properties of radiopharmaceuticals and the principle of their application in radiation oncology that will shed additional light on how to make the anti-cancer radiotherapies more efficient and safe, giving some ideas for optimizations.
Collapse
Affiliation(s)
- Ekaterina Nikolova
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dimitar Tonev
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom.,Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Vladimir Neychev
- University of Central Florida, College of Medicine, Orlando, FL, USA
| |
Collapse
|
8
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
9
|
Stenvall A, Larsson E, Holmqvist B, Strand SE, Jönsson BA. Quantitative γ-H2AX immunofluorescence method for DNA double-strand break analysis in testis and liver after intravenous administration of 111InCl 3. EJNMMI Res 2020; 10:22. [PMID: 32189079 PMCID: PMC7080928 DOI: 10.1186/s13550-020-0604-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
Background It is well known that a severe cell injury after exposure to ionizing radiation is the induction of DNA double-strand breaks (DSBs). After exposure, an early response to DSBs is the phosphorylation of the histone H2AX molecule regions adjacent to the DSBs, referred to as γ-H2AX foci. The γ-H2AX assay after external exposure is a good tool for investigating the link between the absorbed dose and biological effect. However, less is known about DNA DSBs and γ-H2AX foci within the tissue microarchitecture after internal irradiation from radiopharmaceuticals. Therefore, in this study, we aimed to develop and validate a quantitative ex vivo model using γ-H2AX immunofluorescence staining and confocal laser scanning microscopy (CLSM) to investigate its applicability in nuclear medicine dosimetry research. Liver and testis were selected as the organs to study after intravenous administration of 111InCl3. Results In this study, we developed and validated a method that combines ex vivo γ-H2AX foci labeling of tissue sections with in vivo systemically irradiated mouse testis and liver tissues. The method includes CLSM imaging for intracellular cell-specific γ-H2AX foci detection and quantification and absorbed dose calculations. After exposure to ionizing radiation from 111InCl3, both hepatocytes and non-hepatocytes within the liver showed an absorbed dose-dependent elevation of γ-H2AX foci, whereas no such correlation was seen for the testis tissue. Conclusion It is possible to detect and quantify the radiation-induced γ-H2AX foci within the tissues of organs at risk after internal irradiation. We conclude that our method developed is an appropriate tool to study dose–response relationships in animal organs and human tissue biopsies after internal exposure to radiation.
Collapse
Affiliation(s)
- Anna Stenvall
- Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden.
| | - Erik Larsson
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | - Sven-Erik Strand
- Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden
| | - Bo-Anders Jönsson
- Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Gomolka M, Blyth B, Bourguignon M, Badie C, Schmitz A, Talbot C, Hoeschen C, Salomaa S. Potential screening assays for individual radiation sensitivity and susceptibility and their current validation state. Int J Radiat Biol 2019; 96:280-296. [PMID: 31347938 DOI: 10.1080/09553002.2019.1642544] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: The workshop on 'Individual Radiosensitivity and Radiosusceptibility' organized by MELODI and CONCERT on Malta in 2018, evaluated the current state of assays to identify sensitive and susceptible subgroups. The authors provide an overview on potential screening assays detecting individuals showing moderate to severe early and late radiation reactions or are at increased risk to develop cancer upon radiation exposure.Conclusion: It is necessary to separate clearly between tissue reactions and stochastic effects such as cancer when comparing the existing literature to validate various test systems. Requirements for the assays are set up. The literature is reviewed for assays that are reliable and robust. Sensitivity and specificity of the assays are regarded and scrutinized for modifying factors. Accuracy of an assay system is required to be more than 90% to balance risks of adverse reactions against risk to fail to cure the cancer. No assay/biomarker is in routine use. Assays that have shown predictive potential for radiosensitivity include SNPs, the RILA assay, and the pATM assay. A tree of risk guideline for radiologists is provided to assist medical treatment decisions. Recommendations for effective research include the setup of common retrospective and prospective cohorts/biobanks to validate current and future tests.
