1
|
Sproull M, Camphausen K. Partial-body Models of Radiation Exposure. Radiat Res 2025; 203:129-141. [PMID: 39923796 PMCID: PMC11973700 DOI: 10.1667/rade-24-00189.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
The events of 9/11 sparked a revitalization of civil defense in the U.S. for emergency planning and preparedness for future radiological or nuclear event scenarios and specifically for mass casualty medical management of radiation exposure and injury. Research in medical countermeasure development in the form of novel pharmaceuticals to treat radiation injury and new radiation biodosimetry diagnostics, primarily focused on development of research models of uniform total-body irradiation (TBI). With the success of those models, it was recognized that most radiation exposures in the field will involve non-uniform heterogeneous irradiations and many partial-body or organ-specific irradiation models have been utilized. This review examines partial-body models of irradiations developed in the last decade for heterogeneous radiation exposures and organ-specific radiation exposure patterns. These research models have been used to further our understanding of radiation injury, novel medical countermeasures and biodosimetry diagnostics in development for future radiological and nuclear event scenarios.
Collapse
Affiliation(s)
- M. Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - K. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
2
|
Schüle S, Hackenbroch C, Beer M, Ostheim P, Hermann C, Muhtadi R, Stewart S, Port M, Scherthan H, Abend M. Tin prefiltration in computed tomography does not significantly alter radiation-induced gene expression and DNA double-strand break formation. PLoS One 2024; 19:e0315808. [PMID: 39705301 DOI: 10.1371/journal.pone.0315808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND The tin (Sn) prefilter technique is a recently introduced dose-saving technique in computed tomography (CT). This study investigates whether there is an altered molecular biological response in blood cells using the tin prefiltering technique. METHODS Blood from 6 donors was X-irradiated ex-vivo with 20 mGy full dose (FD) protocols (Sn 150 kV, 150 kV, and 120 kV) and a tin prefiltered 16.5 mGy low dose (LD) protocol on a CT scanner. Biological changes were determined by quantification of γH2AX DNA double-strand break (DSB) foci, and differential gene expression (DGE) relative to unexposed samples were examined for seven known radiation-induced genes (FDXR, DDB2, BAX, CDKN1A, AEN, EDA2R, APOBEC3H) and 667 microRNAs (miRNA). RESULTS EDA2R and DDB2 gene expression (GE) increased 1.7-6-fold (p = 0.0004-0.02) and average DNA DSB foci value (0.31±0.02, p<0.0001) increased significantly relative to unexposed samples, but similarly for the applied radiation protocols. FDXR upregulation (2.2-fold) was significant for FD protocols (p = 0.01-0.02) relative to unexposed samples. miRNA GE changes were not significant (p = 0.15-1.00) and DGE were similar for the examined protocols (p = 0.10-1.00). An increased frequency of lower DGE values was seen in the Sn 150 kV LD protocol compared to the 120 kV FD and Sn 150 kV FD protocols (p = 0.001-0.008). CONCLUSIONS The current ex-vivo study indicates no changes regarding transcriptional and post-transcriptional DGE and DNA DSB induction when using the tin prefilter technique and even a significant tendency to lower radiation-induced DGE-changes due to the dose reduction of the tin prefilter with equal image quality compared to classical CT scan protocols was found.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital of Ulm, Ulm, Baden-Württemberg, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Forces Hospital of Ulm, Ulm, Baden-Württemberg, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Baden-Württemberg, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
- Department of Radiology, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Bavaria, Germany
| |
Collapse
|
3
|
