1
|
Wallisch E, Tomita-Mitchell A, Liang HL, Szabo A, Lenarczyk M, Kwitek A, Smith JR, Tutaj M, Baker JE. Advancing cell-free DNA as a biomarker of damage to heart caused by ionizing radiation. JOURNAL OF RADIATION RESEARCH 2025; 66:329-340. [PMID: 40304705 PMCID: PMC12100473 DOI: 10.1093/jrr/rraf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Exposure to diagnostic and therapeutic radiation introduces risks for development of diseases later in life by causing DNA damage in cells. Currently, there is no clinical method for determining exposure risk caused by radiation toxicity to DNA. Cell-free DNA (cfDNA), a marker of DNA damage, is currently used to assess risk for long-term effects following organ transplantation, surgery and inflammation. The goal of our proposed study is to develop cfDNA as an early biomarker for assessing risk for cardiovascular disease and cancer from radiation exposure so that strategies to mitigate the damaging effects of medical radiation can be assessed. Hearts from male and female WAG/RijCmcr rats (n = 6-10/group) were exposed to increasing doses of X-radiation (50 mGy and 3.5 Gy). Blood was collected prior to and after (15 minutes-96 hours) irradiation, and cell-free plasma was prepared. Primers and probes were designed for quantitative analysis of sequences of mitochondria (12S rRNA) and nuclear (Gapdh) cfDNA present in rat plasma using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Exposure of hearts to radiation increased nuclear and mitochondrial cfDNA in a dose-dependent manner. Three point five grays from X-radiation increase cfDNA for Gapdh in plasma after 1 hour with a 15.8-fold increase (P < 0.001) after 6 hours. The earliest time nuclear and mitochondrial cfDNA increases were detected in plasma was at 60 minutes following exposure to 3.5 Gy. cfDNA has potential to advance as a biomarker of exposure to medical doses of radiation in patients.
Collapse
Affiliation(s)
- Erin Wallisch
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Aoy Tomita-Mitchell
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Huan-Ling Liang
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Aniko Szabo
- Data Science Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Marek Lenarczyk
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Radiation Biosciences Laboratory, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne Kwitek
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - John E Baker
- Division of Congenital Heart Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Radiation Biosciences Laboratory, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Alnasser SM. Revisiting the approaches to DNA damage detection in genetic toxicology: insights and regulatory implications. BioData Min 2025; 18:33. [PMID: 40329377 PMCID: PMC12054138 DOI: 10.1186/s13040-025-00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Genetic toxicology is crucial for evaluating the potential risks of chemicals and drugs to human health and the environment. The emergence of high-throughput technologies has transformed this field, providing more efficient, cost-effective, and ethically sound methods for genotoxicity testing. It utilizes advanced screening techniques, including automated in vitro assays and computational models to rapidly assess the genotoxic potential of thousands of compounds simultaneously. This review explores the transformation of traditional in vitro and in vivo methods into computational models for genotoxicity assessment. By leveraging advances in machine learning, artificial intelligence, and high-throughput screening, computational approaches are increasingly replacing conventional methods. Coupling conventional screening with artificial intelligence (AI) and machine learning (ML) models has significantly enhanced their predictive capabilities, enabling the identification of genotoxicity signatures tied to molecular structures and biological pathways. Regulatory agencies increasingly support such methodologies as humane alternatives to traditional animal models, provided they are validated and exhibit strong predictive power. Standardization efforts, including the establishment of common endpoints across testing approaches, are pivotal for enhancing comparability and fostering consensus in toxicological assessments. Initiatives like ToxCast exemplify the successful incorporation of HTS data into regulatory decision-making, demonstrating that well-interpreted in vitro results can align with in vivo outcomes. Innovations in testing methodologies, global data sharing, and real-time monitoring continue to refine the precision and personalization of risk assessments, promising a transformative impact on safety evaluations and regulatory frameworks.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.
| |
Collapse
|
3
|
Kanagaraj K, Phillippi MA, Ober EH, Shuryak I, Kleiman NJ, Olson J, Schaaf G, Cline JM, Turner HC. BAX and DDB2 as biomarkers for acute radiation exposure in the human blood ex vivo and non-human primate models. Sci Rep 2024; 14:19345. [PMID: 39164366 PMCID: PMC11336173 DOI: 10.1038/s41598-024-69852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
There are currently no available FDA-cleared biodosimetry tools for rapid and accurate assessment of absorbed radiation dose following a radiation/nuclear incident. Previously we developed a protein biomarker-based FAST-DOSE bioassay system for biodosimetry. The aim of this study was to integrate an ELISA platform with two high-performing FAST-DOSE biomarkers, BAX and DDB2, and to construct machine learning models that employ a multiparametric biomarker strategy for enhancing the accuracy of exposure classification and radiation dose prediction. The bioassay showed 97.92% and 96% accuracy in classifying samples in human and non-human primate (NHP) blood samples exposed ex vivo to 0-5 Gy X-rays, respectively up to 48 h after exposure, and an adequate correlation between reconstructed and actual dose in the human samples (R2 = 0.79, RMSE = 0.80 Gy, and MAE = 0.63 Gy) and NHP (R2 = 0.80, RMSE = 0.78 Gy, and MAE = 0.61 Gy). Biomarker measurements in vivo from four NHPs exposed to a single 2.5 Gy total body dose showed a persistent upregulation in blood samples collected on days 2 and 5 after irradiation. The data indicates that using a combined approach of targeted proteins can increase bioassay sensitivity and provide a more accurate dose prediction.
Collapse
Affiliation(s)
- Karthik Kanagaraj
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Michelle A Phillippi
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elizabeth H Ober
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - John Olson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - George Schaaf
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Helen C Turner
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
5
|
Jose SR, Timothy PB, Suganthy J, Backianathan S, Amirtham SM, Rani S, Singh R. Determination of dose-response calibration curves for gamma radiation using gamma-H2AX immunofluorescence based biodosimetry. Rep Pract Oncol Radiother 2024; 29:164-175. [PMID: 39143968 PMCID: PMC11321778 DOI: 10.5603/rpor.99678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-H2AX immunofluorescence assay has gained popularity as a DNA double strand break marker. In this work, we have investigated the potential use of gamma H2AX immunofluorescence assay as a biological dosimeter for estimation of dose in our institution. Materials and methods Seven healthy individuals were selected for the study and the blood samples collected from the first five individuals were irradiated to low doses (0-10 cGy) and high doses (50-500 cGy) in a telecobalt unit. All the samples were processed for gamma-H2AX immunofluorescence assay and the dose-response calibration curves for low and high doses were determined. In order to validate the determined dose-response calibration curves, the blood samples obtained from the sixth and seventh subjects were delivered a test dose of 7.5 cGy and 250 cGy. In addition, time and cost required to complete the assay were also reported. Results The goodness of fit (R2) values was found to be 0.9829 and 0.9766 for low and high dose-response calibration curves. The time required to perform the gamma-H2AX immunofluorescence assay was found to be 7 hours and 30 minutes and the estimated cost per sample was 5000 rupees (~ 60 USD). Conclusion Based on this study we conclude that the individual dose-response calibration curves determined with gamma-H2AX immunofluorescence assay for both low and high dose ranges of gamma radiation can be used for biological dosimetry. Further, the gamma-H2AX immunofluorescence assay can be used as a rapid cost-effective biodosimetric tool for institutions with an existing confocal microscope facility.
Collapse
Affiliation(s)
- Solomon Raj Jose
- Department of Radiotherapy, Christian Medical College Vellore, Vellore, India
| | | | - J Suganthy
- Department of Anatomy, Christian Medical College Vellore, CMC, Bagayam, Vellore, India
| | | | | | - Sandya Rani
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Rabi Singh
- Department of Radiation Oncology, Christian Medical College Vellore, Vellore, India
| |
Collapse
|
6
|
Kwak SY, Park JH, Won HY, Jang H, Lee SB, Jang WI, Park S, Kim MJ, Shim S. CXCL10 upregulation in radiation-exposed human peripheral blood mononuclear cells as a candidate biomarker for rapid triage after radiation exposure. Int J Radiat Biol 2024; 100:541-549. [PMID: 38227479 DOI: 10.1080/09553002.2023.2295300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE In case of a nuclear accident, individuals with high-dose radiation exposure (>1-2 Gy) should be rapidly identified. While ferredoxin reductase (FDXR) was recently suggested as a radiation-responsive gene, the use of a single gene biomarker limits radiation dose assessment. To overcome this limitation, we sought to identify reliable radiation-responsive gene biomarkers. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from mice after total body irradiation, and gene expression was analyzed using a microarray approach to identify radiation-responsive genes. RESULTS In light of the essential role of the immune response following radiation exposure, we selected several immune-related candidate genes upregulated by radiation exposure in both mouse and human PBMCs. In particular, the expression of ACOD1 and CXCL10 increased in a radiation dose-dependent manner, while remaining unchanged following lipopolysaccharide (LPS) stimulation in human PBMCs. The expression of both genes was further evaluated in the blood of cancer patients before and after radiotherapy. CXCL10 expression exhibited a distinct increase after radiotherapy and was positively correlated with FDXR expression. CONCLUSIONS CXCL10 expression in irradiated PBMCs represents a potential biomarker for radiation exposure.