Collapse
Affiliation(s)
- Maria Gomolka
- Federal Office for Radiation Protection, Neuherberg, Germany
| | - Benjamin Blyth
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department Centre for Radiation, Chemical and Environmental Hazards Public Health England, Didcot, United Kingdom
| | - Annette Schmitz
- Institut de Radiobiologie Cellulaire et Moléculaire, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Paris, France
| | - Christopher Talbot
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christoph Hoeschen
- Faculty of Electrical Engineering and Information Technology, Institute for Medical Technology, Otto-von-Guericke-University, Magdeburg, Germany
| | | |
Collapse
|
11
|
Ruprecht N, Hungerbühler MN, Böhm IB, Heverhagen JT. Improved identification of DNA double strand breaks: γ-H2AX-epitope visualization by confocal microscopy and 3D reconstructed images. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:295-302. [PMID: 30799523 DOI: 10.1007/s00411-019-00778-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Currently, in the context of radiology, irradiation-induced and other genotoxic effects are determined by visualizing DSB-induced DNA repair through γ-H2AX immunofluorescence and direct counting of the foci by epifluorescence microscopy. This procedure, however, neglects the 3D nature of the nucleus. The aim of our study was to use confocal microscopy and 3D reconstructed images to improve documentation and analysis of γ-H2AX fluorescence signals after diagnostic examinations. Confluent, non-dividing MRC-5 lung fibroblasts were irradiated in vitro with a Cs-137 source and exposed to radiation doses up to 1000 mGy before fixation and staining with an antibody recognizing the phosphorylated histone variant γ-H2AX. The 3D distribution of γ-H2AX foci was visualized using confocal laser scanning microscopy. 3D reconstruction of the optical slices and γ-H2AX foci counting were performed using Imaris Image Analysis software. In parallel, γ-H2AX foci were counted visually by epifluorescence microscopy. In addition, whole blood was exposed ex vivo to the radiation doses from 200 to 1600 mGy. White blood cells (WBCs) were isolated and stained for γ-H2AX. In fibroblasts, epifluorescence microscopy alone visualized the entirety of fluorescence signals as integral, without correct demarcation of single foci, and at 1000 mGy yielded on average 11.1 foci by manual counting of 2D images in comparison to 36.1 foci with confocal microscopy and 3D reconstruction (p < 0.001). The procedure can also be applied for studies on WBCs. In contrast to epifluorescence microscopy, confocal microscopy and 3D reconstruction enables an improved identification of DSB-induced γ-H2AX foci, allowing for an unbiased, ameliorated quantification.
Collapse
Affiliation(s)
- Nico Ruprecht
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Martin N Hungerbühler
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ingrid B Böhm
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Johannes T Heverhagen
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Yin X, Mason J, Lobachevsky PN, Munforte L, Selbie L, Ball DL, Martin RF, Leong T, Siva S, Martin OA. Radiation Therapy Modulates DNA Repair Efficiency in Peripheral Blood Mononuclear Cells of Patients With Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2019; 103:521-531. [DOI: 10.1016/j.ijrobp.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
|
13
|
Liu HM, Wu Q, Cao JQ, Wang X, Song Y, Mei WJ, Wang XC. A phenanthroline derivative enhances radiosensitivity of hepatocellular carcinoma cells by inducing mitochondria-dependent apoptosis. Eur J Pharmacol 2019; 843:285-291. [DOI: 10.1016/j.ejphar.2018.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023]
|
14
|
Herschtal A, Martin RF, Leong T, Lobachevsky P, Martin OA. A Bayesian Approach for Prediction of Patient Radiosensitivity. Int J Radiat Oncol Biol Phys 2018; 102:627-634. [PMID: 30244880 DOI: 10.1016/j.ijrobp.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/14/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE A priori identification of the small proportion of radiation therapy patients who prove to be severely radiosensitive is a long-held goal in radiation oncology. A number of published studies indicate that analysis of the DNA damage response after ex vivo irradiation of peripheral blood lymphocytes, using the γ-H2AX assay to detect DNA damage, provides a basis for a functional assay for identification of the small proportion of severely radiosensitive cancer patients undergoing radiotherapy. METHODS AND MATERIALS We introduce a new, more rigorous, integrated approach to analysis of radiation-induced γ-H2AX response, using Bayesian statistics. RESULTS This approach shows excellent discrimination between radiosensitive and non-radiosensitive patient groups described in a previously reported data set. CONCLUSIONS Bayesian statistical analysis provides a more appropriate and reliable methodology for future prospective studies.