Russ E, Fatanmi OO, Wise SY, Carpenter AD, Maniar M, Iordanskiy S, Singh VK. Serum microRNA profile of rhesus macaques following ionizing radiation exposure and treatment with a medical countermeasure, Ex-Rad. Sci Rep 2024; 14:4518. [PMID: 38402257 PMCID: PMC10894202 DOI: 10.1038/s41598-024-54997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Exposure to ionizing radiation (IR) presents a formidable clinical challenge. Total-body or significant partial-body exposure at a high dose and dose rate leads to acute radiation syndrome (ARS), the complex pathologic effects that arise following IR exposure over a short period of time. Early and accurate diagnosis of ARS is critical for assessing the exposure dose and determining the proper treatment. Serum microRNAs (miRNAs) may effectively predict the impact of irradiation and assess cell viability/senescence changes and inflammation. We used a nonhuman primate (NHP) model-rhesus macaques (Macaca mulatta)-to identify the serum miRNA landscape 96 h prior to and following 7.2 Gy total-body irradiation (TBI) at four timepoints: 24, 36, 48, and 96 h. To assess whether the miRNA profile reflects the therapeutic effect of a small molecule ON01210, commonly known as Ex-Rad, that has demonstrated radioprotective efficacy in a rodent model, we administered Ex-Rad at two different schedules of NHPs; either 36 and 48 h post-irradiation or 48 and 60 h post-irradiation. Results of this study corroborated our previous findings obtained using a qPCR array for several miRNAs and their modulation in response to irradiation: some miRNAs demonstrated a temporary increased serum concentration within the first 24-36 h (miR-375, miR-185-5p), whereas others displayed either a prolonged decline (miR-423-5p) or a long-term increase (miR-30a-5p, miR-27b-3p). In agreement with these time-dependent changes, hierarchical clustering of differentially expressed miRNAs showed that the profiles of the top six miRNA that most strongly correlated with radiation exposure were inconsistent between the 24 and 96 h timepoints following exposure, suggesting that different biodosimetry miRNA markers might be required depending on the time that has elapsed. Finally, Ex-Rad treatment restored the level of several miRNAs whose expression was significantly changed after radiation exposure, including miR-16-2, an miRNA previously associated with radiation survival. Taken together, our findings support the use of miRNA expression as an indicator of radiation exposure and the use of Ex-Rad as a potential radioprotectant.
Collapse
Affiliation(s)
- Eric Russ
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Manoj Maniar
- Onconova Therapeutics, Inc., Newtown, PA, 18940, USA
- Palm Pharmaceuticals, Inc, 46750 Sentinel Drive, Fremont, CA, 94539, USA
| | - Sergey Iordanskiy
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA.
| |
Collapse
|
4
|
Taliaferro LP, Agarwal RK, Coleman CN, DiCarlo AL, Hofmeyer KA, Loelius SG, Molinar-Inglis O, Tedesco DC, Satyamitra MM. Sex differences in radiation research. Int J Radiat Biol 2023; 100:466-485. [PMID: 37991728 PMCID: PMC10922591 DOI: 10.1080/09553002.2023.2283089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE The Sex Differences in Radiation Research workshop addressed the role of sex as a confounder in radiation research and its implication in real-world radiological and nuclear applications. METHODS In April 2022, HHS-wide partners from the Radiation and Nuclear Countermeasures Program, the Office of Research on Women's Health National Institutes of Health Office of Women's Health, U.S. Food and Drug Administration, and the Radiological and Nuclear Countermeasures Branch at the Biomedical Advanced Research and Development Authority conducted a workshop to address the scientific implication and knowledge gaps in understanding sex in basic and translational research. The goals of this workshop were to examine sex differences in 1. Radiation animal models and understand how these may affect radiation medical countermeasure development; 2. Biodosimetry and/or biomarkers used to assess acute radiation syndrome, delayed effects of acute radiation exposure, and/or predict major organ morbidities; 3. medical research that lacks representation from both sexes. In addition, regulatory policies that influence inclusion of women in research, and the gaps that exist in drug development and device clearance were discussed. Finally, real-world sex differences in human health scenarios were also considered. RESULTS This report provides an overview of the two-day workshop, and open discussion among academic investigators, industry researchers, and U.S. government representatives. CONCLUSIONS This meeting highlighted that current study designs lack the power to determine statistical significance based on sex, and much is unknown about the underlying factors that contribute to these differences. Investigators should accommodate both sexes in all stages of research to ensure that the outcome is robust, reproducible, and accurate, and will benefit public health.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| | - Rajeev K. Agarwal