Collapse
Affiliation(s)
- Seo Young Kwak
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Ji-Hye Park
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
- OPTOLANE Technologies Inc., Seongnam, South Korea
| | | | - Hyosun Jang
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Seung Bum Lee
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Won Il Jang
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
- Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sunhoo Park
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Science, Seoul, South Korea
| | - Min-Jung Kim
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Sehwan Shim
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| |
Collapse
|
7
|
Bacon B, Repin M, Shuryak I, Wu HC, Santella RM, Terry MB, Brenner DJ, Turner HC. High-throughput measurement of double strand break global repair phenotype in peripheral blood mononuclear cells after long-term cryopreservation. Cytometry A 2023; 103:575-583. [PMID: 36823754 PMCID: PMC10680149 DOI: 10.1002/cyto.a.24725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a useful model for biochemical assays, particularly for etiological studies. We describe here a method for measuring DNA repair capacity (DRC) in archival cryogenically preserved PBMCs. To model DRC, we measured γ-H2AX repair kinetics in thawed PBMCs after irradiation with 3 Gy gamma rays. Time-dependent fluorescently labeled γ-H2AX levels were measured at five time points from 1 to 20 h, yielding an estimate of global DRC repair kinetics as well as a measure of unrepaired double strand breaks at 20 h. While γ-H2AX levels are traditionally measured by either microscopy or flow-cytometry, we developed a protocol for imaging flow cytometry (IFC) that combines the detailed information of microscopy with the statistical power of flow methods. The visual imaging component of the IFC allows for monitoring aspects such as cellular health and apoptosis as well as fluorescence localization of the γ-H2AX signal, which ensures the power and significance of this technique. Application of a machine-learning based image classification improved flow cytometry fluorescent measurements by identifying apoptotic cells unable to undergo DNA repair. We present here DRC repair parameters from 18 frozen archival PBMCs and 28 fresh blood samples collected from a demographically diverse cohort of women measured in a high-throughput IFC format. This thaw method and assay can be used alone or in conjunction with other assays to measure etiological phenotypes in cryogenic biobanks of PBMCs.
Collapse
Affiliation(s)
- Bezalel Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Epidemiology, Mailman School of Public Health, Columbia University, Irving Medical Center, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY)
| |
Collapse
|
8
|
Okunola HL, Shuryak I, Repin M, Wu HC, Santella RM, Terry MB, Turner HC, Brenner DJ. Improved prediction of breast cancer risk based on phenotypic DNA damage repair capacity in peripheral blood B cells. RESEARCH SQUARE 2023:rs.3.rs-3093360. [PMID: 37461559 PMCID: PMC10350237 DOI: 10.21203/rs.3.rs-3093360/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Standard Breast Cancer (BC) risk prediction models based only on epidemiologic factors generally have quite poor performance, and there have been a number of risk scores proposed to improve them, such as AI-based mammographic information, polygenic risk scores and pathogenic variants. Even with these additions BC risk prediction performance is still at best moderate. In that decreased DNA repair capacity (DRC) is a major risk factor for development of cancer, we investigated the potential to improve BC risk prediction models by including a measured phenotypic DRC assay. Methods Using blood samples from the Breast Cancer Family Registry we assessed the performance of phenotypic markers of DRC in 46 matched pairs of individuals, one from each pair with BC (with blood drawn before BC diagnosis) and the other from controls matched by age and time since blood draw. We assessed DRC in thawed cryopreserved peripheral blood mononuclear cells (PBMCs) by measuring γ-H2AX yields (a marker for DNA double-strand breaks) at multiple times from 1 to 20 hrs after a radiation challenge. The studies were performed using surface markers to discriminate between different PBMC subtypes. Results The parameter F res , the residual damage signal in PBMC B cells at 20 hrs post challenge, was the strongest predictor of breast cancer with an AUC (Area Under receiver-operator Curve) of 0.89 [95% Confidence Interval: 0.84-0.93] and a BC status prediction accuracy of 0.80. To illustrate the combined use of a phenotypic predictor with standard BC predictors, we combined F res in B cells with age at blood draw, and found that the combination resulted in significantly greater BC predictive power (AUC of 0.97 [95% CI: 0.94-0.99]), an increase of 13 percentage points over age alone. Conclusions If replicated in larger studies, these results suggest that inclusion of a fingerstick-based phenotypic DRC blood test has the potential to markedly improve BC risk prediction.
Collapse
Affiliation(s)
| | | | | | - Hui-Chen Wu
- Columbia University Mailman School of Public Health
| | | | | | | | | |
Collapse
|
9
|
Shen X, Chen Y, Li C, Yang F, Wen Z, Zheng J, Zhou Z. Rapid and automatic detection of micronuclei in binucleated lymphocytes image. Sci Rep 2022; 12:3913. [PMID: 35273270 PMCID: PMC8913785 DOI: 10.1038/s41598-022-07936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Cytokinesis block micronucleus (CBMN) assay is a widely used radiation biological dose estimation method. However, the subjectivity and the time-consuming nature of manual detection limits CBMN for rapid standard assay. The CBMN analysis is combined with a convolutional neural network to create a software for rapid standard automated detection of micronuclei in Giemsa stained binucleated lymphocytes images in this study. Cell acquisition, adhesive cell mass segmentation, cell type identification, and micronucleus counting are the four steps of the software's analysis workflow. Even when the cytoplasm is hazy, several micronuclei are joined to each other, or micronuclei are attached to the nucleus, this algorithm can swiftly and efficiently detect binucleated cells and micronuclei in a verification of 2000 images. In a test of 20 slides, the software reached a detection rate of 99.4% of manual detection in terms of binucleated cells, with a false positive rate of 14.7%. In terms of micronuclei detection, the software reached a detection rate of 115.1% of manual detection, with a 26.2% false positive rate. Each image analysis takes roughly 0.3 s, which is an order of magnitude faster than manual detection.
Collapse
Affiliation(s)
- Xiang Shen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Ying Chen
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Chaowen Li
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Fucheng Yang
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Zhanbo Wen
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Jinlin Zheng
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Zhenggan Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China.
| |
Collapse
|
10
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
11
|
Li C, Liu H, Wei R, Liu Z, Chen H, Guan X, Zhao Z, Wang X, Jiang Z. LncRNA EGOT/miR-211-5p Affected Radiosensitivity of Rectal Cancer by Competitively Regulating ErbB4. Onco Targets Ther 2021; 14:2867-2878. [PMID: 33953571 PMCID: PMC8091867 DOI: 10.2147/ott.s256989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Long non-coding ribonucleic acids (lncRNAs) are involved in the progression of cancers and affect the response to radiation therapy. This study was to investigate the mechanism of lncRNA EGOT in the radiosensitivity of rectal cancer. METHODS The mRNA expression of EGOT, miR-211-5p and ErbB4 in rectal cancer tissues and cells was detected by qRT-PCR. The protein expression of ErbB4 was detected by Western blot. Dual-luciferase reporter assay and ribonucleic acid immunoprecipitation (RIP) were used to confirm the interaction between EGOT and miR-211-5p or miR-211-5p and ErbB4. Transfection technology was used to down-regulate and up-regulate the expression of EGOT and miR-211-5p in rectal cancer cells, respectively. MTT, colony formation and flow cytometry were used to detect the effect of EGOT and miR-211-5p on proliferation, invasion, migration and apoptosis of rectal cancer cells. RESULTS The expression of EGOT was up-regulated in rectal cancer tissues and cells, and the expression of EGOT was related to the late stage of pathology. EGOT knockdown inhibited the proliferation and colony formation of rectal cancer cells and induced the apoptosis of rectal cancer cells. Moreover, EGOT knockdown was significantly enhanced the effects of radiotherapy on rectal cancer in vivo and in vitro. Furthermore, EGOT was found to serve as a sponge of miR-211-5p, and ErbB4 was a downstream target of miR-211-5p. EGOT enhanced the expression of ErbB4 by regulating miR-211-5p. MiR-211-5p inhibitor restored the effect of EGOT knockdown on the radiosensitivity of rectal cancer. CONCLUSION Down-regulation of EGOT could inhibit the growth of rectal cancer cells by regulating the miR-211-5p/ErbB4 axis and improve the radiosensitivity of rectal cancer cells. EGOT may be a new therapeutic target for rectal cancer.
