1
|
Schüle S, Hackenbroch C, Beer M, Ostheim P, Hermann C, Muhtadi R, Stewart S, Port M, Scherthan H, Abend M. Tin prefiltration in computed tomography does not significantly alter radiation-induced gene expression and DNA double-strand break formation. PLoS One 2024; 19:e0315808. [PMID: 39705301 DOI: 10.1371/journal.pone.0315808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND The tin (Sn) prefilter technique is a recently introduced dose-saving technique in computed tomography (CT). This study investigates whether there is an altered molecular biological response in blood cells using the tin prefiltering technique. METHODS Blood from 6 donors was X-irradiated ex-vivo with 20 mGy full dose (FD) protocols (Sn 150 kV, 150 kV, and 120 kV) and a tin prefiltered 16.5 mGy low dose (LD) protocol on a CT scanner. Biological changes were determined by quantification of γH2AX DNA double-strand break (DSB) foci, and differential gene expression (DGE) relative to unexposed samples were examined for seven known radiation-induced genes (FDXR, DDB2, BAX, CDKN1A, AEN, EDA2R, APOBEC3H) and 667 microRNAs (miRNA). RESULTS EDA2R and DDB2 gene expression (GE) increased 1.7-6-fold (p = 0.0004-0.02) and average DNA DSB foci value (0.31±0.02, p<0.0001) increased significantly relative to unexposed samples, but similarly for the applied radiation protocols. FDXR upregulation (2.2-fold) was significant for FD protocols (p = 0.01-0.02) relative to unexposed samples. miRNA GE changes were not significant (p = 0.15-1.00) and DGE were similar for the examined protocols (p = 0.10-1.00). An increased frequency of lower DGE values was seen in the Sn 150 kV LD protocol compared to the 120 kV FD and Sn 150 kV FD protocols (p = 0.001-0.008). CONCLUSIONS The current ex-vivo study indicates no changes regarding transcriptional and post-transcriptional DGE and DNA DSB induction when using the tin prefilter technique and even a significant tendency to lower radiation-induced DGE-changes due to the dose reduction of the tin prefilter with equal image quality compared to classical CT scan protocols was found.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital of Ulm, Ulm, Baden-Württemberg, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital of Ulm, Ulm, Baden-Württemberg, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
- Department of Radiology, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| |
Collapse
|
2
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
3
|
Schwanke D, Schüle S, Stewart S, Fatanmi OO, Wise SY, Hackenbroch C, Wiegel T, Singh VK, Port M, Abend M, Ostheim P. Validating a Four-gene Set for H-ARS Severity Prediction in Peripheral Blood Samples of Irradiated Rhesus Macaques. Radiat Res 2024; 201:504-513. [PMID: 38471521 DOI: 10.1667/rade-23-00162.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 03/14/2024]
Abstract
Increased radiological and nuclear threats require preparedness. Our earlier work identified a set of four genes (DDB2, FDXR, POU2AF1 and WNT3), which predicts severity of the hematological acute radiation syndrome (H-ARS) within the first three days postirradiation In this study of 41 Rhesus macaques (Macaca mulatta, 27 males, 14 females) irradiated with 5.8-7.2 Gy (LD29-50/60), including some treated with gamma-tocotrienol (GT3, a radiation countermeasure) we independently validated these genes as predictors in both sexes and examined them after three days. At the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, peripheral whole blood (1 ml) of Rhesus macaques was collected into PAXgene® Blood RNA tubes pre-irradiation after 1, 2, 3, 35 and 60 days postirradiation, stored at -80°C for internal experimental analyses. Leftover tubes from these already ongoing studies were kindly provided to Bundeswehr Institute of Radiobiology. RNA was isolated (QIAsymphony), converted into cDNA, and for further gene expression (GE) studies quantitative RT-PCR was performed. Differential gene expression (DGE) was measured relative to the pre-irradiation Rhesus macaques samples. Within the first three days postirradiation, we found similar results to human data: 1. FDXR and DDB2 were up-regulated, FDXR up to 3.5-fold, and DDB2 up to 13.5-fold in the median; 2. POU2AF1 appeared down regulated around tenfold in nearly all Rhesus macaques; 3. Contrary to human data, DDB2 was more up-regulated than FDXR, and the difference of the fold change (FC) ranged between 2.4 and 10, while the median fold changes of WNT3, except days 1 and 35, were close to 1. Nevertheless, 46% of the Rhesus macaques showed down-regulated WNT3 on day one postirradiation, which decreased to 12.2% on day 3 postirradiation. Considering the extended phase, there was a trend towards decreased fold changes at day 35, with median-fold changes ranging from 0.7 for DDB2 to 0.1 for POU2AF1, and on day 60 postirradiation, DGE in surviving animals was close to pre-exposure values for all four genes. In conclusion, the diagnostic significance for radiation-induced H-ARS severity prediction of FDXR, DDB2, and POU2AF1 was confirmed in this Rhesus macaques model. However, DDB2 showed higher GE values than FDXR. As shown in previous studies, the diagnostic significance of WNT3 could not be reproduced in Rhesus macaques; this could be due to the choice of animal model and methodological challenges.
Collapse
Affiliation(s)
- D Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Stewart
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - O O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - S Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - C Hackenbroch
- Department of Radiology, Bundeswehrkrankenhaus Ulm, Ulm Germany
| | - T Wiegel
- Department of Radiation Oncology, University Hospital, Ulm, Germany
| | - V K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
4
|
Schwanke D, Fatanmi OO, Wise SY, Ostheim P, Schüle S, Kaletka G, Stewart S, Wiegel T, Singh VK, Port M, Abend M. Validating Radiosensitivity with Pre-Exposure Differential Gene Expression in Peripheral Blood Predicting Survival and Non-Survival in a Second Irradiated Rhesus Macaque Cohort. Radiat Res 2024; 201:384-395. [PMID: 38282135 DOI: 10.1667/rade-23-00099.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/27/2023] [Indexed: 01/30/2024]
Abstract
Radiosensitivity differs in humans and possibly in closely related nonhuman primates. The reasons for variation in radiosensitivity are not well known. In an earlier study, we examined gene expression (GE) pre-radiation in peripheral blood among male (n = 62) and female (n = 60) rhesus macaques (n = 122), which did or did not survive (up to 60 days) after whole-body exposure of 7.0 Gy (LD66/60). Eight genes (CHD5, CHI3L1, DYSF, EPX, IGF2BP1, LCN2, MBOAT4, SLC22A4) revealed significant associations with survival. Access to a second rhesus macaque cohort (males = 40, females = 23, total n = 63) irradiated with 5.8-7.2 Gy (LD29-50/60) and some treated with gamma-tocotrienol (GT3, a radiation countermeasure) allowed us to validate these gene expression changes independently. Total RNA was isolated from whole blood samples and examined by quantitative RT-PCR on a 96-well format. cycle threshold (Ct)-values normalized to 18S rRNA were analyzed for their association with survival. Regardless of the species-specific TaqMan assay, similar results were obtained. Two genes (CHD5 and CHI3L1) out of eight revealed a significant association with survival in the second cohort, while only CHD5 (involved in DNA damage response and proliferation control) showed mean gene expression changes in the same direction for both cohorts. No expected association of CHD5 GE with dose, treatment, or sex could be established. Instead, we observed significant associations for those comparisons comprising pre-exposure samples with CHD5 Ct values ≤ 11 (total n = 17). CHD5 Ct values ≤ 11 in these comparisons were mainly associated with increased frequencies (61-100%) of non-survivors, a trend which depending on the sample numbers, reached significance (P = 0.03) in males and, accordingly, in females. This was also reflected by a logistic regression model including all available samples from both cohorts comprising CHD5 measurements (n = 104, odds ratio 1.38, 95% CI 1.07-1.79, P = 0.01). However, this association was driven by males (odds ratio 1.62, 95% CI 1.10-2.38, P = 0.01) and CHD5 Ct values ≤ 11 since removing low CHD5 Ct values from this model, converted to insignificance (P = 0.19). A second male subcohort comprising high CHD5 Ct values ≥ 14.4 in both cohorts (n = 5) appeared associated with survival. Removing these high CHD5 Ct values converted the model borderline significant (P = 0.051). Based on the probability function of the receiver operating characteristics (ROC) curves, 8 (12.3%) and 5 (7.7%) from 65 pre-exposure RNA measurements in males, death and survival could be predicted with a negative and positive predictive value ranging between 85-100%. An associated odds ratio reflected a 62% elevated risk for dying or surviving per unit change (Ct-value) in gene expression, considering the before-mentioned CHD5 thresholds in RNA copy numbers. In conclusion, we identified two subsets of male animals characterized by increased (Ct values ≤ 11) and decreased (Ct values ≥ 14.4) CHD5 GE copy numbers before radiation exposure, which independently of the cohort, radiation exposure or treatment appeared to predict the death or survival in males.
Collapse
Affiliation(s)
- D Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - O O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - S Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - G Kaletka
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Stewart
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - T Wiegel
- Department of Radiation Oncology, University Hospital, Ulm, Germany
| | - V K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
5
|
Stewart S, Motzke S, Gärtner C, Bäumler W, Stroszczynski C, Port M, Abend M, Ostheim P. Development of a Point-of-Care Microfluidic RNA Extraction Slide for Gene Expression Diagnosis after Irradiation. Radiat Res 2024; 201:514-522. [PMID: 38514385 DOI: 10.1667/rade-23-00169.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/16/2023] [Indexed: 03/23/2024]
Abstract
In times of war, radiological/nuclear emergency scenarios have become a reemphasized threat. However, there are challenges in transferring whole-blood samples to laboratories for specialized diagnostics using RNA. This project aims to miniaturize the process of unwieldy conventional RNA extraction with its stationed technical equipment using a microfluidic-based slide (MBS) for point-of-care diagnostics. The MBS is thought to be a preliminary step toward the development of a so-called lab-on-a-chip microfluidic device. A MBS would enable early and fast field care combined with gene expression (GE) analysis for the prediction of hematologic acute radiation syndrome (HARS) severity or identification of RNA microbes. Whole blood samples from ten healthy donors were irradiated with 0, 0.5 and 4 Gy, simulating different ARS severity degrees. RNA quality and quantity of a preliminary MBS was compared with a conventional column-based (CB) RNA extraction method. GE of four HARS severity-predicting radiation-induced genes (FDXR, DDB2, POU2AF1 and WNT3) was examined employing qRT-PCR. Compared to the CB method, twice as much total RNA from whole blood could be extracted using the MBS (6.6 ± 3.2 µg vs. 12.0 ± 5.8 µg) in half of the extraction time, and all MBS RNA extracts appeared DNA-free in contrast to the CB method (30% were contaminated with DNA). Using MBS, RNA quality [RNA integrity number equivalent (RINe)] values decreased about threefold (3.3 ± 0.8 vs. 9.0 ± 0.4), indicating severe RNA degradation, while expected high-quality RINe ≥ 8 were found using column-based method. However, normalized cycle threshold (Ct) values, as well as radiation-induced GE fold-changes appeared comparable for all genes utilizing both methods, indicating that no RNA degradation took place. In summary, the preliminary MBS showed promising features such as: 1. halving the RNA extraction time without the burden of heavy technical equipment (e.g., a centrifuge); 2. absence of DNA contamination in contrast to CB RNA extraction; 3. reduction in blood required, because of twice the biological output of RNA; and 4. equal GE performance compared to CB, thus, increasing its appeal for later semi-automatic parallel field applications.