- Office of Research on Women’s Health (ORWH), Office of the Director, NIH, Rockville, MD, USA
| | - C. Norman Coleman
- Radiation Research Program Division of Cancer Treatment and Diagnosis, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI) and Administration for Strategic Preparedness and Response (ASPR), U.S. Department of Health and Human Services (HHS), Washington, DC, USA
| | - Andrea L. DiCarlo
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| | - Kimberly A. Hofmeyer
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Shannon G. Loelius
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Olivia Molinar-Inglis
- Previously RNCP, DAIT, NIAID, NIH; now Antivirals and Antitoxins Program, Division of CBRN Countermeasures, BARDA, ASPR, HHS, Washington, DC, USA
| | - Dana C. Tedesco
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Merriline M. Satyamitra
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| |
Collapse
|
5
|
Nowicka Z, Tomasik B, Kozono D, Stawiski K, Johnson T, Haas-Kogan D, Ussowicz M, Chowdhury D, Fendler W. Serum miRNA-based signature indicates radiation exposure and dose in humans: A multicenter diagnostic biomarker study. Radiother Oncol 2023; 185:109731. [PMID: 37301262 DOI: 10.1016/j.radonc.2023.109731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Mouse and non-human primate models showed that serum miRNAs may be used to predict the biological impact of radiation doses. We hypothesized that these results can be translated to humans treated with total body irradiation (TBI), and that miRNAs may be used as clinically feasible biodosimeters. METHODS To test this hypothesis, serial serum samples were obtained from 25 patients (pediatric and adults) who underwent allogeneic stem-cell transplantation and profiled for miRNA expression using next-generation sequencing. miRNAs with diagnostic potential were quantified with qPCR and used to build logistic regression models with lasso penalty to reduce overfitting, identifying samples drawn from patients who underwent total body irradiation to a potentially lethal dose. RESULTS Differential expression results were consistent with previous studies in mice and non-human primates. miRNAs with detectable expression in this and two prior animal sets allowed for distinction of the irradiated from non-irradiated samples in mice, macaques and humans, validating the miRNAs as radiation-responsive through evolutionarily conserved transcriptional regulation mechanisms. Finally, we created a model based on the expression of miR-150-5p, miR-30b-5p and miR-320c normalized to two references and adjusted for patient age with an AUC of 0.9 (95%CI:0.83-0.97) for identifying samples drawn after irradiation; a separate model differentiating between high and low radiation dose achieved AUC of 0.85 (95%CI: 0.74-0.96). CONCLUSIONS We conclude that serum miRNAs reflect radiation exposure and dose for humans undergoing TBI and may be used as functional biodosimeters for precise identification of people exposed to clinically significant radiation doses.
Collapse
Affiliation(s)
- Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Radiotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland
| | - Thomas Johnson
- Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marek Ussowicz
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Poland
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
6
|
Sproull M, Kawai T, Krauze A, Shankavaram U, Camphausen K. Prediction of Total-Body and Partial-Body Exposures to Radiation Using Plasma Proteomic Expression Profiles. Radiat Res 2022; 198:573-581. [PMID: 36136739 PMCID: PMC9896586 DOI: 10.1667/rade-22-00074.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023]
Abstract