Collapse
Affiliation(s)
- Alan Herschtal
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Roger F Martin
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia; School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Trevor Leong
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Pavel Lobachevsky
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia
| | - Olga A Martin
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Depuydt J, Viaene T, Blondeel P, Roche N, Van den Broecke R, Thierens H, Vral A. DNA double strand breaks induced by low dose mammography X-rays in breast tissue: A pilot study. Oncol Lett 2018; 16:3394-3400. [PMID: 30127940 DOI: 10.3892/ol.2018.9024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Breast tissue is very sensitive to ionizing radiation due to the presence of reproductive hormones, including estrogen. In the present pilot study, the efficiency of mammography X-rays to induce DNA double strand breaks (DSB) in mammary epithelial cells was investigated. For this, freshly resected healthy breast tissue was irradiated with 30 kV mammography X-rays in the dose range 0-500 mGy (2, 4, 10, 20, 40, 100 and 500 mGy). Breast specimens were also irradiated with identical doses of 60Co γ-rays as a radiation quality standard. With the γH2AX-foci assay, the number of DNA DSB induced by radiation were quantified in the mammary epithelial cells present in breast tissue. Results indicated that foci induced by 30 kV X-rays and γ-rays followed a biphasic linear dose-response. For 30 kV X-rays, the slope in the low dose region (0-20 mGy) was 8.71 times steeper compared with the slope in the higher dose region (20-500 mGy). Furthermore, compared with γ-rays, 30 kV X-rays were also more effective in inducing γH2AX-foci. This resulted in a relative biological effectiveness (RBE) value of 1.82 in the low dose range. In the higher dose range, an RBE close to 1 was obtained. In conclusion, the results indicated the existence of a low dose hypersensitive response for DSB induction in the dose range representative for mammography screening, which is probably caused by the bystander effect. This could affect the radiation risk calculations for women participating in mammography screening.
Collapse
Affiliation(s)
- Julie Depuydt
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Tanguy Viaene
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | | | - Nathalie Roche
- Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Hubert Thierens
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Anne Vral
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Ma JW, Wang X, Chang L, Zhong XY, Jing H, Zhu X, Wang S, Xiao W. CD44 collaborates with ERBB2 mediate radiation resistance via p38 phosphorylation and DNA homologous recombination pathway in prostate cancer. Exp Cell Res 2018; 370:58-67. [PMID: 29894706 DOI: 10.1016/j.yexcr.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 02/03/2023]
Abstract
CD44, a glycoprotein, has been reported to have relationship with resistance to radiation in prostate cancer (Cap) cells. However, its molecular mechanism remains unknown. In this study, we demonstrated that inhibited CD44 enhanced the radiosentivity in Cap cells. It has been hypothesized that CD44 combine with ERBB2 and activate downstream phosphated protein to mediate DNA damage repair. Therefore, we conducted a detailed analysis of effects of radiation by clonogenic assay and immunofluorescence stain for p-H2AX foci. The downstream of CD44/ERBB2 and DNA damage repair proteins was detected by western blot. The results reveal that CD44 interacted with ERBB2, the downstream of CD44/ERBB2 was p-p38 when Cap cells were irradiated. Among the pathways, homologous recombination (HR) related proteins Mre11 and Rad50 were involved in CD44/ERBB2/p-p38 mediated radioresistance in Cap. In conclusion, CD44 could stabilize ERBB2 and co-activate p-p38 expression then promote the DNA damage repair by HR pathway, which finally contribute to the radioresistance of CaP.
Collapse
Affiliation(s)
- Ji-Wei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China; Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's), Jinan University, Shenzhen 518020, China
| | - Lei Chang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xue-Yun Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaolong Zhu
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Shaoxiang Wang
- College of Pharmacy, Shenzhen University School of Medicine, Shenzhen 518061 China.
| | - WeiWei Xiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
17
|
Rajaraman P, Hauptmann M, Bouffler S, Wojcik A. Human individual radiation sensitivity and prospects for prediction. Ann ICRP 2018; 47:126-141. [PMID: 29648458 DOI: 10.1177/0146645318764091] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past few decades, it has become increasingly evident that sensitivity to ionising radiation is variable. This is true for tissue reactions (deterministic effects) after high doses of radiation, for stochastic effects following moderate and possibly low doses, and conceivably also for non-cancer effects such as cardiovascular disease, the causal pathway(s) of which are not yet fully understood. A high sensitivity to deterministic effects is not necessarily correlated with a high sensitivity to stochastic effects. The concept of individual sensitivity to high and low doses of radiation has long been supported by data from patients with certain rare hereditary conditions. However, these syndromes only affect a small proportion of the general population. More relevant to the majority of the population is the notion that some part of the genetic contribution defining radiation sensitivity may follow a polygenic model, which predicts elevated risk resulting from the inheritance of many low-penetrance risk-modulating alleles. Can the different forms of individual radiation sensitivities be inferred from the reaction of cells exposed ex vivo to ionising radiation? Can they be inferred from analyses of individual genotypes? This paper reviews current evidence from studies of late adverse tissue reactions after radiotherapy in potentially sensitive groups, including data from functional assays, candidate gene approaches, and genome-wide association studies. It focuses on studies published in 2013 or later because a comprehensive review of earlier studies was published previously in a report by the UK Advisory Group on Ionising Radiation.