Collapse
Affiliation(s)
- S Stewart
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
- Technical Univerisity Munich, Ismanninger Straße 22, 81675 Munich, Germany
| | - S Motzke
- Microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | - C Gärtner
- Microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | - W Bäumler
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß Straße 11, 93053 Regensburg, Germany
| | - C Stroszczynski
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß Straße 11, 93053 Regensburg, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß Straße 11, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Ostheim P, Tichý A, Badie C, Davidkova M, Kultova G, Stastna MM, Sirak I, Stewart S, Schwanke D, Kasper M, Ghandhi SA, Amundson SA, Bäumler W, Stroszczynski C, Port M, Abend M. Applicability of Gene Expression in Saliva as an Alternative to Blood for Biodosimetry and Prediction of Radiation-induced Health Effects. Radiat Res 2024; 201:523-534. [PMID: 38499035 PMCID: PMC11587817 DOI: 10.1667/rade-23-00176.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/01/2023] [Indexed: 03/20/2024]
Abstract
As the great majority of gene expression (GE) biodosimetry studies have been performed using blood as the preferred source of tissue, searching for simple and less-invasive sampling methods is important when considering biodosimetry approaches. Knowing that whole saliva contains an ultrafiltrate of blood and white blood cells, it is expected that the findings in blood can also be found in saliva. This human in vivo study aims to examine radiation-induced GE changes in saliva for biodosimetry purposes and to predict radiation-induced disease, which is yet poorly characterized. Furthermore, we examined whether transcriptional biomarkers in blood can also be found equivalently in saliva. Saliva and blood samples were collected in parallel from radiotherapy (RT) treated patients who suffered from head and neck cancer (n = 8) undergoing fractioned partial-body irradiations (1.8 Gy/fraction and 50-70 Gy total dose). Samples were taken 12-24 h before first irradiation and ideally 24 and 48 h, as well as 5 weeks after radiotherapy onset. Due to the low quality and quantity of isolated RNA samples from one patient, they had to be excluded from further analysis, leaving a total of 24 saliva and 24 blood samples from 7 patients eligible for analysis. Using qRT-PCR, 18S rRNA and 16S rRNA (the ratio being a surrogate for the relative human RNA/bacterial burden), four housekeeping genes and nine mRNAs previously identified as radiation responsive in blood-based studies were detected. Significant GE associations with absorbed dose were found for five genes and after the 2nd radiotherapy fraction, shown by, e.g., the increase of CDKN1A (2.0 fold, P = 0.017) and FDXR (1.9 fold increased, P = 0.002). After the 25th radiotherapy fraction, however, all four genes (FDXR, DDB2, POU2AF1, WNT3) predicting ARS (acute radiation syndrome) severity, as well as further genes (including CCNG1 [median-fold change (FC) = 0.3, P = 0.013], and GADD45A (median-FC = 0.3, P = 0.031)) appeared significantly downregulated (FC = 0.3, P = 0.01-0.03). A significant association of CCNG1, POU2AF1, HPRT1, and WNT3 (P = 0.006-0.04) with acute or late radiotoxicity could be shown before the onset of these clinical outcomes. In an established set of four genes predicting acute health effects in blood, the response in saliva samples was similar to the expected up- (FDXR, DDB2) or downregulation (POU2AF1, WNT3) in blood for up to 71% of the measurements. Comparing GE responses (PHPT1, CCNG1, CDKN1A, GADD45A, SESN1) in saliva and blood samples, there was a significant linear association between saliva and blood response of CDKN1A (R2 = 0.60, P = 0.0004). However, the GE pattern of other genes differed between saliva and blood. In summary, the current human in vivo study, (I) reveals significant radiation-induced GE associations of five transcriptional biomarkers in salivary samples, (II) suggests genes predicting diverse clinical outcomes such as acute and late radiotoxicity as well as ARS severity, and (III) supports the view that blood-based GE response can be reflected in saliva samples, indicating that saliva is a "mirror of the body" for certain but not all genes and, thus, studies for each gene of interest in blood are required for saliva.
Collapse
Affiliation(s)
- P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - A. Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Czech Republic
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - C. Badie
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - M. Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - G. Kultova
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Czech Republic
| | - M. Markova Stastna
- Institute for Hematology and Blood Transfusion, Hospital Na Bulovce, Prague, Czech Republic
| | - I. Sirak
- Department of Oncology and Radiotherapy, University Hospital and Medical Faculty in Hradec Kralove, Czech Republic
| | - S. Stewart
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - D. Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Kasper
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032
| | - S. A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032
| | - W. Bäumler
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C. Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
7
|
Schüle S, Bunert F, Hackenbroch C, Beer M, Ostheim P, Stewart S, Port M, Scherthan H, Abend M. The Influence of Computed Tomography Contrast Agent on Radiation-Induced Gene Expression and Double-Strand Breaks. Radiat Res 2024; 201:396-405. [PMID: 38282002 DOI: 10.1667/rade-23-00118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
After nuclear scenarios, combined injuries of acute radiation syndrome (ARS) with, e.g., abdominal trauma, will occur and may require contrast-enhanced computed tomography (CT) scans for diagnostic purposes. Here, we investigated the effect of iodinated contrast agents on radiation-induced gene expression (GE) changes used for biodosimetry (AEN, BAX, CDKN1A, EDA2R, APOBEC3H) and for hematologic ARS severity prediction (FDXR, DDB2, WNT3, POU2AF1), and on the induction of double-strand breaks (DSBs) used for biodosimetry. Whole blood samples from 10 healthy donors (5 males, 5 females, mean age: 28 ± 2 years) were irradiated with X rays (0, 1 and 4 Gy) with and without the addition of iodinated contrast agent (0.016 ml contrast agent/ml blood) to the blood prior to the exposure. The amount of contrast agent was set to be equivalent to the blood concentration of an average patient (80 kg) during a contrast-enhanced CT scan. After irradiation, blood samples were incubated at 37°C for 20 min (DSB) and 8 h (GE, DSB). GE was measured employing quantitative real-time polymerase chain reaction. DSB foci were revealed by γH2AX + 53BP1 immunostaining and quantified automatically in >927 cells/sample. Radiation-induced differential gene expression (DGE) and DSB foci were calculated using the respective unexposed sample without supplementation of contrast agent as the reference. Neither the GE nor the number of DSB foci was significantly (P = 0.07-0.94) altered by the contrast agent application. However, for some GE and DSB comparisons with/without contrast agent, there were weakly significant differences (P = 0.03-0.04) without an inherent logic and thus are likely due to inter-individual variation. In nuclear events, the diagnostics of combined injuries can require the use of an iodinated contrast agent, which, according to our results, does not alter or influence radiation-induced GE changes and the quantity of DSB foci. Therefore, the gene expression and γH2AX focus assay can still be applied for biodosimetry and/or hematologic ARS severity prediction in such scenarios.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Felix Bunert
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
- Department of Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| |
Collapse
|
8
|
Schwanke D, Valente M, Ostheim P, Schüle S, Bobyk L, Drouet M, Riccobono D, Magné N, Daguenet E, Stewart SJ, Muhtadi R, Port M, Abend M. Validation of genes for H-ARS severity prediction in leukemia patients - interspecies comparison, challenges, and promises. Int J Radiat Biol 2024; 100:527-540. [PMID: 38227483 DOI: 10.1080/09553002.2023.2295295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/04/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE In a previous baboon-study, a total of 29 genes were identified for clinical outcome prediction of the hematologic, acute, radiation, syndrome (H-ARS) severity. Among them, four genes (FDXR, DDB2, POU2AF1, WNT3) appeared promising and were validated in five leukemia patients. Within this study, we sought further in-vivo validation in a larger number of whole-body irradiated patients. MATERIAL AND METHODS Peripheral blood was drawn from 10 leukemia patients before and up to 3 days during a fractionated (2 Gy/day) total-body irradiation (TBI) with 2-12Gy. After RNA-isolation, gene expression (GE) was evaluated on 31 genes widely used in biodosimetry and H-ARS prediction employing qRT-PCR. A customized low-density-array (LDA) allowed simultanously analyzing all genes, the 96-well format further examined the four most promising genes. Fold-changes (FC) in GE relative to pre-irradiation were calculated. RESULTS Five patients suffering from acute-lymphoblastic-leukemia (ALL) respectively non-Hodgkin-lymphoma (NHL) revealed sufficient RNA-amounts and corresponding lymphocyte and neutrophile counts for running qRT-PCR, while acute-myeloid-leukemia (AML) and one myelofibrosis patient could not supply enough RNA. Generally, 1-2µg total RNA was isolated, whereas up to 10-fold differences in RNA-quantities (associated suppressed GE-changes) were identified among pre-exposure and exposure samples. From 31 genes, 23 were expressed in at least one of the pre-exposure samples. Relative to pre-exposure, the number of expressed genes could halve at 48 and 72h after irradiation. Using the LDA, 13 genes were validated in human samples. The four most promising genes (vid. sup.) were either undetermined or too close to pre-exposure. However, they were measured using the more sensitive 96-well format, except WNT3, which wasn´t detectable. As in previous studies, an opposite regulation in GE for FDXR in leukemia patients (up-regulated) relative to baboons (down-regulated) was reconfirmed. Radiation-induced GE-changes of DDB2 (up-regulated) and POU2AF1 (down-regulated) behaved similarly in both species. Hence, 16 out of 23 genes of two species showed GE-changes in the same direction, and up-regulated FDXR as in human studies were revalidated. CONCLUSION Identified genes for H-ARS severity prediction, previously detected in baboons, were validated in ALL but not in AML patients. Limitations related to leukemia type, associated reduced RNA amounts, suppressed GE changes, and methodological challenges must be considered as factors negatively affecting the total number of validated genes. Based on that, we propose additional controls including blood cell counts and preferably fluorescence-based RNA quantity measurements for selecting promising samples and using a more sensitive 96-well format for candidate genes with low baseline copy numbers.