There is a need to identify new biomarkers of radiation exposure for not only systemic total-body irradiation (TBI) but also to characterize partial-body irradiation and organ specific radiation injury. In the current study, we sought to develop novel biodosimetry models of radiation exposure using TBI and organ specific partial-body irradiation to only the brain, lung or gut using a multivariate proteomics approach. Subset panels of significantly altered proteins were selected to build predictive models of radiation exposure in a variety of sample cohort configurations relevant to practical field application of biodosimetry diagnostics during future radiological or nuclear event scenarios. Female C57BL/6 mice, 8-15 weeks old, received a single total-body or partial-body dose of 2 or 8 Gy TBI or 2 or 8 Gy to only the lung or gut, or 2, 8 or 16 Gy to only the brain using a Pantak X-ray source. Plasma was collected by cardiac puncture at days 1, 3 and 7 postirradiation for total-body exposures and only the lung and brain exposures, and at days 3, 7 and 14 postirradiation for gut exposures. Plasma was then screened using the aptamer-based SOMAscan proteomic assay technology, for changes in expression of 1,310 protein analytes. A subset panel of protein biomarkers which demonstrated significant changes (P < 0.01) in expression after irradiation were used to build predictive models of radiation exposure using different sample cohorts. Model 1 compared controls vs. all pooled irradiated samples, which included TBI and all organ specific partial irradiation. Model 2 compared controls vs. TBI vs. partial irradiation (with all organ specific partial exposure pooled within the partial-irradiated group), and model 3 compared controls vs. each individual organ specific partial-body exposure separately (brain, gut and lung). Detectable values were obtained for all 1,310 proteins included in the SOMAscan assay for all samples. Each model algorithm built using a unique sample cohort was validated with a training set of samples and tested with a separate new sample series. Overall predictive accuracies of 89%, 78% and 55% resulted for models 1-3, respectively, representing novel predictive panels of radiation responsive proteomic biomarkers. Though relatively high overall predictive accuracies were achieved for models 1 and 2, all three models showed limited accuracy at differentiating between the controls and partial-irradiated body samples. In our study we were able to identify novel panels of radiation responsive proteins useful for predicting radiation exposure and to create predictive models of partial-body exposure including organ specific radiation exposures. This proof-of-concept study also illustrates the inherent physiological limitations of distinguishing between small-body exposures and the unirradiated using proteomic biomarkers of radiation exposure. As use of biodosimetry diagnostics in future mass casualty settings will be complicated by the heterogeneity of partial-body exposure received in the field, further work remains in adapting these diagnostic tools for practical use.
Collapse
Affiliation(s)
- M. Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - T Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - A Krauze
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - U Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - K Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
7
|
Vellichirammal NN, Sethi S, Pandey S, Singh J, Wise SY, Carpenter AD, Fatanmi OO, Guda C, Singh VK. Lung transcriptome of nonhuman primates exposed to total- and partial-body irradiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:584-598. [PMID: 36090752 PMCID: PMC9418744 DOI: 10.1016/j.omtn.2022.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
The focus of radiation biodosimetry has changed recently, and a paradigm shift for using molecular technologies of omic platforms in addition to cytogenetic techniques has been observed. In our study, we have used a nonhuman primate model to investigate the impact of a supralethal dose of 12 Gy radiation on alterations in the lung transcriptome. We used 6 healthy and 32 irradiated animal samples to delineate radiation-induced changes. We also used a medical countermeasure, γ-tocotrienol (GT3), to observe any changes. We demonstrate significant radiation-induced changes in the lung transcriptome for total-body irradiation (TBI) and partial-body irradiation (PBI). However, no major influence of GT3 on radiation was noted in either comparison. Several common signaling pathways, including PI3K/AKT, GADD45, and p53, were upregulated in both exposures. TBI activated DNA-damage-related pathways in the lungs, whereas PTEN signaling was activated after PBI. Our study highlights the various transcriptional profiles associated with γ- and X-ray exposures, and the associated pathways include LXR/RXR activation in TBI, whereas pulmonary wound-healing and pulmonary fibrosis signaling was repressed in PBI. Our study provides important insights into the molecular pathways associated with irradiation that can be further investigated for biomarker discovery.