Collapse
Affiliation(s)
| | - M Hauptmann
- b Netherlands Cancer Institute, The Netherlands
| | | | - A Wojcik
- d Centre for Radiation Protection Research, MBW Department, Stockholm University, Sweden.,e Jan Kochanowski University, Poland
| |
Collapse
|
18
|
Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget 2018; 7:65504-65513. [PMID: 27602767 PMCID: PMC5323171 DOI: 10.18632/oncotarget.11798] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation. The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found. In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.
Collapse
|
19
|
Sorokin M, Kholodenko R, Grekhova A, Suntsova M, Pustovalova M, Vorobyeva N, Kholodenko I, Malakhova G, Garazha A, Nedoluzhko A, Vasilov R, Poddubskaya E, Kovalchuk O, Adamyan L, Prassolov V, Allina D, Kuzmin D, Ignatev K, Osipov A, Buzdin A. Acquired resistance to tyrosine kinase inhibitors may be linked with the decreased sensitivity to X-ray irradiation. Oncotarget 2017; 9:5111-5124. [PMID: 29435166 PMCID: PMC5797037 DOI: 10.18632/oncotarget.23700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/11/2017] [Indexed: 01/08/2023] Open
Abstract
Acquired resistance to chemotherapy and radiation therapy is one of the major obstacles decreasing efficiency of treatment of the oncologic diseases. In this study, on the two cell lines (ovarian carcinoma SKOV-3 and neuroblastoma NGP-127), we modeled acquired resistance to five target anticancer drugs. The cells were grown on gradually increasing concentrations of the clinically relevant tyrosine kinase inhibitors (TKIs) Sorafenib, Pazopanib and Sunitinib, and rapalogs Everolimus and Temsirolimus, for 20 weeks. After 20 weeks of culturing, the half-inhibitory concentrations (IC50) increased by 25 – 186% for the particular combinations of the drugs and cell types. We next subjected cells to 10 Gy irradiation, a dose frequently used in clinical radiation therapy. For the SKOV-3, but not NGP-127 cells, for the TKIs Sorafenib, Pazopanib and Sunitinib, we noticed statistically significant increase in capacity to repair radiation-induced DNA double strand breaks compared to naïve control cells not previously treated with TKIs. These peculiarities were linked with the increased activation of ATM DNA repair pathway in the TKI-treated SKOV-3, but not NGP-127 cells. Our results provide a new cell culture model for studying anti-cancer therapy efficiency and evidence that there may be a tissue-specific radioresistance emerging as a side effect of treatment with TKIs.
Collapse
Affiliation(s)
- Maxim Sorokin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Roman Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anna Grekhova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Maria Suntsova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Margarita Pustovalova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Natalia Vorobyeva
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Irina Kholodenko
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Galina Malakhova
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,OmicsWay Corp., Walnut, CA 91789, USA
| | - Artem Nedoluzhko
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia
| | - Raif Vasilov
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada
| | - Leila Adamyan
- Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, Moscow 127206, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daria Allina
- Pathology Department, Morozov Children's City Hospital, Moscow 119049, Russia
| | | | - Kirill Ignatev
- Republic Oncological Hospital, Petrozavodsk 185000, Russia
| | - Andreyan Osipov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia
| | - Anton Buzdin
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow 123182, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,OmicsWay Corp., Walnut, CA 91789, USA
| |
Collapse
|
20
|
D'Abrantes S, Gratton S, Reynolds P, Kriechbaumer V, McKenna J, Barnard S, Clarke DT, Botchway SW. Super-Resolution Nanoscopy Imaging Applied to DNA Double-Strand Breaks. Radiat Res 2017; 189:19-31. [PMID: 29053406 DOI: 10.1667/rr14594.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genomic deoxyribonucleic acid (DNA) is continuously being damaged by endogenous processes such as metabolism or by exogenous events such as radiation. The specific phosphorylation of histone H2AX on serine residue 139, described as γ-H2AX, is an excellent indicator or marker of DNA double-strand breaks (DSBs). The yield of γ-H2AX (foci) is shown to have some correlation with the dose of radiation or other DSB-causing agents. However, there is some discrepancy in the DNA DSB foci yield among imaging and other methods such as gel electrophoresis. Super-resolution imaging techniques are now becoming widely used as essential tools in biology and medicine, after a slow uptake of their development almost two decades ago. Here we compare several super-resolution techniques used to image and determine the amount and spatial distribution of γ-H2AX foci formation after X-ray irradiation: stimulated emission depletion (STED), ground-state depletion microscopy followed by individual molecule return (GSDIM), structured illumination microscopy (SIM), as well as an improved confocal, Airyscan and HyVolution 2. We show that by using these super-resolution imaging techniques with as low as 30-nm resolution, each focus may be further resolved, thus increasing the number of foci per radiation dose compared to standard microscopy. Furthermore, the DNA repair proteins 53BP1 (after low-LET irradiations) and Ku70/Ku80 (from laser microbeam irradiation) do not always yield a significantly increased number of foci when imaged by the super-resolution techniques, suggesting that γ-H2AX, 53PB1 and Ku70/80 repair proteins do not fully co-localize on the units of higher order chromatin structure.