Collapse
Affiliation(s)
| | - Marco Valente
- Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | | | - Simone Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Laure Bobyk
- Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Michel Drouet
- Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Diane Riccobono
- Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Nicolas Magné
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, Oullins, France
- Department of Radiotherapy, Lucien Neuwirth Institute, Saint Priest en Jarez, France
- Department of Radiotherapy, Bergonié Institute, Bordeaux, France
| | | | | | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
9
|
Schüle S, Ostheim P, Muhtadi R, Stewart S, Kaletka G, Hermann C, Port M, Abend M. Evaluating transport conditions of conventional, widely used EDTA blood tubes for gene expression analysis in comparison to expensive, specialized PAXgene tubes in preparedness for radiological and nuclear events. Int J Radiat Biol 2023; 100:99-107. [PMID: 37676284 DOI: 10.1080/09553002.2023.2250871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Gene expression (GE) analysis of a radio-sensitive gene set (FDXR, DDB2, WNT3, POU2AF1) has been introduced in the last decade as an early and high-throughput prediction tool of later developing acute hematologic radiation syndrome (H-ARS) severity. The use of special tubes for RNA extraction from peripheral whole blood (PAXgene) represent an established standard in GE studies, although uncommonly used in clinics and not immediately available in the quantities needed in radiological/nuclear (R/N) incidents. On the other hand, EDTA blood tubes are widely utilized in clinical practice. MATERIAL AND METHODS Using blood samples from eleven healthy donors, we investigated GE changes associated with delayed processing of EDTA tubes up to 4 h at room temperature (RT) after venipuncture (simulating delays caused by daily clinical routine), followed by a subsequent transport time of 24 h at RT, 4 °C, and -20 °C. Differential gene expression (DGE) of the target genes was further examined after X-irradiation with 0 Gy and 4 Gy under optimal transport conditions. RESULTS No significant changes in DGE were observed when storing EDTA whole blood samples up to 4 h at RT and subsequently kept at 4 °C for 24 h which is in line with expected DGE. However, other storage conditions, such as -20 °C or RT, decreased RNA quality and/or (significantly) caused changes in DGE exceeding the known methodological variance of the qRT-PCR. CONCLUSION Our data indicate that the use of EDTA whole blood tubes for GE-based H-ARS severity prediction is comparable to the quality of PAXgene tubes, when processed ≤ 4 h after venipuncture and the sample is transported within 24 hours at 4 °C.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Gwendolyn Kaletka
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
10
|
López-Riego M, Płódowska M, Lis-Zajęcka M, Jeziorska K, Tetela S, Węgierek-Ciuk A, Sobota D, Braziewicz J, Lundholm L, Lisowska H, Wojcik A. The DNA damage response to radiological imaging: from ROS and γH2AX foci induction to gene expression responses in vivo. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01033-4. [PMID: 37335333 DOI: 10.1007/s00411-023-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Candidate ionising radiation exposure biomarkers must be validated in humans exposed in vivo. Blood from patients undergoing positron emission tomography-computed tomography scan (PET-CT) and skeletal scintigraphy (scintigraphy) was drawn before (0 h) and after (2 h) the procedure for correlation analyses of the response of selected biomarkers with radiation dose and other available patient information. FDXR, CDKN1A, BBC3, GADD45A, XPC, and MDM2 expression was determined by qRT-PCR, DNA damage (γH2AX) by flow cytometry, and reactive oxygen species (ROS) levels by flow cytometry using the 2', 7'-dichlorofluorescein diacetate test in peripheral blood mononuclear cells (PBMC). For ROS experiments, 0- and 2-h samples were additionally exposed to UVA to determine whether diagnostic irradiation conditioned the response to further oxidative insult. With some exceptions, radiological imaging induced weak γH2AX foci, ROS and gene expression fold changes, the latter with good coherence across genes within a patient. Diagnostic imaging did not influence oxidative stress in PBMC successively exposed to UVA. Correlation analyses with patient characteristics led to low correlation coefficient values. γH2AX fold change, which correlated positively with gene expression, presented a weak positive correlation with injected activity, indicating a radiation-induced subtle increase in DNA damage and subsequent activation of the DNA damage response pathway. The exposure discrimination potential of these biomarkers in the absence of control samples as frequently demanded in radiological emergencies, was assessed using raw data. These results suggest that the variability of the response in heterogeneous populations might complicate identifying individuals exposed to low radiation doses.
Collapse
Affiliation(s)
- Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Milena Lis-Zajęcka
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Kamila Jeziorska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Sylwia Tetela
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Daniel Sobota
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Janusz Braziewicz
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
- Department of Nuclear Medicine With Positron Emission Tomography (PET) Unit, Holy Cross Cancer Centre, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
11
|
Abend M, Amundson S, Badie C, Brzoska K, Kriehuber R, Lacombe J, Lopez-Riego M, Lumniczky K, Endesfelder D, O’Brien G, Doucha-Senf S, Ghandhi S, Hargitai R, Kis E, Lundholm L, Oskamp D, Ostheim P, Schüle S, Schwanke D, Shuryak I, Siebenwith C, Unverricht-Yeboah M, Wojcik A, Yang J, Zenhausern F, Port M. RENEB Inter-Laboratory Comparison 2021: The Gene Expression Assay. Radiat Res 2023; 199:598-615. [PMID: 37057982 PMCID: PMC11106736 DOI: 10.1667/rade-22-00206.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/24/2023] [Indexed: 04/15/2023]
Abstract
Early and high-throughput individual dose estimates are essential following large-scale radiation exposure events. In the context of the Running the European Network for Biodosimetry and Physical Dosimetry (RENEB) 2021 exercise, gene expression assays were conducted and their corresponding performance for dose-assessment is presented in this publication. Three blinded, coded whole blood samples from healthy donors were exposed to 0, 1.2 and 3.5 Gy X-ray doses (240 kVp, 1 Gy/min) using the X-ray source Yxlon. These exposures correspond to clinically relevant groups of unexposed, low dose (no severe acute health effects expected) and high dose exposed individuals (requiring early intensive medical health care). Samples were sent to eight teams for dose estimation and identification of clinically relevant groups. For quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray analyses, samples were lysed, stored at 20°C and shipped on wet ice. RNA isolations and assays were run in each laboratory according to locally established protocols. The time-to-result for both rough early and more precise later reports has been documented where possible. Accuracy of dose estimates was calculated as the difference between estimated and reference doses for all doses (summed absolute difference, SAD) and by determining the number of correctly reported dose estimates that were defined as ±0.5 Gy for reference doses <2.5 Gy and ±1.0 Gy for reference doses >3 Gy, as recommended for triage dosimetry. We also examined the allocation of dose estimates to clinically/diagnostically relevant exposure groups. Altogether, 105 dose estimates were reported by the eight teams, and the earliest report times on dose categories and estimates were 5 h and 9 h, respectively. The coefficient of variation for 85% of all 436 qRT-PCR measurements did not exceed 10%. One team reported dose estimates that systematically deviated several-fold from reported dose estimates, and these outliers were excluded from further analysis. Teams employing a combination of several genes generated about two-times lower median SADs (0.8 Gy) compared to dose estimates based on single genes only (1.7 Gy). When considering the uncertainty intervals for triage dosimetry, dose estimates of all teams together were correctly reported in 100% of the 0 Gy, 50% of the 1.2 Gy and 50% of the 3.5 Gy exposed samples. The order of dose estimates (from lowest to highest) corresponding to three dose categories (unexposed, low dose and highest exposure) were correctly reported by all teams and all chosen genes or gene combinations. Furthermore, if teams reported no exposure or an exposure >3.5 Gy, it was always correctly allocated to the unexposed and the highly exposed group, while low exposed (1.2 Gy) samples sometimes could not be discriminated from highly (3.5 Gy) exposed samples. All teams used FDXR and 78.1% of correct dose estimates used FDXR as one of the predictors. Still, the accuracy of reported dose estimates based on FDXR differed considerably among teams with one team's SAD (0.5 Gy) being comparable to the dose accuracy employing a combination of genes. Using the workflow of this reference team, we performed additional experiments after the exercise on residual RNA and cDNA sent by six teams to the reference team. All samples were processed similarly with the intention to improve the accuracy of dose estimates when employing the same workflow. Re-evaluated dose estimates improved for half of the samples and worsened for the others. In conclusion, this inter-laboratory comparison exercise enabled (1) identification of technical problems and corrections in preparations for future events, (2) confirmed the early and high-throughput capabilities of gene expression, (3) emphasized different biodosimetry approaches using either only FDXR or a gene combination, (4) indicated some improvements in dose estimation with FDXR when employing a similar methodology, which requires further research for the final conclusion and (5) underlined the applicability of gene expression for identification of unexposed and highly exposed samples, supporting medical management in radiological or nuclear scenarios.
Collapse
Affiliation(s)
- M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S.A. Amundson
- Columbia University Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Badie
- UK Health Security Agency and Office for Health Improvement and Disparities, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, England
| | - K. Brzoska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - R. Kriehuber
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - J. Lacombe
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - M. Lopez-Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - K. Lumniczky
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - D. Endesfelder
- Bundesamt für Strahlenschutz, BfS, Oberschleißheim, Germany
| | - G. O’Brien
- UK Health Security Agency and Office for Health Improvement and Disparities, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, England
| | | | - S.A. Ghandhi
- Columbia University Irving Medical Center, Center for Radiological Research, New York, New York
| | - R. Hargitai
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - E. Kis
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - L. Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - D. Oskamp
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - D. Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - I. Shuryak
- Columbia University Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Siebenwith
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Unverricht-Yeboah
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - A. Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - J. Yang
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - F. Zenhausern
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
12
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Schüle S, Bristy EA, Muhtadi R, Kaletka G, Stewart S, Ostheim P, Hermann C, Asang C, Pleimes D, Port M, Abend M. Four Genes Predictive for the Severity of Hematological Damage Reveal a Similar Response after X Irradiation and Chemotherapy. Radiat Res 2023; 199:115-123. [PMID: 36480042 DOI: 10.1667/rade-22-00068.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Radiological and especially nuclear accidents and incidents pose a threat to populations. In such events, gene expression (GE) analysis of a set of 4 genes (FDXR, DDB2, POU2AF1, WNT3) is an emerging approach for early and high-throughput prediction of the later manifesting severity degrees of the hematological acute radiation syndrome (H-ARS). Validation of this gene set on radiation victims is difficult since these events are rare. However, chemotherapy (CTX) is widely used e.g., breast cancer patient treatment and pathomechanisms, as well as blood cell count changes are comparable among both exposure types. We wondered whether GE changes are similarly deregulated after CTX, which would be interpreted as a confirmation of our already identified gene set for H-ARS prediction after irradiation. We examined radiation-induced differential GE (DGE) of our gene set as a positive control using in vitro whole blood samples from ten healthy donors (6 females, 4 males, aged: 24-40 years). Blood was incubated in vitro for 8 h after X irradiation with 0 and 4 Gy (1 Gy/min). These data were compared with DGE measured in vivo in blood samples of 10 breast tumor CTX patients (10 females, aged: 39-71 years) before and 4 days after administration of cyclophosphamide and epirubicin. RNA was isolated, reverse transcribed and quantitative real-time polymerase-chain-reaction (qRT-PCR) was performed to assess DGE of FDXR, DDB2, POU2AF1 and WNT3 relative to the unexposed samples using TaqMan assays. After X irradiation, we found a significant upregulation (irrespective of sex) with mean fold changes of 21 (P < 0.001) and 7 (P < 0.001) for FDXR and DDB2 and a significant down-regulation with mean fold changes of 2.5 (P < 0.001) and 2 (P = 0.005) for POU2AF1 and WNT3, respectively. After CTX, a similar pattern was observed, although mean fold changes of up-regulated FDXR (6-fold, P < 0.001) and DDB2 (3-fold, P < 0.001) as well as down-regulated POU2AF1 (1.2-fold, P = 0.270) and WNT3 (1.3-fold, P = 0.069) appeared lower corresponding to less altered blood cell count changes observed after CTX compared to historic radiation exposure data. However, a subpopulation of CTX patients (n = 6) showed on average a significant downregulation of POU2AF1 (1.8-fold, P = 0.04) and WNT3 (2.1-fold, P = 0.008). In summary, the pattern of up-regulated GE changes observed in all CTX patients and down-regulated GE changes observed in a subgroup of CTX patients appeared comparable with an already identified gene set predictive for the radiation-induced H-ARS. This underlines the significance of in vivo GE measurements in CTX patients, employed as a surrogate model to further validate already identified radiation-induced GE changes predictive for the H-ARS.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Effat Ara Bristy
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Gwendolyn Kaletka
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | | | | | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
14
|
Schüle S, Gluzman-Poltorak Z, Vainstein V, Basile LA, Haimerl M, Stroszczynski C, Majewski M, Schwanke D, Port M, Abend M, Ostheim P. Gene Expression Changes in a Prefinal Health Stage of Lethally Irradiated Male and Female Rhesus Macaques. Radiat Res 2023; 199:17-24. [PMID: 36445953 DOI: 10.1667/rade-22-00083.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Radiation-induced gene expression (GE) changes can be used for early and high-throughput biodosimetry within the first three days postirradiation. However, is the method applicable in situations such as the Alexander Litvinenko case or the Goiania accident, where diagnosis occurred in a prefinal health stage? We aimed to characterize gene expression changes in a prefinal health stage of lethally irradiated male and female rhesus macaques. Peripheral blood was drawn pre-exposure and at the prefinal stage of male and female animals, which did not survive whole-body exposure with 700 cGy (LD66/60). RNA samples originated from a blinded randomized Good Laboratory Practice study comprising altogether 142 irradiated rhesus macaques of whom 60 animals and blood samples (15 samples for both time points and sexes) were used for this analysis. We evaluated GE on 34 genes widely used in biodosimetry and prediction of the hematological acute radiation syndrome severity (H-ARS) employing quantitative real-time polymerase chain reaction (qRT-PCR). These genes were run in duplicate and triplicate and altogether 96 measurements per time point and sex could be performed. In addition, 18S ribosomal RNA (rRNA) was measured to depict the ribosome/transcriptome status as well as for normalization purposes and 16S rRNA was evaluated as a surrogate for bacteremia. Mean differential gene expression (DGE) was calculated for each gene and sex including all replicate measurements and using pre-exposure samples as the reference. From 34 genes, altogether 27 genes appeared expressed. Pre-exposure samples revealed no signs of bacteremia and 18S rRNA GE was in the normal range in all 30 samples. Regarding prefinal samples, 46.7% and 40% of animals appeared infected in females and males, respectively, and for almost all males this was associated with out of normal range 18S rRNA values. The total number of detectable GE measurements was sixfold (females) and 15-fold (males) reduced in prefinal relative to pre-exposure samples and about tenfold lower in 80% of prefinal compared to pre-exposure samples (P < 0.0001). An overall 11-fold (median) downregulation in prefinal compared to pre-exposure samples was identified for most of the 27 genes and even FDXR appeared 4-14-fold downregulated in contrast to a pronounced up-regulation according to cited work. This pattern of overall downregulation of almost all genes and the rapid reduction of detectable genes at a prefinal stage was found in uninfected animals with normal range 18S rRNA as well. In conclusion, in a prefinal stage after lethal radiation exposure, the ribosome/transcriptome status remains present (based on normal range 18S rRNA values) in 60-67% of animals, but the whole transcriptome activity in general appears silenced and cannot be used for biodosimetry purposes, but probably as an indicator for an emerging prefinal health stage.