Collapse
Affiliation(s)
| | - Sahil Sethi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
8
|
Winters TA, Taliaferro LP, Satyamitra MM. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat Res 2022; 197:554-558. [DOI: 10.1667/rade-21-00213.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
9
|
Satyamitra MM, DiCarlo AL, Hollingsworth BA, Winters TA, Taliaferro LP. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat Res 2021; 197:514-532. [PMID: 34879151 DOI: 10.1667/rade-21-00157.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/03/2022]
Abstract
Biomarkers are important indicators of biological processes in health or disease. For this reason, they play a critical role in advanced development of radiation biodosimetry tools and medical countermeasures (MCMs). They can aid in the assessment of radiation exposure level, extent of radiation-induced injury, and/or efficacy of an MCM. This meeting report summarizes the presentations and discussions from the 2020 workshop titled, "Biomarkers in Radiation Biodosimetry and Medical Countermeasures," sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID). The main goals of this meeting were to: 1. Provide an overview on biomarkers and to focus on the state of science with regards to biomarkers specific to radiation biodosimetry and MCMs; 2. Understand developmental challenges unique to the role of biomarkers in the fields of radiation biodosimetry and MCM development; and 3. Identify existing gaps and needs for translational application.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
10
|
Rogers CJ, Kyubwa EM, Lukaszewicz AI, Starbird MA, Nguyen M, Copeland BT, Yamada-Hanff J, Menon N. Observation of Unique Circulating miRNA Signatures in Non-Human Primates Exposed to Total-Body vs. Whole Thorax Lung Irradiation. Radiat Res 2021; 196:547-559. [PMID: 34525208 DOI: 10.1667/rade-21-00043.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/26/2021] [Indexed: 11/03/2022]
Abstract
A radiological/nuclear (RAD-NUC) incident, especially in an urban setting, results in diverse radiation-induced injuries due to heterogeneities in dose, the extent of partial-body shielding, human biodiversity and pre-existing health conditions. For example, acute radiation syndrome (ARS) can result in death within days to weeks of exposure to 0.7-10 Gy doses and is associated with destruction of the bone marrow, known as hematopoietic ARS (H-ARS). However, partial-body shielding that spares a portion of the bone marrow from exposure can significantly reduce the occurrence of H-ARS, but delayed effects of acute radiation exposure (DEARE) can still occur within months or years after exposure depending on the individual. In a mass casualty event, ideal triage must be able to pre-symptomatically identify individuals likely to develop radiation-induced injuries and provide an appropriate treatment plan. Today, while there are FDA approved treatments for hematopoietic ARS, there are no approved diagnosis for radiation injury and no approved treatments for the broad spectra of injuries associated with radiation. This has resulted in a major capability gap in the nations preparedness to a potentially catastrophic RAD-NUC event. Circulating microRNA (miRNA) are a promising class of biomarkers for this application because the molecules are accessible via a routine blood draw and are excreted by various tissues throughout the body. To test if miRNA can be used to predict distinct tissue-specific radiation-induced injuries, we compared the changes to the circulating miRNA profiles after total-body irradiation (TBI) and whole thorax lung irradiation (WTLI) in non-human primates at doses designed to induce ARS (day 2 postirradiation; 2-6.5 Gy) and DEARE (day 15 postirradiation; 9.8 or 10.7 Gy), respectively. In both models, miRNA sequences were identified that correlated with the onset of severe neutropenia (counts <500 µL-1; TBI) or survival (WTLI). This method identified panels of eleven miRNA for both model and assigned functional roles for the panel members using gene ontology enrichment analysis. A common signature of radiation-induced injury was observed in both models: apoptosis, DNA damage repair, p53 signaling, pro-inflammatory response, and growth factor/cytokine signaling pathways were predicted to be disrupted. In addition, injury-specific pathways were identified. In TBI, pathways associated with ubiquitination, specifically of histone H2A, were enriched, suggesting more impact to DNA damage repair mechanisms and apoptosis. In WTLI, pro-fibrotic pathways including transforming growth factor (TGF-β) and bone morphogenetic protein (BMP) signaling pathways were enriched, consistent with the onset of late lung injury. These results suggest that miRNA may indeed be able to predict the onset of distinct types of radiation-induced injuries.