Collapse
Affiliation(s)
- Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ran Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haipeng Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhixun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Bensimon Etzol J, Rizzi Y, Gateau T, Guersen J, Pereira B, Gouzou E, Lanaret M, Grand O, Bettencourt C, Bouvet S, Ugolin N, Chevillard S, Boyer L. Biodosimetry in interventional radiology: cutaneous-based immunoassay for anticipating risks of dermatitis. Eur Radiol 2021; 31:7476-7483. [PMID: 33791818 DOI: 10.1007/s00330-021-07885-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Interventional radiology procedures expose individuals to ionizing radiation. However, existing dosimetry methods do not provide the dose effectively absorbed to the skin, and do not consider the patient's individual response to irradiation. To resolve this lack of dosimetry data, we developed a new external irradiation biodosimetry device, DosiKit, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. This new biological method was tested in Clermont-Ferrand University Hospital to evaluate the assay performances in the medical field and to estimate DosiKit sensitivity threshold. METHODS DosiKit was tested over 95 patients treated with neuroradiological interventions. For each intervention, lithium fluoride thermoluminescent dosimeters (TLD) were used to measure total dose received at each hair collection point (lateral and occipital skull areas), and conventional indirect dosimetry parameters were collected with a Dosimetry Archiving and Communication System (DACS). RESULTS Quantitative measurement of radiation-induced H2AX protein phosphorylation was performed on 174 hair samples before and after the radiation exposure and 105 samples showed a notable induction of gammaH2AX protein after the radiological procedure. According to a statistical analysis, the threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy. CONCLUSIONS With this study, we showed that DosiKit provides a useful way for mapping the actually absorbed doses, allowing to identify patients overexposed in interventional radiology procedures, and thus for anticipating risk of developing dermatitis. KEY POINTS • DosiKit is a new external irradiation biodosimetry device, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. • DosiKit was tested over 95 patients treated with neuroradiological interventions. • The threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy and DosiKit provides a useful way for mapping the actually absorbed doses.
Collapse
Affiliation(s)
| | - Yassine Rizzi
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Theo Gateau
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Joel Guersen
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Bruno Pereira
- Unité de Biostatistiques (DRCI), CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Emmanuel Gouzou
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Mathieu Lanaret
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Oceane Grand
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France
| | | | | | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses, France
| | | | - Louis Boyer
- Service de Radiologie CHU Gabriel-Montpied, Clermont-Ferrand, France.,TGI Institut Pascal UMR 6602 CNRS UCA SIGMA, Clermont-Ferrand, France
| |
Collapse
|
13
|
Zosangzuali M, Lalremruati M, Lalmuansangi C, Nghakliana F, Pachuau L, Bandara P, Zothan Siama. Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice. Electromagn Biol Med 2021; 40:393-407. [PMID: 33687298 DOI: 10.1080/15368378.2021.1895207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study was designed to investigate the possible effects of exposure to mobile phone base station (MPBS) emits 1800-MHz RF-EMR on some oxidative stress parameters in the brain, heart, kidney and liver of Swiss albino mice under exposures below thermal levels. Mice were randomly assigned to three experimental groups which were exposed to RF-EMR for 6 hr/day, 12 hr/day and 24 hr/day for 45 consecutive days, respectively, and a control group. The glutathione (GSH) levels and activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) were significantly reduced in mice brain after exposure to RF-EMR for 12 hr and 24 hr per day. Exposure of mice to RF-EMR for 12 hr and 24 hr per day also led to a significant increase in malondialdehyde (an index of lipid peroxidation) levels in mice brain. On the contrary, exposures used in this study did not induce any significant change in various oxidative stress-related parameters in the heart, kidney and liver of mice. Our findings showed no significant variations in the activities of aspartate amino-transferase (AST), alanine amino-transferase (ALT), and on the level of creatinine (CRE) in the exposed mice. This study also revealed a decrease in RBC count with an increase in WBC count in mice subjected to 12 hr/day and 24 hr/day exposures. Exposure to RF-EMR from MPBS may cause adverse effects in mice brain by inducing oxidative stress arising from the generation of reactive oxygen species (ROS) as indicated by enhanced lipid peroxidation, and reduced levels and activities of antioxidants.
Collapse
Affiliation(s)
| | | | - C Lalmuansangi
- Department of Zoology, Mizoram University, Aizawl, India
| | - F Nghakliana
- Department of Zoology, Mizoram University, Aizawl, India
| | - Lalrinthara Pachuau
- Department of Physics, Pachhunga University College, Mizoram University, Aizawl, India
| | - Priyanka Bandara
- Executive Board, Oceania Radiofrequency Scientific Advisory Association (ORSAA), Brisbane, Australia
| | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, India
| |
Collapse
|
14
|
Owiti NA, Nagel ZD, Engelward BP. Fluorescence Sheds Light on DNA Damage, DNA Repair, and Mutations. Trends Cancer 2020; 7:240-248. [PMID: 33203608 DOI: 10.1016/j.trecan.2020.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
DNA damage can lead to carcinogenic mutations and toxicity that promotes diseases. Therefore, having rapid assays to quantify DNA damage, DNA repair, mutations, and cytotoxicity is broadly relevant to health. For example, DNA damage assays can be used to screen chemicals for genotoxicity, and knowledge about DNA repair capacity has applications in precision prevention and in personalized medicine. Furthermore, knowledge of mutation frequency has predictive power for downstream cancer, and assays for cytotoxicity can predict deleterious health effects. Tests for all of these purposes have been rendered faster and more effective via adoption of fluorescent readouts. Here, we provide an overview of established and emerging cell-based assays that exploit fluorescence for studies of DNA damage and its consequences.
Collapse
Affiliation(s)
- Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Shuryak I, Turner HC, Perrier JR, Cunha L, Canadell MP, Durrani MH, Harken A, Bertucci A, Taveras M, Garty G, Brenner DJ. A High Throughput Approach to Reconstruct Partial-Body and Neutron Radiation Exposures on an Individual Basis. Sci Rep 2020; 10:2899. [PMID: 32076014 PMCID: PMC7031285 DOI: 10.1038/s41598-020-59695-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/27/2020] [Indexed: 11/28/2022] Open
Abstract
Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes. To utilize these differences for biodosimetry, we developed metrics that describe micronuclei distributions in binucleated cells and serve as predictors in machine learning or parametric analyses of the following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X rays vs. various neutron + photon mixtures. The results showed high accuracies of scenario and dose reconstructions. Specifically, receiver operating characteristic curve areas (AUC) for sample classification by exposure type reached 0.931 and 0.916 in scenarios A and B, respectively. R2 for actual vs. reconstructed doses in these scenarios reached 0.87 and 0.77, respectively. These encouraging findings demonstrate a proof-of-principle for the proposed approach of high-throughput reconstruction of clinically-relevant complex radiation exposure scenarios.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA.
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Jay R Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Lydia Cunha
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Monica Pujol Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Mohammad H Durrani
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Antonella Bertucci
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Zhao L, He X, Shang Y, Bao C, Peng A, Lei X, Han P, Mi D, Sun Y. Identification of potential radiation-responsive biomarkers based on human orthologous genes with possible roles in DNA repair pathways by comparison between Arabidopsis thaliana and homo sapiens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:135076. [PMID: 31734608 DOI: 10.1016/j.scitotenv.2019.135076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Rapid and reliable ionization radiation (IR) exposure estimation has become increasingly important in environment due to the urgent requirement of medical evaluation and treatment in the event of nuclear accident emergency. Human DNA repair genes can be identified as important candidate biomarkers to assess IR exposure, while how to find the enough sensitive and specific biomarkers in the DNA repair networks is still challenged and not fully determined. The conserved features of DNA repair pathways may facilitate interdisciplinary studies that cross the traditional boundaries between animal and plant biology, with the aim of identifying undiscovered human DNA repair genes for potential radiation-responsive biomarkers. In this work, an in silico method of homologous comparison was performed to identify the human orthologues of A. thaliana DNA repair genes, and thereby to explore the sensitive and specific human radiation-responsive genes to evaluate the IR exposure levels. The results showed that a total of 16 putative candidate genes were involved in the human DNA repair pathways of homologous recombination (HR) and non-homologous end joining (NHEJ), and most of them were confirmed by previous experiments. Additionally, we analyzed the gene expression patterns of these 16 candidate genes in several human transcript microarray datasets with different IR treatments. The results indicated that most of the gene expression levels for these candidate genes were significantly changed under different radiation treatments. Based on these results, we integrated these putative human DNA repair genes into the DNA repair pathways to propose new insights of the HR and NHEJ pathways, which can also provide the potential targets for the development of radiation biomarkers. Notably, two putative DNA repair genes, named ERCC1 and ESCO2, were identified and were considered to be the sensitive and specific biomarkers in response to γ-ray exposures.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Chengyu Bao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Ailin Peng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Pei Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| |
Collapse
|
17
|
Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020; 96:370-382. [PMID: 31829779 DOI: 10.1080/09553002.2020.1704909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose: The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide a rapid assessment of the doses received by individuals using high-throughput technologies. There is also a great interest in developing new biomarkers of dose exposure, which could be used in large molecular epidemiological studies in order to correlate estimated doses received and health effects. The goal of this review was to summarize current literature focused on biological dosimetry, namely radiation-responsive biomarkers.Methods: The studies involved in this review were thoroughly selected according to the determined criteria and PRISMA guidelines.Results: We described briefly recent advances in radiation genomics and metabolomics, giving particular emphasis to proteomic analysis. The majority of studies were performed on animal models (rats, mice, and non-human primates). They have provided much beneficial information, but the most relevant tests have been done on human (oncological) patients. By inspecting the radiaiton biodosimetry literate of the last 10 years, we identified a panel of candidate markers for each -omic approach involved.Conslusions: We reviewed different methodological approaches and various biological materials, which can be exploited for dose-effect prediction. The protein biomarkers from human plasma are ideal for this specific purpose. From a plethora of candidate markers, FDXR is a very promising transcriptomic candidate, and importantly this biomarker was also confirmed by some studies at protein level in humans.