Collapse
Affiliation(s)
- Sofia D'Abrantes
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Sarah Gratton
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Pamela Reynolds
- b Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Verena Kriechbaumer
- c Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Joseph McKenna
- c Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Stephen Barnard
- d Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot OX11 0RQ, United Kingdom
| | - Dave T Clarke
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Stanley W Botchway
- a Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton, Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
21
|
Tumor heterogeneity determined with a γH2AX foci assay: A study in human head and neck squamous cell carcinoma (hHNSCC) models. Radiother Oncol 2017; 124:379-385. [PMID: 28739384 DOI: 10.1016/j.radonc.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to analyze the intra-tumoral heterogeneity of γH2AX foci in tumor specimens following ex vivo radiation to evaluate the potential of γH2AX foci as predictors for radiosensitivity. MATERIAL AND METHODS γH2AX foci were quantified in tumor specimens of 3hHNSCC tumor models with known differences in radiosensitivity after reoxygenation in culture medium (10h, 24h), single dose exposure (0Gy, 4Gy), and fixation 24h post-irradiation. Multiple, equally treated samples of the same tumor were analyzed for foci, normalized and fitted in a linear mixed-effects model. RESULTS The ex vivo reoxygenation time had no significant effect on γH2AX foci counts. A significant intra model heterogeneity could be shown for FaDu (p=0.033) but not for SKX (p=0.167) and UT-SCC-5 (p=0.082) tumors, respectively. All tumor models showed a significant intra-tumoral heterogeneity between specimens of the same tumor (p<0.01) or among microscopic fields of a particular tumor specimen (p<0.0001). CONCLUSION Similar results for ex vivo γH2AX foci between 10h and 24h reoxygenation time support the applicability of the assay in a clinical setting. The high intra-tumoral heterogeneity underlines the necessity of multiple analyzable samples per patient and therewith the need for an automated foci analysis.
Collapse
|
22
|
Subhashree M, Venkateswarlu R, Karthik K, Shangamithra V, Venkatachalam P. DNA damage and the bystander response in tumor and normal cells exposed to X-rays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 821:20-27. [PMID: 28735740 DOI: 10.1016/j.mrgentox.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53ser15) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53ser15, γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks.
Collapse
Affiliation(s)
- M Subhashree
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - R Venkateswarlu
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - K Karthik
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - V Shangamithra
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India.
| |
Collapse
|
23
|
Wang A, Ning Z, Lu C, Gao W, Liang J, Yan Q, Tan G, Liu J. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis. Front Pharmacol 2017; 8:274. [PMID: 28567015 PMCID: PMC5434448 DOI: 10.3389/fphar.2017.00274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22) with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.