Collapse
Affiliation(s)
- S Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Z Gluzman-Poltorak
- Neumedicines Inc, Pasadena, California.,Applied Stem Cell Therapeutics, Milpitas, California
| | - V Vainstein
- Neumedicines Inc, Pasadena, California.,Hadassah Medical Center, Jerusalem, Israel
| | | | - M Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany.,Department of Urology, Armed Services Hospital Ulm, Ulm, Germany
| | - D Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany.,Department of Urology, Armed Services Hospital Ulm, Ulm, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany.,Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Vellichirammal NN, Sethi S, Pandey S, Singh J, Wise SY, Carpenter AD, Fatanmi OO, Guda C, Singh VK. Lung transcriptome of nonhuman primates exposed to total- and partial-body irradiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:584-598. [PMID: 36090752 PMCID: PMC9418744 DOI: 10.1016/j.omtn.2022.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
The focus of radiation biodosimetry has changed recently, and a paradigm shift for using molecular technologies of omic platforms in addition to cytogenetic techniques has been observed. In our study, we have used a nonhuman primate model to investigate the impact of a supralethal dose of 12 Gy radiation on alterations in the lung transcriptome. We used 6 healthy and 32 irradiated animal samples to delineate radiation-induced changes. We also used a medical countermeasure, γ-tocotrienol (GT3), to observe any changes. We demonstrate significant radiation-induced changes in the lung transcriptome for total-body irradiation (TBI) and partial-body irradiation (PBI). However, no major influence of GT3 on radiation was noted in either comparison. Several common signaling pathways, including PI3K/AKT, GADD45, and p53, were upregulated in both exposures. TBI activated DNA-damage-related pathways in the lungs, whereas PTEN signaling was activated after PBI. Our study highlights the various transcriptional profiles associated with γ- and X-ray exposures, and the associated pathways include LXR/RXR activation in TBI, whereas pulmonary wound-healing and pulmonary fibrosis signaling was repressed in PBI. Our study provides important insights into the molecular pathways associated with irradiation that can be further investigated for biomarker discovery.
Collapse
Affiliation(s)
| | - Sahil Sethi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
16
|
Schüle S, Ostheim P, Port M, Abend M. Identifying radiation responsive exon-regions of genes often used for biodosimetry and acute radiation syndrome prediction. Sci Rep 2022; 12:9545. [PMID: 35680903 PMCID: PMC9184472 DOI: 10.1038/s41598-022-13577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Gene expression (GE) analysis of FDXR, DDB2, WNT3 and POU2AF1 is a promising approach for identification of clinically relevant groups (unexposed, low- and high exposed) after radiological/nuclear events. However, results from international biodosimetry exercises have shown differences in dose estimates based on radiation-induced GE of the four genes. Also, differences in GE using next-generation-sequening (NGS) and validation with quantitative real-time polymerase chain reaction (qRT-PCR) was reported. These discrepancies could be caused by radiation-responsive differences among exons of the same gene. We performed GE analysis with qRT-PCR using TaqMan-assays covering all exon-regions of FDXR, DDB2, WNT3 and POU2AF1. Peripheral whole blood from three healthy donors was X-irradiated with 0, 0.5 and 4 Gy. After 24 and 48 h a dose-dependent up-regulation across almost all exon-regions for FDXR and DDB2 (4–42-fold) was found. A down-regulation for POU2AF1 (two- to threefold) and WNT3 (< sevenfold) at the 3’-end was found at 4 Gy irradiation only. Hence, this confirms our hypothesis for radiation-responsive exon-regions for WNT3 and POU2AF1, but not for FDXR and DDB2. Finally, we identified the most promising TaqMan-assays for FDXR (e.g. AR7DTG3, Hs00244586_m1), DDB2 (AR47X6H, Hs03044951_m1), WNT3 (Hs00902258_m1, Hs00902257_m1) and POU2AF1 (Hs01573370_g1, Hs01573371_m1) for biodosimetry purposes and acute radiation syndrome prediction, considering several criteria (detection limit, dose dependency, time persistency, inter-individual variability).
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany.
| |
Collapse
|
17
|
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy. Cancers (Basel) 2022; 14:cancers14112649. [PMID: 35681629 PMCID: PMC9179543 DOI: 10.3390/cancers14112649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, the transcriptional response of a panel of radiation responsive genes was monitored over time in blood samples after radiation exposure in vivo. For this aim, cancer patients treated by radiotherapy were recruited after consent forms were obtained. Following the first fraction of radiotherapy, 2 mL blood samples were collected at different time points during the first 24h hours (before the second fraction was delivered) and at mid and end of treatment. Amongst the 9 genes studied, the gene FDXR stood out as the most sensitive and responsive to the low dose of radiation received from the localised radiation treatment by the circulating white blood cells. The activation of FDXR was found to depend on the volume of the body exposed with a peak of expression around 8–9 hours after irradiation was delivered. Finally results obtained ex vivo confirmed the results obtained in vivo. Abstract External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6–8, 16–18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038–0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6–8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors’ blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.
Collapse
|
18
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
19
|
Ostheim P, Miederer M, Schreckenberger M, Nestler T, Hoffmann MA, Lassmann M, Eberlein U, Barsegian V, Rump A, Majewski M, Port M, Abend M. mRNA and small RNA gene expression changes in peripheral blood to detect internal Ra-223 exposure. Int J Radiat Biol 2021; 98:900-912. [PMID: 34882512 DOI: 10.1080/09553002.2021.1998705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Excretion analysis is the established method for detection of incorporated alpha-emitting radionuclides, but it is laborious and time consuming. We sought a simplified method in which changes in gene expression might be measured in human peripheral blood to detect incorporated radionuclides. Such an approach could be used to quickly determine internal exposure in instances of a radiological dispersal device or a radiation accident. MATERIALS AND METHODS We evaluated whole blood samples from five patients with castration-resistant prostate cancer and multiple bone metastases (without visceral or nodal involvement), who underwent treatment with the alpha emitting isotope Radium-223 dichloride (Ra-223, Xofigo®). Patients received about 4 MBq per cycle and, depending on survival and treatment tolerance, were followed for six months. We collected 24 blood samples approximately monthly corresponding to treatment cycle. RESULTS Firstly, we conducted whole genome screening of mRNAs (mRNA seq) and small RNAs (small RNA seq) using next generation sequencing in one patient at eight different time points during all six cycles of Ra-223-therapy. We identified 1900 mRNAs and 972 small RNAs (222 miRNAs) that were differentially up- or down-regulated during follow-up after the first treatment with Ra-223. Overall candidate RNA species inclusion criteria were a general (≥|2|-fold) change or with peaking profiles (≥|5|-fold) at specific points in time. Next we chose 72 candidate mRNAs and 101 small RNAs (comprising 29 miRNAs) for methodologic (n = 8 samples, one patient) and independent (n = 16 samples, four patients) validation by qRT-PCR. In total, 15 mRNAs (but no small RNAs) were validated by methodologic and independent testing. However, the deregulation occurred at different time points, showing a large inter-individual variability in response among patients. CONCLUSIONS This proof of concept provides support for the applicability of gene expression measurements to detect internalized alpha-emitting radionuclides, but further work is needed with a larger sample size. While our approach has merit for internal deposition monitoring, it was complicated by the severe clinical condition of the patients we studied.