Collapse
Affiliation(s)
- Gabriela Kultova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alena Myslivcova-Fucikova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Lee Y, Wang Q, Shuryak I, Brenner DJ, Turner HC. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol 2019; 14:150. [PMID: 31438980 PMCID: PMC6704696 DOI: 10.1186/s13014-019-1344-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
Background Measurement of γ-H2AX foci levels in cells provides a sensitive and reliable method for quantitation of the radiation-induced DNA damage response. The objective of the present study was to develop a rapid, high-throughput γ-H2AX assay based on imaging flow cytometry (IFC) using the ImageStream®X Mk II (ISX) platform to evaluate DNA double strand break (DSB) repair kinetics in human peripheral blood cells after exposure to ionizing irradiation. Methods The γ-H2AX protocol was developed and optimized for small volumes (100 μL) of human blood in Matrix™ 96-tube format. Blood cell lymphocytes were identified and captured by ISX INSPIRE™ software and analyzed by Data Exploration and Analysis Software. Results Dose- and time-dependent γ-H2AX levels corresponding to radiation exposure were measured at various time points over 24 h using the IFC system. γ-H2AX fluorescence intensity at 1 h after exposure, increased linearly with increasing radiation dose (R2 = 0.98) for the four human donors tested, whereas the dose response for the mean number of γ-H2AX foci/cell was not as robust (R2 = 0.81). Radiation-induced γ-H2AX levels rapidly increased within 30 min and reached a maximum by ~ 1 h, after which time there was fast decline by 6 h, followed by a much slower rate of disappearance up to 24 h. A mathematical approach for quantifying DNA repair kinetics using the rate of γ-H2AX decay (decay constant, Kdec), and yield of residual unrepaired breaks (Fres) demonstrated differences in individual repair capacity between the healthy donors. Conclusions The results indicate that the IFC-based γ-H2AX protocol may provide a practical and high-throughput platform for measurements of individual global DNA DSB repair capacity which can facilitate precision medicine by predicting individual radiosensitivity and risk of developing adverse effects related to radiotherapy treatment. Electronic supplementary material The online version of this article (10.1186/s13014-019-1344-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA. .,Present Address: Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| | - Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| |
Collapse
|
19
|
Taraboletti A, Goudarzi M, Kabir A, Moon BH, Laiakis EC, Lacombe J, Ake P, Shoishiro S, Brenner D, Fornace AJ, Zenhausern F. Fabric Phase Sorptive Extraction-A Metabolomic Preprocessing Approach for Ionizing Radiation Exposure Assessment. J Proteome Res 2019; 18:3020-3031. [PMID: 31090424 PMCID: PMC7437658 DOI: 10.1021/acs.jproteome.9b00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The modern application of mass spectrometry-based metabolomics to the field of radiation assessment and biodosimetry has allowed for the development of prompt biomarker screenings for radiation exposure. Our previous work on radiation assessment, in easily accessible biofluids (such as urine, blood, saliva), has revealed unique metabolic perturbations in response to radiation quality, dose, and dose rate. Nevertheless, the employment of swift injury assessment in the case of a radiological disaster still remains a challenge as current sample processing can be time consuming and cause sample degradation. To address these concerns, we report a metabolomics workflow using a mass spectrometry-compatible fabric phase sorptive extraction (FPSE) technique. FPSE employs a matrix coated with sol-gel poly(caprolactone-b-dimethylsiloxane-b-caprolactone) that binds both polar and nonpolar metabolites in whole blood, eliminating serum processing steps. We confirm that the FPSE preparation technique combined with liquid chromatography-mass spectrometry can distinguish radiation exposure markers such as taurine, carnitine, arachidonic acid, α-linolenic acid, and oleic acid found 24 h after 8 Gy irradiation. We also note the effect of different membrane fibers on both metabolite extraction efficiency and the temporal stabilization of metabolites in whole blood at room temperature. These findings suggest that the FPSE approach could work in future technology to triage irradiated individuals accurately, via biomarker screening, by providing a novel method to stabilize biofluids between collection and sample analysis.
Collapse
Affiliation(s)
- Alexandra Taraboletti
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Bo-Hyun Moon
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Jerome Lacombe
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Pelagie Ake
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Sueoka Shoishiro
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
| | - David Brenner
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | - Albert J. Fornace
- Department of Oncology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, 3800 Reservoir Road Northwest, Washington, District of Columbia 20057, United States
| | - Frederic Zenhausern
- Center for Applied NanoBiosience and Medicine, University of Arizona, 475 North Fifth Street, Phoenix, Arizona 85004, United States
- Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, Arizona 85004, United States
- Department of Basic Medical Sciences, College of Medicine Phoenix, 425 North Fifth Street, Phoenix, Arizona 85004, United States
| |
Collapse
|
20
|
Turner HC, Lee Y, Weber W, Melo D, Kowell A, Ghandhi SA, Amundson SA, Brenner DJ, Shuryak I. Effect of dose and dose rate on temporal γ-H2AX kinetics in mouse blood and spleen mononuclear cells in vivo following Cesium-137 administration. BMC Mol Cell Biol 2019; 20:13. [PMID: 31138230 PMCID: PMC6540459 DOI: 10.1186/s12860-019-0195-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background Cesium-137 (137Cs) is one of the major and most clinically relevant radionuclides of concern in a radiological dispersal device, “dirty bomb” scenario as well as in nuclear accidents and detonations. In this exposure scenario, a significant amount of soluble radionuclide(s) may be dispersed into the atmosphere as a component of fallout. The objectives of the present study were to investigate the effect of protracted 137Cs radionuclide exposures on DNA damage in mouse blood and spleen mononuclear cells (MNCs) in vivo using the γ-H2AX biomarker, and to develop a mathematical formalism for these processes. Results C57BL/6 mice were injected with a range of 137CsCl activities (5.74, 6.66, 7.65 and 9.28 MBq) to achieve total-body committed doses of ~ 4 Gy at Days 3, 5, 7, and 14. Close to 50% of 137Cs was excreted by day 5, leading to a slower rate of decay for the remaining time of the study; 137Cs excretion kinetics were independent of activity level within the tested range, and the absorbed radiation dose was determined by injected activity and time after injection. Measurements of γ-H2AX fluorescence in blood and spleen MNCs at each time point were used to develop a new biodosimetric mathematical formalism to estimate injected activity based on γ-H2AX fluorescence and time after injection. The formalism performed reasonably well on blood data at 2–5 days after injection: Pearson and Spearman’s correlation coefficients between actual and predicted activity values were 0.857 (p = 0.00659) and 0.929 (p = 0.00223), respectively. Conclusions Despite the complicated nature of the studied biological system and the time-dependent changes in radiation dose and dose rate due to radionuclide excretion and other processes, we have used the γ-H2AX repair kinetics to develop a mathematical formalism, which can relatively accurately predict injected 137Cs activity 2–5 days after initial exposure. To determine the assay’s usefulness to predict retrospective absorbed dose for medical triage, further studies are required to validate the sensitivity and accuracy of the γ-H2AX response after protracted exposures. Electronic supplementary material The online version of this article (10.1186/s12860-019-0195-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | | | - Aimee Kowell
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
21
|
Buonanno M, Grilj V, Brenner DJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol 2019; 139:51-55. [PMID: 30850209 DOI: 10.1016/j.radonc.2019.02.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiotherapy outcomes are limited by toxicity in the healthy tissues surrounding the irradiated tumor. Recent pre-clinical studies have shown that irradiations with electrons or photons delivered at so called FLASH dose rates (i.e. >40 Gy/s) dramatically reduce adverse side effects in the normal tissues while being equally efficient for tumor control as irradiations at conventional dose rates (3-5 cGy/s). In the case of protons however, FLASH effects have not been investigated partially because of the limited availability of facilities that can achieve such high dose rates. METHODS Using a novel irradiation platform, we measured acute and long-term biological effects in normal human lung fibroblasts (IMR90) exposed to therapeutically relevant doses of 4.5 MeV protons (LET = 10 keV/µm) delivered at dose rates spanning four orders of magnitude. Endpoints included clonogenic cell survival, γH2AX foci formation, induction of premature senescence (β-gal), and the expression of the pro-inflammatory marker TGFβ. RESULTS Proton dose rate had no influence on the cell survival, but for the highest dose rate used (i.e. 1000 Gy/s) foci formation saturated beyond 10 Gy. In the progeny of irradiated cells, an increase in dose (20 Gy vs. 10 Gy) and dose rate (1000 Gy/s vs. 0.05 Gy/s) positively affected the number of senescence cells and the expression of TGFβ1. CONCLUSIONS In normal lung fibroblasts proton dose rate had little impact on acute effects, but significantly influenced the expression of long-term biological responses in vitro. Compared to conventional dose rates, protons delivered at FLASH dose rates mitigated such delayed detrimental effects.