Collapse
Affiliation(s)
- Aman Wang
- Department of Oncology, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Zhen Ning
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Chang Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Wei Gao
- City College, Zhejiang UniversityHangzhou, China
| | - Jinxiao Liang
- Department of Thoracic Surgery, Zhejiang Cancer HospitalHangzhou, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
24
|
van Oorschot B, Uitterhoeve L, Oomen I, Ten Cate R, Medema JP, Vrieling H, Stalpers LJA, Moerland PD, Franken NAP. Prostate Cancer Patients with Late Radiation Toxicity Exhibit Reduced Expression of Genes Involved in DNA Double-Strand Break Repair and Homologous Recombination. Cancer Res 2017; 77:1485-1491. [PMID: 28108515 DOI: 10.1158/0008-5472.can-16-1966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022]
Abstract
Severe late damage to normal tissue is a major limitation of cancer radiotherapy in prostate cancer patients. In a recent retrospective study, late radiation toxicity was found to relate to a decreased decay of γ-H2AX foci and reduced induction of DNA double-strand break repair genes. Here, we report evidence of prognostic utility in prostate cancer for γ-H2AX foci decay ratios and gene expression profiles derived from ex vivo-irradiated patient lymphocytes. Patients were followed ≥2 years after radiotherapy. Clinical characteristics were assembled, and toxicity was recorded using the Common Terminology Criteria (CTCAE) v4.0. No clinical factor was correlated with late radiation toxicity. The γ-H2AX foci decay ratio correlated negatively with toxicity grade, with a significant difference between grade ≥3 and grade 0 patients (P = 0.02). A threshold foci decay ratio, determined in our retrospective study, correctly classified 23 of 28 patients with grade ≥3 toxicity (sensitivity 82%) and 9 of 14 patients with grade 0 toxicity (specificity 64%). Induction of homologous recombination (HR) repair genes was reduced with increasing toxicity grade. The difference in fold induction of the HR gene set was most pronounced between grade 0 and grade ≥3 toxicity (P = 0.008). Notably, reduced responsiveness of HR repair genes to irradiation and inefficient double-strand break repair correlated with severe late radiation toxicity. Using a decay ratio classifier, we correctly classified 82% of patients with grade ≥3 toxicity, suggesting a prognostic biomarker for cancer patients with a genetically enhanced risk for late radiation toxicity to normal tissues after radiotherapy. Cancer Res; 77(6); 1485-91. ©2017 AACR.
Collapse
Affiliation(s)
- Bregje van Oorschot
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Lon Uitterhoeve
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilja Oomen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rosemarie Ten Cate
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett 2016; 383:212-219. [PMID: 27693457 DOI: 10.1016/j.canlet.2016.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Abstract
A small percentage of cancer radiotherapy patients develop abnormally severe side effects as a consequence of intrinsic radiosensitivity. We analysed the γ-H2AX response to ex-vivo irradiation of peripheral blood lymphocytes (PBL) and plucked eyebrow hair follicles from 16 patients who developed severe late radiation toxicity following radiotherapy, and 12 matched control patients. Longer retention of the γ-H2AX signal and lower colocalization efficiency of repair factors in over-responding patients confirmed that DNA repair in these individuals was compromised. Five of the radiosensitive patients harboured LoF mutations in DNA repair genes. An extensive range of quantitative parameters of the γ-H2AX response were studied with the objective to establish a predictor for radiosensitivity status. The most powerful predictor was the combination of the fraction of the unrepairable component of γ-H2AX foci and repair rate in PBL, both derived from non-linear regression analysis of foci repair kinetics. We introduce a visual representation of radiosensitivity status that allocates a position for each patient on a two-dimensional "radiosensitivity map". This analytical approach provides the basis for larger prospective studies to further refine the algorithm, ultimately to triage capability.
Collapse
|
26
|
Achel DG, Serafin AM, Akudugu JM. Flow cytometry-assisted quantification of γH2AX expression has potential as a rapid high-throughput biodosimetry tool. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:349-357. [PMID: 27262315 DOI: 10.1007/s00411-016-0654-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Large-scale radiological events require immediate and accurate estimates of doses received by victims, and possibly the first responders, to assist in treatment decisions. Although there are numerous efforts worldwide to develop biodosimetric tools to adequately handle triage needs during radiological incidents, such endeavours do not seem to actively involve sub-Saharan Africa which currently has a significant level of nuclear-related activity. To initiate a similar interest in Africa, ex vivo radiation-induced γH2AX expression in peripheral blood lymphocytes from fourteen healthy donors was assessed using flow cytometry. While the technique shows potential for use as a rapid high-throughput biodosimetric tool for radiation absorbed doses up to 5 Gy, significant inter-individual differences in γH2AX expression emerged. Also, female donors exhibited higher levels of γH2AX expression than their male counterparts. To address these shortcomings, gender-based in-house dose-response curves for γH2AX induction in lymphocytes 2, 4, and 6 h after X-ray irradiation are proposed for the South African population. The obtained results show that γH2AX is a good candidate biomarker for biodosimetry, but might need some refinement and validation through further studies involving a larger cohort of donors.
Collapse
Affiliation(s)
- Daniel G Achel
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra, Ghana
| | - Antonio M Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - John M Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|