Collapse
Affiliation(s)
| | - Matthias Miederer
- Clinic and Polyclinic for Nuclear Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mathias Schreckenberger
- Clinic and Polyclinic for Nuclear Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tim Nestler
- Department of Urology, Federal Armed Services Hospital Koblenz, Koblenz, Germany
| | - Manuela A Hoffmann
- Clinic and Polyclinic for Nuclear Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Department of Occupational Health & Safety, Federal Ministry of Defense, Bonn, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Vahe Barsegian
- Institute of Nuclear Medicine, Helios Kliniken, Schwerin, Germany
| | - Alexis Rump
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Mattháus Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany.,Department of Urology, Armed Services Hospital Ulm, Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
20
|
Satyamitra MM, DiCarlo AL, Hollingsworth BA, Winters TA, Taliaferro LP. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat Res 2021; 197:514-532. [PMID: 34879151 DOI: 10.1667/rade-21-00157.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/03/2022]
Abstract
Biomarkers are important indicators of biological processes in health or disease. For this reason, they play a critical role in advanced development of radiation biodosimetry tools and medical countermeasures (MCMs). They can aid in the assessment of radiation exposure level, extent of radiation-induced injury, and/or efficacy of an MCM. This meeting report summarizes the presentations and discussions from the 2020 workshop titled, "Biomarkers in Radiation Biodosimetry and Medical Countermeasures," sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID). The main goals of this meeting were to: 1. Provide an overview on biomarkers and to focus on the state of science with regards to biomarkers specific to radiation biodosimetry and MCMs; 2. Understand developmental challenges unique to the role of biomarkers in the fields of radiation biodosimetry and MCM development; and 3. Identify existing gaps and needs for translational application.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
21
|
Hoffmeyer MR, Gillis K, Park JG, Murugan V, LaBaer J. Making the Case for Absorbed Radiation Response Biodosimetry - Utility of a High-Throughput Biodosimetry System. Radiat Res 2021; 196:535-546. [PMID: 33667298 DOI: 10.1667/rade-20-00029.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 12/21/2020] [Indexed: 11/03/2022]
Abstract
There is an unmet need to provide medical personnel with a Food and Drug Administration (FDA)-approved biodosimetry method for quantifying individualized absorbed dose response to inform treatment decisions for a very large patient population potentially exposed to ionizing radiation in the event of a nuclear incident. Validation of biodosimetry devices requires comparison of absorbed dose estimates to delivered dose as an indication of accuracy; however, comparison to delivered dose does not account for biological variability or an individual's radiosensitivity. As there is no FDA-cleared gene-expression-based biodosimetry method for determining biological response to radiation, results from accuracy comparisons to delivered dose yield relatively wide tolerance intervals or uncertainty. The Arizona State University Biodesign Institute is developing a high-throughput, automated real-time polymerase chain reaction (RT-PCR)-based biodosimetry system that provides absorbed dose estimates for patients exposed to 0-10 Gy from blood collected 1-7 days postirradiation. While the absorbed dose estimates result from a calibration against the actual exposed dose, the reported dose estimate is a measure of response to absorbed dose based on the exposure models used in developing the system. A central concern with biodosimetry test evaluation is how variability in the dose estimate results could affect medical decision-making, and if the biodosimetry test system performance is quantitatively sufficient to inform effective treatment. A risk:benefit analysis of the expected system performance in the proposed intended use environment was performed to address the potential medical utility of this biodosimetry system. Uncertainty analysis is based on biomarker variability in non-human primate (NHP) models. Monte Carlo simulation was employed to test multiple groups of biomarkers and their potential variation in response to determine uncertainty associated with dose estimate results. Dose estimate uncertainty ranges from ±1.2-1.7 Gy depending on the exposure dose over a range of 2-10 Gy. The risk:benefit of individualized absorbed dose estimates within the context of medical interventions after a nuclear incident is considered and the application of the biodosimetry system is evaluated in this framework. NHP dose-response relationships, as measured by clinical outcome end points, show expected biological and radiosensitivity responses in the primate populations tested and corroborate the biological variability observed in the reported absorbed dose estimate. Performance is examined in relationship to current clinical management and treatment recommendations, with evaluation of potential patient risk in over- and underestimating absorbed dose.
Collapse
Affiliation(s)
| | - Kristin Gillis
- Arizona State University, Biodesign Institute, Tempe, Arizona
| | - Jin G Park
- Arizona State University, Biodesign Institute, Tempe, Arizona
| | - Vel Murugan
- Arizona State University, Biodesign Institute, Tempe, Arizona
| | - Joshua LaBaer
- Arizona State University, Biodesign Institute, Tempe, Arizona
| |
Collapse
|
22
|
Ostheim P, Amundson SA, Badie C, Bazyka D, Evans AC, Ghandhi SA, Gomolka M, López Riego M, Rogan PK, Terbrueggen R, Woloschak GE, Zenhausern F, Kaatsch HL, Schüle S, Ullmann R, Port M, Abend M. Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021. Int J Radiat Biol 2021; 98:843-854. [PMID: 34606416 PMCID: PMC11552548 DOI: 10.1080/09553002.2021.1987571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Milagrosa López Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Canada
- CytoGnomix Inc, London, Canada
| | | | - Gayle E. Woloschak
- Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frederic Zenhausern
- Department of Basic Medical Sciences, College of Medicine, The University of Arizona, Phoenix, AZ, USA
- Center for Applied Nanobioscience and Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hanns L. Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
23
|
Port M, Hérodin F, Drouet M, Valente M, Majewski M, Ostheim P, Lamkowski A, Schüle S, Forcheron F, Tichy A, Sirak I, Malkova A, Becker BV, Veit DA, Waldeck S, Badie C, O'Brien G, Christiansen H, Wichmann J, Beutel G, Davidkova M, Doucha-Senf S, Abend M. Gene Expression Changes in Irradiated Baboons: A Summary and Interpretation of a Decade of Findings. Radiat Res 2021; 195:501-521. [PMID: 33788952 DOI: 10.1667/rade-20-00217.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/03/2022]
Affiliation(s)
- M Port
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Hérodin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Drouet
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Valente
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Forcheron
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - A Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic and Biomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital, Hradec Králové, Hradec Králové, Czech Republic
| | - A Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - B V Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - D A Veit
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - S Waldeck
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - C Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - G O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - H Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - J Wichmann
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - G Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic
| | - S Doucha-Senf
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich Germany
| |
Collapse
|
24
|
Majewski M, Ostheim P, Gluzman-Poltorak Z, Vainstein V, Basile L, Schüle S, Haimerl M, Stroszczynski C, Port M, Abend M. Gene expression changes in male and female rhesus macaque 60 days after irradiation. PLoS One 2021; 16:e0254344. [PMID: 34288924 PMCID: PMC8294544 DOI: 10.1371/journal.pone.0254344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Transcriptome changes can be expected in survivors after lethal irradiation. We aimed to characterize these in males and females and after different cytokine treatments 60 days after irradiation. MATERIAL AND METHODS Male and female rhesus macaques (n = 142) received a whole-body exposure with 700 cGy, from which 60 animals survived. Peripheral whole blood was drawn pre-exposure and before sacrificing the surviving animals after 60 days. RESULTS We evaluated gene expression in a three-phase study design. Phase I was a whole-genome screening (NGS) for mRNAs using five pre- and post-exposure RNA samples from both sexes (n = 20). Differential gene expression (DGE) was calculated between samples of survivors and pre-exposure samples (reference), separately for males and females. 1,243 up- and down-regulated genes were identified with 30-50% more deregulated genes in females. 37 candidate mRNAs were chosen for qRT-PCR validation in phase II using the remaining samples (n = 117). Altogether 17 genes showed (borderline) significant (t-test) DGE in groups of untreated or treated animals. Nine genes (CD248, EDAR, FAM19A5, GAL3ST4, GCNT4, HBG2/1, LRRN1, NOG, SYT14) remained with significant changes and were detected in at least 50% of samples per group. Panther analysis revealed an overlap between both sexes, related to the WNT signaling pathway, cell adhesion and immunological functions. For phase III, we validated the nine genes with candidate genes (n = 32) from an earlier conducted study on male baboons. Altogether 14 out of 41 genes showed a concordantly DGE across both species in a bilateral comparison. CONCLUSIONS Sixty days after radiation exposure, we identified (1) sex and cytokine treatment independent transcriptional changes, (2) females with almost twice as much deregulated genes appeared more radio-responsive than males, (3) Panther analysis revealed an association with immunological processes and WNT pathway for both sexes.
Collapse
Affiliation(s)
- Matthäus Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Department of Urology, Bundeswehr Hospital Ulm, Ulm, Germany
| | | | - Zoya Gluzman-Poltorak
- Neumedicines Inc, Pasadena, CA, United States of America
- Applied Stem Cell Therapeutics, Milpitas, CA, United States of America
| | - Vladimir Vainstein
- Neumedicines Inc, Pasadena, CA, United States of America
- Hadassah Medical Center, Jerusalem, Israel
| | - Lena Basile
- Neumedicines Inc, Pasadena, CA, United States of America
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
- * E-mail:
| |
Collapse
|
25
|
Amundson SA. Transcriptomics for radiation biodosimetry: progress and challenges. Int J Radiat Biol 2021; 99:925-933. [PMID: 33970766 PMCID: PMC10026363 DOI: 10.1080/09553002.2021.1928784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Transcriptomic-based approaches are being developed to meet the needs for large-scale radiation dose and injury assessment and provide population triage following a radiological or nuclear event. This review provides background and definition of the need for new biodosimetry approaches, and summarizes the major advances in this field. It discusses some of the major model systems used in gene signature development, and highlights some of the remaining challenges, including individual variation in gene expression, potential confounding factors, and accounting for the complexity of realistic exposure scenarios. CONCLUSIONS Transcriptomic approaches show great promise for both dose reconstruction and for prediction of individual radiological injury. However, further work will be needed to ensure that gene expression signatures will be robust and appropriate for their intended use in radiological or nuclear emergencies.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci Rep 2021; 11:9756. [PMID: 33963206 PMCID: PMC8105310 DOI: 10.1038/s41598-021-88403-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 02/03/2023] Open
Abstract
Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
Collapse
|
27
|
Ostheim P, Majewski M, Gluzman-Poltorak Z, Vainstein V, Basile LA, Lamkowski A, Schüle S, Kaatsch HL, Haimerl M, Stroszczynski C, Port M, Abend M. Predicting the Radiation Sensitivity of Male and Female Rhesus Macaques Using Gene Expression. Radiat Res 2021; 195:25-37. [PMID: 33181854 DOI: 10.1667/rade-20-00161.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/18/2020] [Indexed: 11/03/2022]
Abstract
Radiosensitivity differs in humans and likely among closely-related primates. Reasons for variation in radiosensitivity are not well known. We examined preirradiation gene expression in peripheral blood among male and female rhesus macaques which did or did not survive (up to 60 days) after whole-body irradiation with 700 cGy (LD66/60). RNA samples originated from a blinded randomized Good Laboratory Practice study in 142 irradiated rhesus macaques. Animals were untreated (placebo), or treated using recombinant human IL-12, G-CSF or combination of the two. We evaluated gene expression in a two-phase study design where phase I was a whole genome screen [next generation sequencing (NGS)] for mRNAs (RNA-seq) using five RNA samples from untreated male and female animals per group of survivor and non-survivor (total n = 20). Differential gene expression (DGE) was defined as a statistically significant and ≥2-fold up- or downregulation of mRNA species and was calculated between groups of survivors and non-survivors (reference) and by gender. Altogether 659 genes were identified, but the overlapping number of differentially expressed genes (DGE) observed in both genders was small (n = 36). Fifty-eight candidate mRNAs were chosen for independent validation in phase II using the remaining samples (n = 122) evaluated with qRT-PCR. Among the 58 candidates, 16 were of significance or borderline significance (t test) by DGE. Univariate and multivariate logistic regression analysis and receiver operating characteristic (ROC) curve analysis further refined and identified the most outstanding validated genes and gene combinations. For untreated male macaques, we identified EPX (P = 0.005, ROC=1.0), IGF2BP1 (P = 0.05, ROC=0.74) and the combination of EPX with SLC22A4 (P = 0.03, ROC=0.85) which appeared most predictive for the clinical outcome for treated and combined (untreated and treated) male macaque groups, respectively. For untreated, treated and both combined female macaque groups the same gene (MBOAT4, P = 0.0004, ROC = 0.81) was most predictive. Based on the probability function of the ROC curves, up to 74% of preirradiation RNA measurements predicted survival with a positive and negative predictive value ranging between 85-100% and associated odds ratios reflecting a 2-3-fold elevated risk for surviving per unit change (cycle threshold value) in gene expression. In conclusion, we identified gender-dependent genes and gene combinations in preirradiation blood samples for survival prediction after irradiation in rhesus macaques.