Collapse
Affiliation(s)
- Manuela Buonanno
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| | - Veljko Grilj
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| | - David J Brenner
- Radiological Research Accelerator Facility (RARAF), New York, United States.
| |
Collapse
|
22
|
Wang Q, Rodrigues MA, Repin M, Pampou S, Beaton-Green LA, Perrier J, Garty G, Brenner DJ, Turner HC, Wilkins RC. Automated Triage Radiation Biodosimetry: Integrating Imaging Flow Cytometry with High-Throughput Robotics to Perform the Cytokinesis-Block Micronucleus Assay. Radiat Res 2019; 191:342-351. [PMID: 30779694 DOI: 10.1667/rr15243.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytokinesis-block micronucleus (CBMN) assay has become a fully-validated and standardized method for radiation biodosimetry. The assay is typically performed using microscopy, which is labor intensive, time consuming and impractical after a large-scale radiological/nuclear event. Imaging flow cytometry (IFC), which combines the statistical power of traditional flow cytometry with the sensitivity and specificity of microscopy, has been recently used to perform the CBMN assay. Since this technology is capable of automated sample acquisition and multi-file analysis, we have integrated IFC into our Rapid Automated Biodosimetry Technology (RABiT-II). Assay development and optimization studies were designed to increase the yield of binucleated cells (BNCs), and improve data acquisition and analysis templates to increase the speed and accuracy of image analysis. Human peripheral blood samples were exposed ex vivo with up to 4 Gy of c rays at a dose rate of 0.73 Gy/min. After irradiation, samples were transferred to microtubes (total volume of 1 ml including blood and media) and organized into a standard 8 × 12 plate format. Sample processing methods were modified by increasing the blood-to-media ratio, adding hypotonic solution prior to cell fixation and optimizing nuclear DRAQ5 staining, leading to an increase of 81% in BNC yield. Modification of the imaging processing algorithms within IFC software also improved BNC and MN identification, and reduced the average time of image analysis by 78%. Finally, 50 ll of irradiated whole blood was cultured with 200 ll of media in 96-well plates. All sample processing steps were performed automatically using the RABiT-II cell: :explorer robotic system adopting the optimized IFC-CBMN assay protocol. The results presented here detail a novel, high-throughput RABiT-IFC CBMN assay that possesses the potential to increase capacity for triage biodosimetry during a large-scale radiological/nuclear event.
Collapse
Affiliation(s)
- Qi Wang
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | - Mikhail Repin
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Sergey Pampou
- b Columbia Genome Center High-Throughput Screening Facility, Columbia University Medical Center, New York, New York 10032
| | - Lindsay A Beaton-Green
- d Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| | - Jay Perrier
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Guy Garty
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - David J Brenner
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Helen C Turner
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Ruth C Wilkins
- d Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| |
Collapse
|
23
|
Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci Rep 2018; 8:13557. [PMID: 30202043 PMCID: PMC6131502 DOI: 10.1038/s41598-018-31740-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
After a radiological incident, there is an urgent need for fast and reliable bioassays to identify radiation-exposed individuals within the first week post exposure. This study aimed to identify candidate radiation-responsive protein biomarkers in human lymphocytes in vivo using humanized NOD scid gamma (Hu-NSG) mouse model. Three days after X-irradiation (0–2 Gy, 88 cGy/min), human CD45+ lymphocytes were collected from the Hu-NSG mouse spleen and quantitative changes in the proteome of the human lymphocytes were analysed by mass spectrometry. Forty-six proteins were differentially expressed in response to radiation exposure. FDXR, BAX, DDB2 and ACTN1 proteins were shown to have dose-dependent response with a fold change greater than 2. When these proteins were used to estimate radiation dose by linear regression, the combination of FDXR, ACTN1 and DDB2 showed the lowest mean absolute errors (≤0.13 Gy) and highest coefficients of determination (R2 = 0.96). Biomarker validation studies were performed in human lymphocytes 3 days after irradiation in vivo and in vitro. In conclusion, this is the first study to identify radiation-induced human protein signatures in vivo using the humanized mouse model and develop a protein panel which could be used for the rapid assessment of absorbed dose 3 days after radiation exposure.
Collapse
|
24
|
Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018; 13:e0198851. [PMID: 29879226 PMCID: PMC5991767 DOI: 10.1371/journal.pone.0198851] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- * E-mail:
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, United States of America
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, United States of America
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- Honor Health Research Institute, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
25
|
Bensimon Etzol J, Valente M, Altmeyer S, Bettencourt C, Bouvet S, Cosler G, Desangles F, Drouet M, Entine F, Hérodin F, Jourquin F, Lecompte Y, Martigne P, Michel X, Pateux J, Ugolin N, Chevillard S. DosiKit, a New Portable Immunoassay for Fast External Irradiation Biodosimetry. Radiat Res 2017; 190:176-185. [DOI: 10.1667/rr14760.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marco Valente
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | | | | | - Guillaume Cosler
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | | | - Michel Drouet
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Fabrice Entine
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Francis Hérodin
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Flora Jourquin
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Yannick Lecompte
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Patrick Martigne
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Xavier Michel
- Service de Protection Radiologique des Armées (SPRA), Clamart, France
| | - Jérôme Pateux
- Institut de Recherche Biomedicale des Armées (IRBA), Bretigny, France
| | - Nicolas Ugolin
- Commissariat à l'Energie Atomique (CEA), Fontenay-aux-Roses, France
| | | |
Collapse
|
26
|
Manivannan B, Kuppusamy T, Venkatesan S, Perumal V. A comparison of estimates of doses to radiotherapy patients obtained with the dicentric chromosome analysis and the γ-H2AX assay: Relevance to radiation triage. Appl Radiat Isot 2017; 131:1-7. [PMID: 29080427 DOI: 10.1016/j.apradiso.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022]
Abstract
The γ-H2AX assay was investigated as an alternative to the time-consuming dicentric chromosome assay (DCA). Radiation doses to 25 radiotherapy patients were estimated in parallel by DCA and the γ-H2AX assay. The γ-H2AX assay yielded doses in line with the calculated equivalent whole body doses in 92% of the patients, whereas the success rate of DCA was only 76%. The result shows that the γ-H2AX assay can be effectively used as a rapid and more precise alternative to DCA.
Collapse
Affiliation(s)
- Bhavani Manivannan
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - Thayalan Kuppusamy
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Srinivasan Venkatesan
- Dr. Kamakshi Memorial Hospital Pvt. Ltd., Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - Venkatachalam Perumal
- Department of Human Genetics, College of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| |
Collapse
|
27
|
Repin M, Pampou S, Karan C, Brenner DJ, Garty G. RABiT-II: Implementation of a High-Throughput Micronucleus Biodosimetry Assay on Commercial Biotech Robotic Systems. Radiat Res 2017; 187:492-498. [PMID: 28231025 DOI: 10.1667/rr011cc.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We demonstrate the use of high-throughput biodosimetry platforms based on commercial high-throughput/high-content screening robotic systems. The cytokinesis-block micronucleus (CBMN) assay, using only 20 μl whole blood from a fingerstick, was implemented on a PerkinElmer cell::explorer and General Electric IN Cell Analyzer 2000. On average 500 binucleated cells per sample were detected by our FluorQuantMN software. A calibration curve was generated in the radiation dose range up to 5.0 Gy using the data from 8 donors and 48,083 binucleated cells in total. The study described here demonstrates that high-throughput radiation biodosimetry is practical using current commercial high-throughput/high-content screening robotic systems, which can be readily programmed to perform and analyze robotics-optimized cytogenetic assays. Application to other commercial high-throughput/high-content screening systems beyond the ones used in this study is clearly practical. This approach will allow much wider access to high-throughput biodosimetric screening for large-scale radiological incidents than is currently available.
Collapse
Affiliation(s)
| | - Sergey Pampou
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | - Charles Karan
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | | | - Guy Garty
- a Center for Radiological Research and
| |
Collapse
|
28
|
Garty G, Turner HC, Salerno A, Bertucci A, Zhang J, Chen Y, Dutta A, Sharma P, Bian D, Taveras M, Wang H, Bhatla A, Balajee A, Bigelow AW, Repin M, Lyulko OV, Simaan N, Yao YL, Brenner DJ. THE DECADE OF THE RABiT (2005-15). RADIATION PROTECTION DOSIMETRY 2016; 172:201-206. [PMID: 27412510 PMCID: PMC5225976 DOI: 10.1093/rpd/ncw172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with 'off the shelf' systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies.