Collapse
|
11
|
Rogers CJ, Kyubwa EM, Lukaszewicz AI, Yamada-Hanff J, Starbird MA, Miller TA, Phelps AA, Wallack S, Mahendra S, Thrall K, Menon N. Identification of miRNA Associated with Reduced Survival after Whole-Thorax Lung Irradiation in Non-Human Primates. Radiat Res 2021; 196:510-522. [PMID: 33857299 DOI: 10.1667/rade-20-00031.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Thoracic exposure to ionizing radiation can lead to delayed injuries to the heart and lung that are serious and even life-threatening. These injuries are difficult to predict since they manifest over many weeks and months. To identify noninvasive, tissue-specific biomarkers for the early detection of late radiation injury, circulating microRNA (miRNA) levels were measured in non-human primates (NHP, Macaca mulatta) that received a single exposure of whole-thorax lung irradiation (WTLI) at a dose likely to result in 20% or 75% mortality within 180 days (9.8 or 10.7 Gy). Animals were observed for 270 days after WTLI. Approximately 58% of 9.8 Gy WTLI animals (7 of 12) and 94% of 10.7 Gy WTLI animals (15 out of 16) did not survive to the primary end point. Evidence of pulmonary fibrosis/pneumonitis was observed in all animals. Animals that received 10.7 Gy WTLI experienced more severe and early-onset pneumonitis, as indicated by reduced aerated lung volume, high non-sedated respiratory rate, earlier and more frequent dexamethasone treatments, and evidence of onset of heart disease. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days postirradiation, before the manifestation of symptoms, and included miRNA sequences known to regulate pathways associated with pulmonary fibrosis (TGF-β/SMAD signaling) and pneumonitis/inflammation (p53 signaling). The abundance of several circulating miRNA differentially expressed at day 6 or 15, such as miR-199a-3p and miR-25-3p, correlated with statistically significant differences in survival. This study supports the hypothesis that it is feasible to use plasma miRNA profiles to identify individuals at high risk of organ-specific late radiation injury. These miRNA profiles could improve radiation oncology clinical practice and serve as biomarkers to predict who might develop late complications in the aftermath of a radiological or nuclear (RAD-NUC) incident.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seth Wallack
- Veterinary Imaging Center of San Diego, San Diego, California 92111
| | | | - Karla Thrall
- Altasciences Preclinical Seattle LLC, Everett, Washington 98203
| | | |
Collapse
|
12
|
Ostheim P, Amundson SA, Badie C, Bazyka D, Evans AC, Ghandhi SA, Gomolka M, López Riego M, Rogan PK, Terbrueggen R, Woloschak GE, Zenhausern F, Kaatsch HL, Schüle S, Ullmann R, Port M, Abend M. Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021. Int J Radiat Biol 2021; 98:843-854. [PMID: 34606416 PMCID: PMC11552548 DOI: 10.1080/09553002.2021.1987571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Milagrosa López Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Canada
- CytoGnomix Inc, London, Canada
| | | | - Gayle E. Woloschak
- Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frederic Zenhausern
- Department of Basic Medical Sciences, College of Medicine, The University of Arizona, Phoenix, AZ, USA
- Center for Applied Nanobioscience and Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hanns L. Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
13
|
Port M, Hérodin F, Drouet M, Valente M, Majewski M, Ostheim P, Lamkowski A, Schüle S, Forcheron F, Tichy A, Sirak I, Malkova A, Becker BV, Veit DA, Waldeck S, Badie C, O'Brien G, Christiansen H, Wichmann J, Beutel G, Davidkova M, Doucha-Senf S, Abend M. Gene Expression Changes in Irradiated Baboons: A Summary and Interpretation of a Decade of Findings. Radiat Res 2021; 195:501-521. [PMID: 33788952 DOI: 10.1667/rade-20-00217.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/03/2022]
Affiliation(s)
- M Port
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Hérodin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Drouet
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Valente
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Forcheron
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - A Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic and Biomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital, Hradec Králové, Hradec Králové, Czech Republic
| | - A Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - B V Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - D A Veit
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - S Waldeck
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - C Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - G O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - H Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - J Wichmann
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - G Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic
| | - S Doucha-Senf
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich Germany
| |
Collapse
|
14
|
May JM, Bylicky M, Chopra S, Coleman CN, Aryankalayil MJ. Long and short non-coding RNA and radiation response: a review. Transl Res 2021; 233:162-179. [PMID: 33582242 PMCID: PMC8475769 DOI: 10.1016/j.trsl.2021.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