Collapse
Affiliation(s)
- P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Z Gluzman-Poltorak
- Neumedicines Inc., Pasadena, California.,Applied Stem Cell Therapeutics, Milpitas, California
| | - V Vainstein
- Neumedicines Inc., Pasadena, California.,Hadassah Medical Center, Jerusalem, Israel
| | | | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - H L Kaatsch
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
28
|
Ostheim P, Coker O, Schüle S, Hermann C, Combs SE, Trott KR, Atkinson M, Port M, Abend M. Identifying a Diagnostic Window for the Use of Gene Expression Profiling to Predict Acute Radiation Syndrome. Radiat Res 2021; 195:38-46. [PMID: 33181834 DOI: 10.1667/rade-20-00126.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/03/2022]
Abstract
In the event of a mass casualty radiological or nuclear scenario, it is important to distinguish between the unexposed (worried well), low-dose exposed individuals and those developing the hematological acute radiation syndrome (HARS) within the first three days postirradiation. In previous baboon studies, we identified altered gene expression changes after irradiation, which were predictive for the later developing HARS severity. Similar changes in the expression of four of these genes were observed using an in vitro human whole blood model. However, these studies have provided only limited information on the time frame of the changes after exposure in relationship to the development of HARS. In this study we analyzed the time-dependent changes in mRNA expression after in vitro irradiation of whole blood. Changes in the expression of informative mRNAs (FDXR, DBB2, POU2AF1 and WNT3) were determined in the blood of eight healthy donors (6 males, 2 females) after irradiation at 0 (control), 0.5, 2 and 4 Gy using qRT-PCR. FDXR expression was significantly upregulated (P < 0.001) 4 h after ≥0.5 Gy irradiation, with an 18-40-fold peak attained 4-12 h postirradiation which remained elevated (4-9-fold) at 72 h. DDB2 expression was upregulated after 4 h (fold change, 5-8, P < 0.001 at ≥ 0.5 Gy) and remained upregulated (3-4-fold) until 72 h (P < 0.001). The earliest time points showing a significant downregulation of POU2AF1 and WNT3 were 4 h (fold change = 0.4, P = 0.001, at 4 Gy) and 8 h (fold change = 0.3-0.5, P < 0.001, 2-4 Gy), respectively. These results indicate that the diagnostic window for detecting HARS-predictive changes in gene expression may be opened as early as 2 h for most (75%) and at 4 h postirradiation for all individuals examined. Depending on the RNA species studied this may continue for at least three days postirradiation.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Omoleye Coker
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany.,Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Oberschleissheim, Germany.,Deutsches Konsortium für Translationale Krebsforschung, Partner Site Munich, Munich, Germany
| | - Klaus-Rüdiger Trott
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Mike Atkinson
- Institute of Radiation Biology, Department of Radiation Sciences, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| |
Collapse
|
29
|
Nasser F, Cruz-Garcia L, O'Brien G, Badie C. Role of blood derived cell fractions, temperature and sample transport on gene expression-based biological dosimetry. Int J Radiat Biol 2021; 97:675-686. [PMID: 33826469 DOI: 10.1080/09553002.2021.1906464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE For triage purposes following a nuclear accident or a terrorist event, gene expression biomarkers in blood have been demonstrated to be good bioindicators of ionizing radiation (IR) exposure and can be used to assess the dose received by exposed individuals. Many IR-sensitive genes are regulated by the DNA damage response pathway, and modulators of this pathway could potentially affect their expression level and therefore alter accurate dose estimations. In the present study, we addressed the potential influence of temperature, sample transport conditions and the blood cell fraction analyzed on the transcriptional response of the following radiation-responsive genes: FDXR, CCNG1, MDM2, PHPT1, APOBEC3H, DDB2, SESN1, P21, PUMA, and GADD45. MATERIALS AND METHODS Whole blood from healthy donors was exposed to a 2 Gy X-ray dose with a dose rate of 0.5 Gy/min (output 13 mA, 250 kV peak, 0.2 mA) and incubated for 24 h at either 37, 22, or 4 °C. For mimicking the effect of transport conditions at different temperatures, samples incubated at 37 °C for 24 h were kept at 37, 22 or 4 °C for another 24 h. Comparisons of biomarker responses to IR between white blood cells (WBCs), peripheral blood mononuclear cells (PBMCs) and whole blood were carried out after a 2 Gy X-ray exposure and incubation at 37 °C for 24 hours. RESULTS Hypothermic conditions (22 or 4 °C) following irradiation drastically inhibited transcriptional responses to IR exposure. However, sample shipment at different temperatures did not affect gene expression level except for SESN1. The transcriptional response to IR of specific genes depended on the cell fraction used, apart from FDXR, CCNG1, and SESN1. CONCLUSION In conclusion, temperature during the incubation period and cell fraction but not the storing conditions during transport can influence the transcriptional response of specific genes. However, FDXR and CCNG1 showed a consistent response under all the different conditions tested demonstrating their reliability as individual biological dosimetry biomarkers.
Collapse
Affiliation(s)
- Farah Nasser
- Radiation Effects Department, Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire, United Kingdom
| | - Lourdes Cruz-Garcia
- Radiation Effects Department, Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire, United Kingdom
| | - Grainne O'Brien
- Radiation Effects Department, Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire, United Kingdom
| | - Christophe Badie
- Radiation Effects Department, Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire, United Kingdom
| |
Collapse
|
30
|
Li Y, Singh J, Varghese R, Zhang Y, Fatanmi OO, Cheema AK, Singh VK. Transcriptome of rhesus macaque (Macaca mulatta) exposed to total-body irradiation. Sci Rep 2021; 11:6295. [PMID: 33737626 PMCID: PMC7973550 DOI: 10.1038/s41598-021-85669-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The field of biodosimetry has seen a paradigm shift towards an increased use of molecular phenotyping technologies including omics and miRNA, in addition to conventional cytogenetic techniques. Here, we have used a nonhuman primate (NHP) model to study the impact of gamma-irradiation on alterations in blood-based gene expression. With a goal to delineate radiation induced changes in gene expression, we followed eight NHPs for 60 days after exposure to 6.5 Gy gamma-radiation for survival outcomes. Analysis of differential gene expression in response to radiation exposure yielded 26,944 dysregulated genes that were not significantly impacted by sex. Further analysis showed an increased association of several pathways including IL-3 signaling, ephrin receptor signaling, ErbB signaling, nitric oxide signaling in the cardiovascular system, Wnt/β-catenin signaling, and inflammasome pathway, which were associated with positive survival outcomes in NHPs after acute exposure to radiation. This study provides novel insights into major pathways and networks involved in radiation-induced injuries that may identify biomarkers for radiation injury.
Collapse
Affiliation(s)
- Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rency Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yubo Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA. .,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
31
|
Ostheim P, Don Mallawaratchy A, Müller T, Schüle S, Hermann C, Popp T, Eder S, Combs SE, Port M, Abend M. Acute radiation syndrome-related gene expression in irradiated peripheral blood cell populations. Int J Radiat Biol 2021; 97:474-484. [PMID: 33476246 DOI: 10.1080/09553002.2021.1876953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic tool is needed to distinguish the worried well from those individuals who may later develop life-threatenFing hematologic acute radiation syndrome. We examined the contribution of the peripheral blood's cell populations on radiation-induced gene expression (GE) changes. MATERIALS AND METHODS EDTA-whole-blood from six healthy donors was X-irradiated with 0 and 4Gy and T-lymphocytes, B-lymphocytes, NK-cells and granulocytes were separated using immunomagnetic methods. GE were examined in cell populations and whole blood. RESULTS The cell populations contributed to the total RNA amount with a ratio of 11.6 for T-lymphocytes, 1.2 for B-cells, 1.2 for NK-cells, 1.0 for granulocytes. To estimate the contribution of GE per cell population, the baseline (0Gy) and the radiation-induced fold-change in GE relative to unexposed was considered for each gene. The T-lymphocytes (74.8%/80.5%) contributed predominantly to the radiation-induced up-regulation observed for FDXR/DDB2 and the B-lymphocytes (97.1%/83.8%) for down-regulated POU2AF1/WNT3 with a similar effect on whole blood gene expression measurements reflecting a corresponding order of magnitude. CONCLUSIONS T- and B-lymphocytes contributed predominantly to the radiation-induced up-regulation of FDXR/DDB2 and down-regulation of POU2AF1/WNT3. This study underlines the use of FDXR/DDB2 for biodosimetry purposes and POU2AF1/WNT3 for effect prediction of acute health effects.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | | | - Thomas Müller
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Stefan Eder
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Munich, Germany
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| |
Collapse
|
32
|
Biolatti V, Negrin L, Bellora N, Ibañez IL. High-throughput meta-analysis and validation of differentially expressed genes as potential biomarkers of ionizing radiation-response. Radiother Oncol 2020; 154:21-28. [PMID: 32931891 DOI: 10.1016/j.radonc.2020.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE The high-throughput analysis of gene expression in ionizing radiation (IR)-exposed human peripheral white blood cells (WBC) has emerged as a novel method for biodosimetry markers detection. We aimed to detect IR-exposure differential expressed genes (DEGs) as potential predictive biomarkers for biodosimetry and radioinduced-response. MATERIALS AND METHODS We performed a meta-analysis of raw data from public microarrays of ex vivo low linear energy transfer-irradiated human peripheral WBC. Functional enrichment and transcription factors (TF) detection from resulting DEGs were assessed. Six selected DEGs among studies were validated by qRT-PCR on mRNA from human peripheral blood samples from nine healthy human donors 24 h after ex vivo X-rays-irradiation. RESULTS We identified 275 DEGs after IR-exposure (parameters: |lfc| ≥ 0.7, q value <0.05), enriched in processes such as regulation after IR-exposure, DNA damage checkpoint, signal transduction by p53 and mitotic cell cycle checkpoint. Among these DEGs, DRAM1, NUDT15, PCNA, PLK2 and TIGAR were selected for qRT-PCR validation. Their expression levels significantly increased at 1-4 Gy respect to non-irradiated controls. Particularly, PCNA increased dose dependently. Curiously, TCF4 (Entrez Gene: 6925), detected as overrepresented TF in the radioinduced DEGs set, significantly decreased post-irradiation. CONCLUSION These six DEGs show potential to be proposed as candidates for IR-exposure biomarkers, considering their observed molecular radioinduced-response. Among them, TCF4, bioinformatically detected, was validated herein as an IR-responsive gene.