Collapse
Affiliation(s)
- G Garty
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H C Turner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - A Salerno
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Pratt & Whitney Canada Corp., 1000 Marie-Victorin, Longueil, QC, Canada J4G 1A1
| | - A Bertucci
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - J Zhang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Auris Surgical Robotics Inc., 125 Shoreway Rd, San Carlos, CA 94070, USA
| | - Y Chen
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - A Dutta
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: BioReliance Corp., 9630 Medical Center Dr, Rockville, MD 20850, USA
| | - P Sharma
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - D Bian
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - M Taveras
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H Wang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: General Motors Co., 30500 Mound Road, Warren, MI 48090, USA
| | - A Bhatla
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Curiosity Lab Inc., 54 Mallard Pl. Secaucus, NJ, 07094, USA
| | - A Balajee
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Building SC-10, 1299, Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - A W Bigelow
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - M Repin
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - O V Lyulko
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - N Simaan
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Department of Mechanical Engineering, Vanderbuilt University, PMB 351592, Nashville, TN, 37235, USA
| | - Y L Yao
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - D J Brenner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
29
|
Bian D, Tsui JC, Repin M, Garty G, Turner H, Lawrence Yao Y, Brenner DJ. Liquid Handling Optimization in High-Throughput Biodosimetry Tool. J Med Device 2016; 10:0410071-4100710. [PMID: 27746851 DOI: 10.1115/1.4033600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/13/2016] [Indexed: 11/08/2022] Open
Abstract
Due to the need of high-speed and efficient biodosimetric assays for triage and therapy in the event of radiological or nuclear attack, a robotically based automated biodosimetry tool (RABiT) has been developed over the past few years. Adapting the micronucleus assay from filter plates to V-shaped plates presented challenges in the liquid handling, namely, cell splashing out of the V-shaped well plate during the cell harvesting, poor cell distribution on the bottom of the image plate during the dispensing, and cell loss from the image plate during the aspiration in the liquid handling process. Experimental and numerical investigations were carried out to better understand the phenomena and mitigate the problems. Surface tension and contact angle among the fluids and the plate wall were accounted for in the discrete and multiphase numerical models. Experimental conditions were optimized based on the numerical results showing the relationship between nozzle speed and amount of splashed liquid, and the relationship between aspiration speed and number of escaped cells. Using these optimized parameters, numbers of micronuclei in binucleated cells showed the same dose dependence in the RABiT-prepared samples as those in the manually prepared ones. Micronucleus assay protocol was fully realized on RABiT.
Collapse
Affiliation(s)
- Dakai Bian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027 e-mail:
| | - Jason C Tsui
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032
| | - Guy Garty
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032
| | - Helen Turner
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032
| | - Y Lawrence Yao
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
30
|
Flood AB, Ali AN, Boyle HK, Du G, Satinsky VA, Swarts SG, Williams BB, Demidenko E, Schreiber W, Swartz HM. Evaluating the Special Needs of The Military for Radiation Biodosimetry for Tactical Warfare Against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods. HEALTH PHYSICS 2016; 111:169-82. [PMID: 27356061 PMCID: PMC4930006 DOI: 10.1097/hp.0000000000000538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this paper is to delineate characteristics of biodosimetry most suitable for assessing individuals who have potentially been exposed to significant radiation from a nuclear device explosion when the primary population targeted by the explosion and needing rapid assessment for triage is civilians vs. deployed military personnel. The authors first carry out a systematic analysis of the requirements for biodosimetry to meet the military's needs to assess deployed troops in a warfare situation, which include accomplishing the military mission. Then the military's special capabilities to respond and carry out biodosimetry for deployed troops in warfare are compared and contrasted systematically, in contrast to those available to respond and conduct biodosimetry for civilians who have been targeted by terrorists, for example. Then the effectiveness of different biodosimetry methods to address military vs. civilian needs and capabilities in these scenarios was compared and, using five representative types of biodosimetry with sufficient published data to be useful for the simulations, the number of individuals are estimated who could be assessed by military vs. civilian responders within the timeframe needed for triage decisions. Analyses based on these scenarios indicate that, in comparison to responses for a civilian population, a wartime military response for deployed troops has both more complex requirements for and greater capabilities to use different types of biodosimetry to evaluate radiation exposure in a very short timeframe after the exposure occurs. Greater complexity for the deployed military is based on factors such as a greater likelihood of partial or whole body exposure, conditions that include exposure to neutrons, and a greater likelihood of combined injury. These simulations showed, for both the military and civilian response, that a very fast rate of initiating the processing (24,000 d) is needed to have at least some methods capable of completing the assessment of 50,000 people within a 2- or 6-d timeframe following exposure. This in turn suggests a very high capacity (i.e., laboratories, devices, supplies and expertise) would be necessary to achieve these rates. These simulations also demonstrated the practical importance of the military's superior capacity to minimize time to transport samples to offsite facilities and use the results to carry out triage quickly. Assuming sufficient resources and the fastest daily rate to initiate processing victims, the military scenario revealed that two biodosimetry methods could achieve the necessary throughput to triage 50,000 victims in 2 d (i.e., the timeframe needed for injured victims), and all five achieved the targeted throughput within 6 d. In contrast, simulations based on the civilian scenario revealed that no method could process 50,000 people in 2 d and only two could succeed within 6 d.
Collapse
Affiliation(s)
- Ann Barry Flood
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arif N. Ali
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA
| | - Holly K. Boyle
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gaixin Du
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | | | - Steven G. Swarts
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL
| | - Benjamin B. Williams
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Wilson Schreiber
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Harold M. Swartz
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
31
|
Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats. Sci Rep 2016; 6:30018. [PMID: 27445126 PMCID: PMC4957115 DOI: 10.1038/srep30018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Abstract
The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.
Collapse
|
32
|
Kurashige T, Shimamura M, Nagayama Y. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine. JOURNAL OF RADIATION RESEARCH 2016; 57:312-7. [PMID: 26951077 PMCID: PMC4915540 DOI: 10.1093/jrr/rrw001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 05/21/2023]
Abstract
The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds.
Collapse
Affiliation(s)
- Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
33
|
Bertucci A, Smilenov LB, Turner HC, Amundson SA, Brenner DJ. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:53-59. [PMID: 26791381 PMCID: PMC4792265 DOI: 10.1007/s00411-015-0628-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 11/28/2015] [Indexed: 05/29/2023]
Abstract
Developing new methods for radiation biodosimetry has been identified as a high-priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose rates due to their geographical position and sheltering conditions, and dose rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios, high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The Rapid Automated Biodosimetry Tool (RABiT) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 h. The acute dose was delivered at ~1.03 Gy/min and the low dose rate exposure at ~0.31 Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose rate starting at 2 Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5 Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose rate exposure.
Collapse
Affiliation(s)
- Antonella Bertucci
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA.
| | - Lubomir B Smilenov
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| |
Collapse
|
34
|
γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90. PLoS One 2015; 10:e0143815. [PMID: 26618801 PMCID: PMC4664397 DOI: 10.1371/journal.pone.0143815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle effects and apoptosis.
Collapse
|
35
|
Lue SW, Repin M, Mahnke R, Brenner DJ. Development of a High-Throughput and Miniaturized Cytokinesis-Block Micronucleus Assay for Use as a Biological Dosimetry Population Triage Tool. Radiat Res 2015; 184:134-42. [PMID: 26230078 DOI: 10.1667/rr13991.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biodosimetry is an essential tool for providing timely assessments of radiation exposure. For a large mass-casualty event involving exposure to ionizing radiation, it is of utmost importance to rapidly provide dose information for medical treatment. The well-established cytokinesis-block micronucleus (CBMN) assay is a validated method for biodosimetry. However, the need for an accelerated sample processing is required for the CBMN assay to be a suitable population triage tool. We report here on the development of a high-throughput and miniaturized version of the CMBN assay for accelerated sample processing.
Collapse
Affiliation(s)
- Stanley W Lue
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| | - Mikhail Repin
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| | - Ryan Mahnke
- b Northrop Grumman, Elkridge, Maryland 21075
| | - David J Brenner
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| |
Collapse
|
36
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
37
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
38
|
Garty G, Bigelow AW, Repin M, Turner HC, Bian D, Balajee AS, Lyulko OV, Taveras M, Yao YL, Brenner DJ. An automated imaging system for radiation biodosimetry. Microsc Res Tech 2015; 78:587-98. [PMID: 25939519 PMCID: PMC4479970 DOI: 10.1002/jemt.22512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/26/2015] [Accepted: 04/11/2015] [Indexed: 11/07/2022]
Abstract
We describe here an automated imaging system developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry. The imaging system is built around a fast, sensitive sCMOS camera and rapid switchable LED light source. It features complete automation of all the steps of the imaging process and contains built-in feedback loops to ensure proper operation. The imaging system is intended as a back end to the RABiT-a robotic platform for radiation biodosimetry. It is intended to automate image acquisition and analysis for four biodosimetry assays for which we have developed automated protocols: The Cytokinesis Blocked Micronucleus assay, the γ-H2AX assay, the Dicentric assay (using PNA or FISH probes) and the RABiT-BAND assay.