Once thought of as arising from "junk DNA," noncoding RNAs (ncRNAs) have emerged as key molecules in cellular processes and response to stress. From diseases such as cancer, coronary artery disease, and diabetes to the effects of ionizing radiation (IR), ncRNAs play important roles in disease progression and as biomarkers of damage. Noncoding RNAs regulate cellular processes by competitively binding DNA, mRNA, proteins, and other ncRNAs. Through these interactions, specific ncRNAs can modulate the radiosensitivity of cells and serve as diagnostic and prognostic biomarkers of radiation damage, whether from incidental exposure in radiotherapy or in accidental exposure scenarios. Analysis of RNA expression after radiation exposure has shown alterations not only in mRNAs, but also in ncRNAs (primarily miRNA, circRNA, and lncRNA), implying an important role in cellular stress response. Due to their abundance and stability in serum and other biofluids, ncRNAs also have great potential as minimally invasive biomarkers with advantages over current biodosimetry methods. Several studies have examined changes in ncRNA expression profiles in response to IR and other forms of oxidative stress. Furthermore, some studies have reported modulation of radiosensitivity by altering expression levels of these ncRNAs. This review discusses the roles of ncRNAs in the radiation response and evaluates prior research on ncRNAs as biomarkers of radiation damage. Future directions and applications of ncRNAs in radiation research are introduced, including the potential for a clinical ncRNA assay for assessing radiation damage and for the therapeutic use of RNA interference (RNAi).
Collapse
Affiliation(s)
- Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michelle Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
15
|
Amundson SA. Transcriptomics for radiation biodosimetry: progress and challenges. Int J Radiat Biol 2021; 99:925-933. [PMID: 33970766 PMCID: PMC10026363 DOI: 10.1080/09553002.2021.1928784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Transcriptomic-based approaches are being developed to meet the needs for large-scale radiation dose and injury assessment and provide population triage following a radiological or nuclear event. This review provides background and definition of the need for new biodosimetry approaches, and summarizes the major advances in this field. It discusses some of the major model systems used in gene signature development, and highlights some of the remaining challenges, including individual variation in gene expression, potential confounding factors, and accounting for the complexity of realistic exposure scenarios. CONCLUSIONS Transcriptomic approaches show great promise for both dose reconstruction and for prediction of individual radiological injury. However, further work will be needed to ensure that gene expression signatures will be robust and appropriate for their intended use in radiological or nuclear emergencies.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Ostheim P, Haupt J, Schüle S, Herodin F, Valente M, Drouet M, Majewski M, Port M, Abend M. Differentiating Total- or Partial-Body Irradiation in Baboons Using mRNA Expression Patterns: A Proof of Concept. Radiat Res 2020; 194:476-484. [DOI: 10.1667/rade-20-00121.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/12/2020] [Indexed: 11/03/2022]
Affiliation(s)
- P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Haupt
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - F. Herodin
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Valente
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Drouet
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - M. Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
17
|
Wathen LK, Eder PS, Horwith G, Wallace RL. Using biodosimetry to enhance the public health response to a nuclear incident. Int J Radiat Biol 2020; 97:S6-S9. [DOI: 10.1080/09553002.2020.1820605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L. K. Wathen
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - P. S. Eder
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - G. Horwith
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - R. L. Wallace
- United States Department of Health and Human Services, Office of the Assistant Secretary of Preparedness and Response, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| |
Collapse
|
18
|
Rogers CJ, Lukaszewicz AI, Yamada-Hanff J, Micewicz ED, Ratikan JA, Starbird MA, Miller TA, Nguyen C, Lee JT, Olafsen T, Iwamoto KS, McBride WH, Schaue D, Menon N. Identification of miRNA signatures associated with radiation-induced late lung injury in mice. PLoS One 2020; 15:e0232411. [PMID: 32392259 PMCID: PMC7213687 DOI: 10.1371/journal.pone.0232411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-β/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.
Collapse
Affiliation(s)
| | | | | | - Ewa D. Micewicz
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | | | - Christine Nguyen
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jason T. Lee
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - William H. McBride
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Naresh Menon
- ChromoLogic LLC, Monrovia, California, United States of America
| |
Collapse
|