Collapse
Affiliation(s)
- Vanesa Biolatti
- National Atomic Energy Commission (CNEA), Bariloche Nuclear Medicine and Radiotherapy Integral Center - Institute of Nuclear Technologies for Health Foundation (INTECNUS); Laboratory of Radiobiology and Biodosimetry, S.C. de Bariloche, Argentina.
| | - Lara Negrin
- National Atomic Energy Commission (CNEA), Bariloche Nuclear Medicine and Radiotherapy Integral Center - Institute of Nuclear Technologies for Health Foundation (INTECNUS); Laboratory of Radiobiology and Biodosimetry, S.C. de Bariloche, Argentina.
| | - Nicolás Bellora
- National Scientific and Technical Research Council (CONICET), Scientific Technical Center CONICET - North Patagonia, Patagonian Andean Institute of Biological and Geo-Environmental Technologies (IPATEC), S.C. de Bariloche, Argentina.
| | - Irene L Ibañez
- National Scientific and Technical Research Council (CONICET), Institute of Nanocience and Nanotechnology (INN), Constituyentes Node (C1425FQB), CABA, Argentina; National Atomic Energy Commission (CNEA), Constituyentes Atomic Center, Research and Applications Management, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Yadav M, Bhayana S, Liu J, Lu L, Huang J, Ma Y, Qamri Z, Mo X, Jacob DS, Parasa ST, Bhuiya N, Fadda P, Xu-Welliver M, Chakravarti A, Jacob NK. Two-miRNA-based finger-stick assay for estimation of absorbed ionizing radiation dose. Sci Transl Med 2020; 12:eaaw5831. [PMID: 32669422 PMCID: PMC8501214 DOI: 10.1126/scitranslmed.aaw5831] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/12/2019] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
Nuclear radiation and radioactive fallouts resulting from a nuclear weapon detonation or reactor accidents could result in injuries affecting multiple sensitive organs, defined as acute radiation syndrome (ARS). Rapid and early estimation of injuries to sensitive organs using markers of radiation response is critical for identifying individuals who could potentially exhibit ARS; however, there are currently no biodosimetry assays approved for human use. We developed a sensitive microRNA (miRNA)-based blood test for radiation dose reconstruction with ±0.5 Gy resolution at critical dose range. Radiation dose-dependent changes in miR-150-5p in blood were internally normalized by a miRNA, miR-23a-3p, that was nonresponsive to radiation. miR-23a-3p was not highly expressed in blood cells but was abundant in circulation and was released primarily from the lung. Our assay showed the capability for dose estimation within hours to 1 week after exposure using a drop of blood from mice. We tested this biodosimetry assay for estimation of absorbed ionizing radiation dose in mice of varying ages and after exposure to both improvised nuclear device (IND)-spectrum neutrons and gamma rays. Leukemia specimens from patients exposed to fractionated radiation showed depletion of miR-150-5p in blood. We bridged the exposure of these patients to fractionated radiation by comparing responses after fractionated versus single acute exposure in mice. Although validation in nonhuman primates is needed, this proof-of-concept study suggests the potential utility of this assay in radiation disaster management and clinical applications.
Collapse
Affiliation(s)
- Marshleen Yadav
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Sagar Bhayana
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Joseph Liu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lanchun Lu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jason Huang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ya Ma
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Zahida Qamri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Diviya S Jacob
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shashaank T Parasa
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Noureen Bhuiya
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Meng Xu-Welliver
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Naduparambil K Jacob
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Overcoming challenges in human saliva gene expression measurements. Sci Rep 2020; 10:11147. [PMID: 32636420 PMCID: PMC7341869 DOI: 10.1038/s41598-020-67825-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022] Open
Abstract
Saliva, as a non-invasive and easily accessible biofluid, has been shown to contain RNA biomarkers for prediction and diagnosis of several diseases. However, systematic analysis done by our group identified two problematic issues not coherently described before: (1) most of the isolated RNA originates from the oral microbiome and (2) the amount of isolated human RNA is comparatively low. The degree of bacterial contamination showed ratios up to 1:900,000, so that only about one out of 900,000 RNA copies was of human origin, but the RNA quality (average RIN 6.7 + /− 0.8) allowed for qRT-PCR. Using 12 saliva samples from healthy donors, we modified the methodology to (1) select only human RNA during cDNA synthesis by aiming at the poly(A)+-tail and (2) introduced a pre-amplification of human RNA before qRT-PCR. Further, the manufacturer’s criteria for successful pre-amplification (Ct values ≤ 35 for unamplified cDNA) had to be replaced by (3) proofing linear pre-amplification for each gene, thus, increasing the number of evaluable samples up to 70.6%. When considering theses three modifications unbiased gene expression analysis on human salivary RNA can be performed.
Collapse
|
35
|
Kaatsch HL, Majewski M, Schrock G, Obermair R, Seidel J, Nestler K, Abend M, Waldeck S, Port M, Ullmann R, Becker BV. CT Irradiation-induced Changes of Gene Expression within Peripheral Blood Cells. HEALTH PHYSICS 2020; 119:44-51. [PMID: 32167501 DOI: 10.1097/hp.0000000000001231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Computed tomography (CT) is a crucial element of medical imaging diagnostics. The widespread application of this technology has made CT one of the major contributors to medical radiation burden, despite the fact that doses per individual CT scan steadily decrease due to the advancement of technology. Epidemiological risk assessment of CT exposure is hampered by the fact that moderate adverse effects triggered by low doses of CT exposure are likely masked by statistical fluctuations. In light of these limitations, there is need of further insights into the biological processes induced by CT scans to complement the existing knowledge base of risk assessment. This prompted us to investigate the early transcriptomic response of ex vivo irradiated peripheral blood of three healthy individuals. Samples were irradiated employing a modern dual-source-CT-scanner with a tube voltage of 150 kV, resulting in an estimated effective dose of 9.6 mSv. RNA was isolated 1 h and 6 h after exposure, respectively, and subsequently analyzed by RNA deep sequencing. Differential gene expression analysis revealed shared upregulation of AEN, FDXR, and DDB2 6 h after exposure in all three probands. All three genes have previously been discussed as radiation responsive genes and have already been implicated in DNA damage response and cell cycle control after DNA damage. In summary, we substantiated the usefulness of AEN, FDXR, and DDB2 as RNA markers of low dose irradiation. Moreover, the upregulation of genes associated with DNA damage reminds one of the genotoxic nature of CT diagnostics even with the low doses currently applied.
Collapse
Affiliation(s)
- Hanns Leonhard Kaatsch
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Matthäus Majewski
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Gerrit Schrock
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Richard Obermair
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Jillyen Seidel
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Kai Nestler
- Bundeswehr Central Hospital Koblenz, Department of Radiology, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Stephan Waldeck
- Bundeswehr Central Hospital Koblenz, Department of Radiology, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Benjamin Valentin Becker
- Bundeswehr Central Hospital Koblenz, Department of Radiology, Rübenacher Straße 170, 56072 Koblenz, Germany
| |
Collapse
|
36
|
Ghandhi SA, Shuryak I, Morton SR, Amundson SA, Brenner DJ. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep 2019; 9:18441. [PMID: 31804590 PMCID: PMC6895166 DOI: 10.1038/s41598-019-54967-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
In the event of a nuclear attack or large-scale radiation event, there would be an urgent need for assessing the dose to which hundreds or thousands of individuals were exposed. Biodosimetry approaches are being developed to address this need, including transcriptomics. Studies have identified many genes with potential for biodosimetry, but, to date most have focused on classification of samples by exposure levels, rather than dose reconstruction. We report here a proof-of-principle study applying new methods to select radiation-responsive genes to generate quantitative, rather than categorical, radiation dose reconstructions based on a blood sample. We used a new normalization method to reduce effects of variability of signal intensity in unirradiated samples across studies; developed a quantitative dose-reconstruction method that is generally under-utilized compared to categorical methods; and combined these to determine a gene set as a reconstructor. Our dose-reconstruction biomarker was trained using two data sets and tested on two independent ones. It was able to reconstruct dose up to 4.5 Gy with root mean squared error (RMSE) of ± 0.35 Gy on a test dataset using the same platform, and up to 6.0 Gy with RMSE of ± 1.74 Gy on a test set using a different platform.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Shad R Morton
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - David J Brenner
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
37
|
Palumbo E, Piotto C, Calura E, Fasanaro E, Groff E, Busato F, El Khouzai B, Rigo M, Baggio L, Romualdi C, Zafiropoulos D, Russo A, Mognato M, Corti L. Individual Radiosensitivity in Oncological Patients: Linking Adverse Normal Tissue Reactions and Genetic Features. Front Oncol 2019; 9:987. [PMID: 31632918 PMCID: PMC6779824 DOI: 10.3389/fonc.2019.00987] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Introduction: Adverse effects of radiotherapy (RT) significantly affect patient's quality of life (QOL). The possibility to identify patient-related factors that are associated with individual radiosensitivity would optimize adjuvant RT treatment, limiting the severity of normal tissue reactions, and improving patient's QOL. In this study, we analyzed the relationships between genetic features and toxicity grading manifested by RT patients looking for possible biomarkers of individual radiosensitivity. Methods: Early radiation toxicity was evaluated on 143 oncological patients according to the Common Terminology Criteria for Adverse Events (CTCAE). An individual radiosensitivity (IRS) index defining four classes of radiosensitivity (highly radiosensitive, radiosensitive, normal, and radioresistant) was determined by a G2-chromosomal assay on ex vivo irradiated, patient-derived blood samples. The expression level of 15 radioresponsive genes has been measured by quantitative real-time PCR at 24 h after the first RT fraction, in blood samples of a subset of 57 patients, representing the four IRS classes. Results: By applying univariate and multivariate statistical analyses, we found that fatigue was significantly associated with IRS index. Interestingly, associations were detected between clinical radiation toxicity and gene expression (ATM, CDKN1A, FDXR, SESN1, XPC, ZMAT3, and BCL2/BAX ratio) and between IRS index and gene expression (BBC3, FDXR, GADD45A, and BCL2/BAX). Conclusions: In this prospective cohort study we found that associations exist between normal tissue reactions and genetic features in RT-treated patients. Overall, our findings can contribute to the identification of biological markers to predict RT toxicity in normal tissues.
Collapse
Affiliation(s)
- Elisa Palumbo
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Celeste Piotto
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Elena Fasanaro
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elena Groff
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fabio Busato
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Badr El Khouzai
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Michele Rigo
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Laura Baggio
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Demetre Zafiropoulos
- National Laboratories of Legnaro, Italian Institute of Nuclear Physics (LNL-INFN), Padua, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Luigi Corti
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
38
|
Ostheim P, Haupt J, Herodin F, Valente M, Drouet M, Majewski M, Port M, Abend M. miRNA Expression Patterns Differ by Total- or Partial-Body Radiation Exposure in Baboons. Radiat Res 2019; 192:579-588. [DOI: 10.1667/rr15450.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Haupt
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - F. Herodin
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Valente
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Drouet
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
39
|
Port M, Ostheim P, Majewski M, Voss T, Haupt J, Lamkowski A, Abend M. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat Res 2019; 192:208-218. [PMID: 31211643 DOI: 10.1667/rr15360.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiological exposure scenarios involving large numbers of people require a rapid and high-throughput method to identify the unexposed, and those exposed to low- and high-dose radiation. Those with high-dose exposure, e.g., >2 Gy and depending on host characteristics, may develop severe hematological acute radiation syndrome (HARS), requiring hospitalization and treatment. Previously, we identified a set of genes that discriminated these clinically relevant groups. In the current work, we examined the utility of gene expression changes to classify 1,000 split blood samples into HARS severity scores of H0, H1 and H2-4, with the latter indicating likely hospitalization. In several previous radiation dose experiments, we determined that these HARS categories corresponded, respectively, to doses of 0 Gy (unexposed), 0.5 Gy and 5 Gy. The main purpose of this work was to assess the rapidity of blood sample processing using targeted next-generation sequencing (NGS). Peripheral blood samples from two healthy donors were X-ray irradiated in vitro and incubated at 37°C for 24 h. A total of 1,000 samples were evaluated by laboratory personnel blinded to the radiation dose. Changes in gene expression of FDXR, DDB2, POU2AF1 and WNT3 were examined with qRT-PCR as positive controls. Targeted NGS (TREX) was used on all samples for the same four genes. Agreement using both methods was almost 78%. Using NGS, all 1,000 samples were processed within 30 h. Classification of the HARS severity categories corresponding to radiation dose had an overall agreement ranging between 90-97%. Depending on the end point, either a combination of all genes or FDXR alone (H0 HARS or unexposed) provided the best classification. Using this optimized automated methodology, we assessed 100× more samples approximately three times faster compared to standard cytogenetic studies. We showed that a small set of genes, rather than a complex constellation of genes, provided robust positive (97%) and negative (97%) predictive values for HARS categories and radiation doses of 0, 0.5 and 5 Gy. The findings of this study support the potential utility of early radiation-induced gene expression changes for high-throughput biodosimetry and rapid identification of irradiated persons in need of hospitalization.