Collapse
Affiliation(s)
- Guy Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, P.O. Box 21, Irvington, NY 10533,USA
| | - Alan W. Bigelow
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, P.O. Box 21, Irvington, NY 10533,USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Dakai Bian
- Department of Mechanical Engineering, Columbia University, 500 West 120th St. New York, NY 10027, USA
| | - Adayabalam S. Balajee
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Oleksandra V. Lyulko
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, P.O. Box 21, Irvington, NY 10533,USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| | - Y. Lawrence Yao
- Department of Mechanical Engineering, Columbia University, 500 West 120th St. New York, NY 10027, USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University, 630 W 168 St. New York, NY 10032, USA
| |
Collapse
|
39
|
Barnard S, Ainsbury EA, Al-hafidh J, Hadjidekova V, Hristova R, Lindholm C, Monteiro Gil O, Moquet J, Moreno M, Rößler U, Thierens H, Vandevoorde C, Vral A, Wojewódzka M, Rothkamm K. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. RADIATION PROTECTION DOSIMETRY 2015; 164:265-270. [PMID: 25118318 DOI: 10.1093/rpd/ncu259] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
In the event of a mass casualty radiation incident, the gamma-H2AX foci assay could be a useful tool to estimate radiation doses received by individuals. The rapid processing time of blood samples of just a few hours and the potential for batch processing, enabling high throughput, make the assay ideal for early triage categorisation to separate the 'worried well' from the low and critically exposed by quantifying radiation-induced foci in peripheral blood lymphocytes. Within the RENEB framework, 8 European laboratories have taken part in the first European gamma-H2AX biodosimetry exercise, which consisted of a telescoring comparison of 200 circulated foci images taken from 8 samples, and a comparison of 10 fresh blood lymphocyte samples that were shipped overnight to participating labs 4 or 24 h post-exposure. Despite large variations between laboratories in the dose-response relationship for foci induction, the obtained results indicate that the network should be able to use the gamma-H2AX assay for rapidly identifying the most severely exposed individuals within a cohort who could then be prioritised for accurate chromosome dosimetry.
Collapse
Affiliation(s)
- S Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - E A Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - J Al-hafidh
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - V Hadjidekova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - R Hristova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - C Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - O Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, CTN, Grupo de Protecção e Segurança Radiológica, Bobadela-LRS, Portugal
| | - J Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - M Moreno
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - U Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - H Thierens
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - C Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - A Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - M Wojewódzka
- Institute of Nuclear Chemistry and Technology, Center for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - K Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| |
Collapse
|
40
|
Sharma PM, Ponnaiya B, Taveras M, Shuryak I, Turner H, Brenner DJ. High throughput measurement of γH2AX DSB repair kinetics in a healthy human population. PLoS One 2015; 10:e0121083. [PMID: 25794041 PMCID: PMC4368624 DOI: 10.1371/journal.pone.0121083] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
The Columbia University RABiT (Rapid Automated Biodosimetry Tool) quantifies DNA damage using fingerstick volumes of blood. One RABiT protocol quantifies the total γ-H2AX fluorescence per nucleus, a measure of DNA double strand breaks (DSB) by an immunofluorescent assay at a single time point. Using the recently extended RABiT system, that assays the γ-H2AX repair kinetics at multiple time points, the present small scale study followed its kinetics post irradiation at 0.5 h, 2 h, 4 h, 7 h and 24 h in lymphocytes from 94 healthy adults. The lymphocytes were irradiated ex vivo with 4 Gy γ rays using an external Cs-137 source. The effect of age, gender, race, ethnicity, alcohol use on the endogenous and post irradiation total γ-H2AX protein yields at various time points were statistically analyzed. The endogenous γ-H2AX levels were influenced by age, race and alcohol use within Hispanics. In response to radiation, induction of γ-H2AX yields at 0.5 h and peak formation at 2 h were independent of age, gender, ethnicity except for race and alcohol use that delayed the peak to 4 h time point. Despite the shift in the peak observed, the γ-H2AX yields reached close to baseline at 24 h for all groups. Age and race affected the rate of progression of the DSB repair soon after the yields reached maximum. Finally we show a positive correlation between endogenous γ-H2AX levels with radiation induced γ-H2AX yields (RIY) (r=0.257, P=0.02) and a negative correlation with residuals (r=-0.521, P=<0.0001). A positive correlation was also observed between RIY and DNA repair rate (r=0.634, P<0.0001). Our findings suggest age, race, ethnicity and alcohol use influence DSB γ-H2AX repair kinetics as measured by RABiT immunofluorescent assay.
Collapse
Affiliation(s)
- Preety M. Sharma
- Center for Radiological Research, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Maria Taveras
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Igor Shuryak
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - Helen Turner
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New York, New York, United States of America
| |
Collapse
|
41
|
Turner HC, Shuryak I, Taveras M, Bertucci A, Perrier JR, Chen C, Elliston CD, Johnson GW, Smilenov LB, Amundson SA, Brenner DJ. Effect of dose rate on residual γ-H2AX levels and frequency of micronuclei in X-irradiated mouse lymphocytes. Radiat Res 2015; 183:315-24. [PMID: 25738897 DOI: 10.1667/rr13860.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological risks associated with low-dose-rate (LDR) radiation exposures are not yet well defined. To assess the risk related to DNA damage, we compared the yields of two established biodosimetry end points, γ-H2AX and micronuclei (MNi), in peripheral mouse blood lymphocytes after prolonged in vivo exposure to LDR X rays (0.31 cGy/min) vs. acute high-dose-rate (HDR) exposure (1.03 Gy/min). C57BL/6 mice were total-body irradiated with 320 kVP X rays with doses of 0, 1.1, 2.2 and 4.45 Gy. Residual levels of total γ-H2AX fluorescence in lymphocytes isolated 24 h after the start of irradiation were assessed using indirect immunofluorescence methods. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to determine apoptotic cell frequency in lymphocytes sampled at 24 h. Curve fitting analysis suggested that the dose response for γ-H2AX yields after acute exposures could be described by a linear dependence. In contrast, a linear-quadratic dose-response shape was more appropriate for LDR exposure (perhaps reflecting differences in repair time after different LDR doses). Dose-rate sparing effects (P < 0.05) were observed at doses ≤2.2 Gy, such that the acute dose γ-H2AX and TUNEL-positive cell yields were significantly larger than the equivalent LDR yields. At the 4.45 Gy dose there was no difference in γ-H2AX expression between the two dose rates, whereas there was a two- to threefold increase in apoptosis in the LDR samples compared to the equivalent 4.45 Gy acute dose. Micronuclei yields were measured at 24 h and 7 days using the in vitro cytokinesis-blocked micronucleus (CBMN) assay. The results showed that MNi yields increased up to 2.2 Gy with no further increase at 4.45 Gy and with no detectable dose-rate effect across the dose range 24 h or 7 days post exposure. In conclusion, the γ-H2AX biomarker showed higher sensitivity to measure dose-rate effects after low-dose LDR X rays compared to MNi formation; however, confounding factors such as variable repair times post exposure, increased cell killing and cell cycle block likely contributed to the yields of MNi with accumulating doses of ionizing radiation.
Collapse
Affiliation(s)
- H C Turner
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fetisova EK, Antoschina MM, Cherepanynets VD, Izumov DS, Kireev II, Kireev RI, Lyamzaev KG, Riabchenko NI, Chernyak BV, Skulachev VP. Radioprotective effects of mitochondria-targeted antioxidant SkQR1. Radiat Res 2014; 183:64-71. [PMID: 25496313 DOI: 10.1667/rr13708.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We show here that mitochondria-targeted antioxidant composed of plastoquinone conjugated through hydrocarbon linker with cationic rhodamine 19 (SkQR1) protected against nuclear DNA damage induced by gamma radiation in K562 erythroleukemia cells. We also demonstrate that SkQR1 prevented the early (1 h postirradiation) accumulation of phosphorylated histone H2AX (γ-H2AX) an indicator of DNA double-strand break formation, as well as the radiation-induced increase in chromosomal aberrations. These data suggested that nuclear DNA damage induced by gamma radiation may be mediated by mitochondrial reactive oxygen species (ROS) production. We show that SkQR1 suppressed delayed accumulation of ROS 32 h after irradiation probably by inhibiting mitochondrial ROS-induced ROS release mechanisms. This suggests that mitochondria-targeted antioxidants may protect cells from the late consequences of radiation exposure related to delayed oxidative stress. We have previously reported that SkQRl is the substrate of multidrug resistance pump P-glycoproten (Pgp 170) and selectively protects Pgp 170-negative cells against oxidative stress. In line with this finding, we demonstrate here that SkQR1 did not protect Pgp170-positive K562 subline against DNA damage induced by gamma radiation. The selective radioprotection of normal Pgp 170-negative cells by mitochondria-targeted antioxidants could be a promising strategy to increase the efficiency of radiotherapy for multidrug-resistant tumors.