Collapse
Affiliation(s)
- Matthias Port
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | | | - Julian Haupt
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Andreas Lamkowski
- a Bundeswehr Institute of Radiobiology, Munich, Germany.,c Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, AllergieZENTRUM, Klinikum der Universität München, Munich, Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
40
|
Raavi V, Surendran J, Karthik K, Paul SFD, Thayalan K, Arunakaran J, Venkatachalam P. Measurement of γ-H2AX foci, miRNA-101, and gene expression as a means to quantify radiation-absorbed dose in cancer patients who had undergone radiotherapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:69-80. [PMID: 30467642 DOI: 10.1007/s00411-018-0767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Radiological accidents and nuclear terrorism pose an increased threat to members of the public who, following such an event, would need to be assessed for medical care by fast triage. Assay methods such as chromosome aberrations (CA), cytokinesis-block micronucleus (CBMN) and fluorescence in situ hybridization (FISH) techniques have been well established for dose estimation and their potential for handling more samples has also been proved with automation. However, culturing of lymphocytes is an inevitable step, which limits the potential of these markers for triage. In vitro analysis of gamma-H2AX (γ-H2AX), gene and microRNA (miRNA) markers do not require culturing of lymphocytes, and as such have been suggested as attractive tools for triage. Despite studies reporting in vitro dose-response curves, limited evidence is available evaluating the suitability of these assays in real situations. In this study, we have measured the absorbed dose using γ-H2AX, gene (GADD45A, FDXR, and CDKN1A) and miRNA-101 expression in blood samples of cancer patients (n = 20) who had undergone partial-body radiotherapy and compared with the derived equivalent whole-body doses (EWBD). The obtained results from all patients showed a significant (p < 0.05) increase of γ-H2AX foci in post-irradiated as compared to pre-irradiated samples. Moreover, estimated doses using γ-H2AX foci showed a correlation with the derived EWBD (r2 = 0.60, p = 0.0003) and was also shown to be dependent on the irradiated body volume. Consistent with γ-H2AX foci frequency, an increase in fold change expression of genes and miRNA-101 was observed. However, the estimated dose significantly varied among the subjects and showed poor correlation (r2 = 0.09, 0.04, 0.01 and 0.03 for GADD45A, FDXR, CDKN1A and miRNA-101, respectively) with EWBD. The overall results suggest that the established in vitro γ-H2AX assay is suitable for the detection of radiation exposure and can also provide an estimate of the dose in in vivo irradiated samples. The genes and miRNA-101 markers showed increased expression; nevertheless, there is a need for further improvements to measure doses accurately using these markers.
Collapse
Affiliation(s)
- Venkateswarlu Raavi
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - J Surendran
- Department of Radiation Oncology, Kamakshi Memorial Hospital, Pallikaranai, Chennai, 600 100, India
| | - K Karthik
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - K Thayalan
- Department of Radiation Oncology, Kamakshi Memorial Hospital, Pallikaranai, Chennai, 600 100, India
| | - J Arunakaran
- Department of Endocrinology, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai, 600 113, India
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India.
| |
Collapse
|
41
|
Balog RP, Bacher R, Chang P, Greenstein M, Jammalamadaka S, Javitz H, Knox SJ, Lee S, Lin H, Shaler T, Shura L, Stein P, Todd K, Cooper DE. Development of a biodosimeter for radiation triage using novel blood protein biomarker panels in humans and non-human primates. Int J Radiat Biol 2019; 96:22-34. [PMID: 30605362 DOI: 10.1080/09553002.2018.1532611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Purpose: In a significant nuclear event, hundreds of thousands of individuals will require rapid triage for absorbed radiation to ensure effective medical treatment and efficient use of medical resources. We are developing a rapid screening method to assess whether an individual received an absorbed dose of ≥2 Gy based on the analysis of a specific panel of blood proteins in a fingerstick blood sample.Materials and methods: We studied a data set of 1051 human blood samples obtained from radiotherapy patients, normal healthy individuals, and several special population groups. We compared the findings in humans with those from irradiation studies in non-human primates (NHPs).Results: We identified a panel of three protein biomarkers, salivary alpha amylase (AMY1), Flt3 ligand (FLT3L), and monocyte chemotactic protein 1 (MCP1), which are upregulated in human patients receiving fractionated doses of total body irradiation (TBI) therapy as a treatment for cancer. These proteins exhibited a similar radiation response in NHPs after single acute or fractionated doses of ionizing radiation.Conclusion: Our work provides confidence in this biomarker panel for biodosimetry triage using fingerstick blood samples and in the use of NHPs as a model for irradiated humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | - Hua Lin
- SRI International, Menlo Park, CA, USA
| | | | - Lei Shura
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
42
|
Port M, Hérodin F, Valente M, Drouet M, Ostheim P, Majewski M, Abend M. Persistent mRNA and miRNA expression changes in irradiated baboons. Sci Rep 2018; 8:15353. [PMID: 30337559 PMCID: PMC6194144 DOI: 10.1038/s41598-018-33544-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/01/2018] [Indexed: 11/09/2022] Open
Abstract
We examined the transcriptome/post-transcriptome for persistent gene expression changes after radiation exposure in a baboon model. Eighteen baboons were irradiated with a whole body equivalent dose of 2.5 or 5 Gy. Blood samples were taken before, 7, 28 and 75–106 days after radiation exposure. Stage I was a whole genome screening for mRNA combined with a qRT-PCR platform for detection of 667 miRNAs. Candidate mRNAs and miRNAs differentially up- or down-regulated in stage I were chosen for validation in stage II using the remaining samples. Only 12 of 32 candidate genes provided analyzable results with two mRNAs showing significant 3–5-fold differences in gene expression over the reference (p < 0.0001). From 667 candidate miRNAs, 290 miRNA were eligible for analysis with 21 miRNAs independently validated using qRT-PCR. These miRNAs showed persistent expression changes on each day and over days 7–106 days after exposure (n = 7). In particular miR-212 involved in radiosensitivity and immune modulation appeared persistently and 48–77-fold up-regulated over the entire time period. We are finally trying to put our results into a context of clinical implications and provide possible hints on underlying molecular mechanisms to be examined in future studies.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, Munich, 80937, Germany
| | - Francis Hérodin
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, 91220, France
| | - Marco Valente
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, 91220, France
| | - Michel Drouet
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, 91220, France
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, Munich, 80937, Germany
| | - Matthäus Majewski
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, Munich, 80937, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, Munich, 80937, Germany.
| |
Collapse
|
43
|
Becker BV, Majewski M, Abend M, Palnek A, Nestler K, Port M, Ullmann R. Gene expression changes in human iPSC-derived cardiomyocytes after X-ray irradiation. Int J Radiat Biol 2018; 94:1095-1103. [PMID: 30247079 DOI: 10.1080/09553002.2018.1516908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Radiation-induced heart disease caused by cardiac exposure to ionizing radiation comprises a variety of cardiovascular effects. Research in this field has been hampered by limited availability of clinical samples and appropriate test models. In this study, we wanted to elucidate the molecular mechanisms underlying electrophysiological changes, which we have observed in a previous study. Materials and methods: We employed RNA deep-sequencing of human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) 48 h after 5 Gy X-ray irradiation. By comparison to public data from hiPSC-CMs and human myocardium, we verified the expression of cardiac-specific genes in hiPSC-CMs. Results were validated by qRT-PCR. Results: Differentially gene expression analysis identified 39 and 481 significantly up- and down-regulated genes after irradiation, respectively. Besides, a large fraction of genes associated with cell cycle processes, we identified genes implicated in cardiac calcium homeostasis (PDE3B), oxidative stress response (FDXR and SPATA18) and the etiology of cardiomyopathy (SGCD, BBC3 and GDF15). Conclusions: Notably, observed gene expression characteristics specific to hiPSC-CMs might be relevant regarding further investigations of the response to external stressors like radiation. The genes and biological processes highlighted in our study present promising starting points for functional follow-up studies for which hiPSC-CMs could pose an appropriate cell model when cell type specific peculiarities are taken into account.
Collapse
Affiliation(s)
- Benjamin V Becker
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Matthäus Majewski
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Andreas Palnek
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Kai Nestler
- b Bundeswehr Institute for Preventive Medicine , Koblenz , Germany
| | - Matthias Port
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| | - Reinhard Ullmann
- a Bundeswehr Institute of Radiobiology affiliated to Ulm University , Munich , Germany
| |
Collapse
|
44
|
Agbenyegah S, Abend M, Atkinson MJ, Combs SE, Trott KR, Port M, Majewski M. Impact of Inter-Individual Variance in the Expression of a Radiation-Responsive Gene Panel Used for Triage. Radiat Res 2018; 190:226-235. [PMID: 29923790 DOI: 10.1667/rr15013.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In previous studies we determined a gene expression signature in baboons for predicting the severity of hematological acute radiation syndrome. We subsequently validated a set of eight of these genes in leukemia patients undergoing total-body irradiation. In the current study, we addressed the effect of intra-individual variability on the basal level of expression of those eight radiation-responsive genes identified previously, by examining baseline levels in 200 unexposed healthy human donors (122 males and 88 females with an average age of 46 years) using real-time PCR. In addition to the eight candidate genes ( DAGLA, WNT3, CD177, PLA2G16, WLS, POU2AF1, STAT4 and PRF1), we examined two more genes ( FDXR and DDB2) widely used in ex vivo whole blood experiments. Although significant sex- (seven genes) and age-dependent (two genes) differences in expression were found, the fold changes ranged only between 1.1-1.6. These were well within the twofold differences in gene expression generally considered to represent control values. Age and sex contributed less than 20-30% to the complete inter-individual variance, which is calculated as the fold change between the lowest (reference) and the highest Ct value minimum-maximum fold change (min-max FC). Min-max FCs ranging between 10-17 were observed for most genes; however, for three genes, min-max FCs of complete inter-individual variance were found to be 37.1 ( WNT3), 51.4 ( WLS) and 1,627.8 ( CD177). In addition, to determine whether discrimination between healthy and diseased baboons might be altered by replacing the published gene expression data of the 18 healthy baboons with that of the 200 healthy humans, we employed logistic regression analysis and calculated the area under the receiver operating characteristic (ROC) curve. The additional inter-individual variance of the human data set had either no impact or marginal impact on the ROC area, since up to 32-fold change gene expression differences between healthy and diseased baboons were observed.
Collapse
Affiliation(s)
- S Agbenyegah
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - M Abend
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M J Atkinson
- c Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - S E Combs
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany.,d Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - K R Trott
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - M Port
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Majewski
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|