Collapse
Affiliation(s)
- Elena K Fetisova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Halm BM, Franke AA, Lai JF, Turner HC, Brenner DJ, Zohrabian VM, DiMauro R. γ-H2AX foci are increased in lymphocytes in vivo in young children 1 h after very low-dose X-irradiation: a pilot study. Pediatr Radiol 2014; 44:1310-7. [PMID: 24756254 PMCID: PMC4175172 DOI: 10.1007/s00247-014-2983-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/30/2013] [Accepted: 03/23/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Computed tomography (CT) is an imaging modality involving ionizing radiation. The presence of γ-H2AX foci after low to moderate ionizing radiation exposure has been demonstrated; however it is unknown whether very low ionizing radiation exposure doses from CT exams can induce γ-H2AX formation in vivo in young children. OBJECTIVE To test whether very low ionizing radiation doses from CT exams can induce lymphocytic γ-H2AX foci (phosphorylated histones used as a marker of DNA damage) formation in vivo in young children. MATERIALS AND METHODS Parents of participating children signed a consent form. Blood samples from three children (ages 3-21 months) undergoing CT exams involving very low blood ionizing radiation exposure doses (blood doses of 0.22-1.22 mGy) were collected immediately before and 1 h post CT exams. Isolated lymphocytes were quantified for γ-H2AX foci by a technician blinded to the radiation status and dose of the patients. Paired t-tests and regression analyses were performed with significance levels set at P < 0.05. RESULTS We observed a dose-dependent increase in γ-H2AX foci post-CT exams (P = 0.046) among the three children. Ionizing radiation exposure doses led to a linear increase of foci per cell in post-CT samples (102% between lowest and highest dose). CONCLUSION We found a significant induction of γ-H2AX foci in lymphocytes from post-CT samples of three very young children. When possible, CT exams should be limited or avoided by possibly applying non-ionizing radiation exposure techniques such as US or MRI.
Collapse
Affiliation(s)
- Brunhild M Halm
- University of Hawaii Cancer Center, 1236 Lauhala St., Honolulu, HI, 96813, USA,
| | | | | | | | | | | | | |
Collapse
|
44
|
Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:13-21. [PMID: 24780228 DOI: 10.1016/j.ecoenv.2014.03.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
45
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
46
|
Repin M, Turner HC, Garty G, Brenner DJ. Next generation platforms for high-throughput biodosimetry. RADIATION PROTECTION DOSIMETRY 2014; 159:105-10. [PMID: 24837249 PMCID: PMC4067228 DOI: 10.1093/rpd/ncu161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems.
Collapse
Affiliation(s)
- Mikhail Repin
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| | - Helen C Turner
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| | - Guy Garty
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Brenner
- Center for High-Throughput Minimally Invasive Radiation Biodosimetry, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
47
|
Swartz HM, Flood AB, Williams BB, Meineke V, Dörr H. Comparison of the needs for biodosimetry for large-scale radiation events for military versus civilian populations. HEALTH PHYSICS 2014; 106:755-763. [PMID: 24776910 DOI: 10.1097/hp.0000000000000069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this paper is to compare and contrast the needs for biodosimetry for initial triage for military forces and civilian populations when there are radiation exposures that involve potentially a large number of persons. Several differences in the likely scenarios for exposure of military forces include a greater likelihood of having higher rates of significant exposures, inhomogeneous exposures, significant doses from neutrons, and combined injury. Measurements will be able to begin sooner than for exposures in civilian settings because medical facilities usually are an integral part of the way military forces are deployed. It also will be very feasible to have personnel that will be trained and equipped specifically for rapid deployment to assess dose. As a consequence, the most appropriate biodosimetry techniques will include features that are not present or are less important for civilian settings; i.e., the need for changes that become measureable very soon after the radiation is received, the ability to complete measurements in very close proximity to the subjects (so samples do not need to be transported out and results returned), increased capability of resolving homogeneity of the exposure, ability to be carried out in an injured person, capability of determining whether neutrons have made a significant contribution to dose, and the ability to rely on more sophisticated equipment and trained personnel to carry out the measurements at the point of care.
Collapse
Affiliation(s)
- Harold M Swartz
- *EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth College, Department of Radiology, 48 Lafayette Street, Lebanon, NH, 03766; †Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstrasse 11, 80937 Munich, Germany
| | | | | | | | | |
Collapse
|
48
|
Turner HC, Sharma P, Perrier JR, Bertucci A, Smilenov L, Johnson G, Taveras M, Brenner DJ, Garty G. The RABiT: high-throughput technology for assessing global DSB repair. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:265-72. [PMID: 24477408 PMCID: PMC3999265 DOI: 10.1007/s00411-014-0514-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/14/2014] [Indexed: 05/19/2023]
Abstract
At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a rapid automated biodosimetry tool (RABiT); this is a completely automated, ultra-high-throughput robotically based biodosimetry workstation designed for use following a large-scale radiological event, to perform radiation biodosimetry measurements based on a fingerstick blood sample. High throughput is achieved through purpose built robotics, sample handling in filter-bottomed multi-well plates and innovations in high-speed imaging and analysis. Currently, we are adapting the RABiT technologies for use in laboratory settings, for applications in epidemiological and clinical studies. Our overall goal is to extend the RABiT system to directly measure the kinetics of DNA repair proteins. The design of the kinetic/time-dependent studies is based on repeated, automated sampling of lymphocytes from a central reservoir of cells housed in the RABiT incubator as a function of time after the irradiation challenge. In the present study, we have characterized the DNA repair kinetics of the following repair proteins: γ-H2AX, 53-BP1, ATM kinase, MDC1 at multiple times (0.5, 2, 4, 7 and 24 h) after irradiation with 4 Gy γ rays. In order to provide a consistent dose exposure at time zero, we have developed an automated capillary irradiator to introduce DNA DSBs into fingerstick-size blood samples within the RABiT. To demonstrate the scalability of the laboratory-based RABiT system, we have initiated a population study using γ-H2AX as a biomarker.
Collapse
Affiliation(s)
- Helen C Turner
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Medical Center, 630 W. 168th St. VC11-240, New York, NY, 10032, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:221-32. [PMID: 24519326 PMCID: PMC5982531 DOI: 10.1007/s00411-014-0522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/02/2014] [Indexed: 05/05/2023]
Abstract
The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | |
Collapse
|
50
|
Laiakis EC, Mak TD, Anizan S, Amundson SA, Barker CA, Wolden SL, Brenner DJ, Fornace AJ. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat Res 2014; 181:350-61. [PMID: 24673254 PMCID: PMC4071158 DOI: 10.1667/rr13567.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The emergence of the threat of radiological terrorism and other radiological incidents has led to the need for development of fast, accurate and noninvasive methods for detection of radiation exposure. The purpose of this study was to extend radiation metabolomic biomarker discovery to humans, as previous studies have focused on mice. Urine was collected from patients undergoing total body irradiation at Memorial Sloan-Kettering Cancer Center prior to hematopoietic stem cell transplantation at 4-6 h postirradiation (a single dose of 1.25 Gy) and 24 h (three fractions of 1.25 Gy each). Global metabolomic profiling was obtained through analysis with ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (TOFMS). Prior to further analyses, each sample was normalized to its respective creatinine level. Statistical analysis was conducted by the nonparametric Kolmogorov-Smirnov test and the Fisher's exact test and markers were validated against pure standards. Seven markers showed distinct differences between pre- and post-exposure samples. Of those, trimethyl-l-lysine and the carnitine conjugates acetylcarnitine, decanoylcarnitine and octanoylcarnitine play an important role in the transportation of fatty acids across mitochondria for subsequent fatty acid β-oxidation. The remaining metabolites, hypoxanthine, xanthine and uric acid are the final products of the purine catabolism pathway, and high levels of excretion have been associated with increased oxidative stress and radiation induced DNA damage. Further analysis revealed sex differences in the patterns of excretion of the markers, demonstrating that generation of a sex-specific metabolomic signature will be informative and can provide a quick and reliable assessment of individuals in a radiological scenario. This is the first radiation metabolomics study in human urine laying the foundation for the use of metabolomics in biodosimetry and providing confidence in biomarker identification based on the overlap between animal models and humans.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC
| | - Tytus D. Mak
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Sebastien Anizan
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Sally A. Amundson
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Christopher A. Barker
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Suzanne L. Wolden
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| |
Collapse
|