1
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
2
|
Dahl H, Ballangby J, Tengs T, Wojewodzic MW, Eide DM, Brede DA, Graupner A, Duale N, Olsen AK. Dose rate dependent reduction in chromatin accessibility at transcriptional start sites long time after exposure to gamma radiation. Epigenetics 2023; 18:2193936. [PMID: 36972203 PMCID: PMC10054331 DOI: 10.1080/15592294.2023.2193936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Ionizing radiation (IR) impact cellular and molecular processes that require chromatin remodelling relevant for cellular integrity. However, the cellular implications of ionizing radiation (IR) delivered per time unit (dose rate) are still debated. This study investigates whether the dose rate is relevant for inflicting changes to the epigenome, represented by chromatin accessibility, or whether it is the total dose that is decisive. CBA/CaOlaHsd mice were whole-body exposed to either chronic low dose rate (2.5 mGy/h for 54 d) or the higher dose rates (10 mGy/h for 14 d and 100 mGy/h for 30 h) of gamma radiation (60Co, total dose: 3 Gy). Chromatin accessibility was analysed in liver tissue samples using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-Seq), both one day after and over three months post-radiation (>100 d). The results show that the dose rate contributes to radiation-induced epigenomic changes in the liver at both sampling timepoints. Interestingly, chronic low dose rate exposure to a high total dose (3 Gy) did not inflict long-term changes to the epigenome. In contrast to the acute high dose rate given to the same total dose, reduced accessibility at transcriptional start sites (TSS) was identified in genes relevant for the DNA damage response and transcriptional activity. Our findings link dose rate to essential biological mechanisms that could be relevant for understanding long-term changes after ionizing radiation exposure. However, future studies are needed to comprehend the biological consequence of these findings.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jarle Ballangby
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Torstein Tengs
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division for Aquaculture, Department of breeding and genetics, Nofima, Ås, Norway
| | - Marcin W. Wojewodzic
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Department of Research, Section Molecular Epidemiology and Infections, Cancer Registry of Norway, Oslo, Norway
| | - Dag M. Eide
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dag Anders Brede
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Graupner
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nur Duale
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
3
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
5
|
Fujikawa K, Sugihara T, Tanaka S, Tanaka I, Nakamura S, Nakamura-Murano M, Murano H, Komura JI. LOW DOSE-RATE RADIATION-SPECIFIC ALTERATIONS FOUND IN A GENOME-WIDE GENE EXPRESSION ANALYSIS OF THE MOUSE LIVER. RADIATION PROTECTION DOSIMETRY 2022; 198:1165-1169. [PMID: 36083764 DOI: 10.1093/rpd/ncac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Life span shortening and increased incidences of cancer and non-cancer diseases were observed in B6C3F1 mice irradiated with gamma-rays at a low dose-rate (LDR) of 20 mGy/d for 400 d. A genome-wide gene expression profiling of livers from mice irradiated at a LDR (20 mGy/d, 100-400 d) was performed. LDR radiation affected specific pathways such as those related to lipid metabolism, e.g. 'Cholesterol biosynthesis' and 'Adipogenesis' in females irradiated for 200 and 300 d at 20 mGy/d, with increased expression of genes encoding cholesterol biosynthesis enzymes (Cyp51, Sqle, Fdps) as age and radiation dose increased. No significant alterations in the expression of these genes were observed in male mice exposed similarly. However, the genes encoding adipogenesis regulators, Srebf1 and Pparg, increased with age and radiation dose in both sexes. Comparison between LDR-irradiated and medium dose-rate (400 mGy/d) male mice revealed quite different gene expression profiles. These results seem to be consistent with the increased incidence of fatty liver and obesity in female mice exposed to LDR radiation and suggest that metabolism is an important target of LDR radiation.
Collapse
Affiliation(s)
- Katsuyoshi Fujikawa
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Ignacia Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Shingo Nakamura
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | | | - Hayato Murano
- TESSCO, 330-2, Notsuke, Obuchi, Rokkasho, Aomori 039-3212, Japan
| | - Jun-Ichiro Komura
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| |
Collapse
|
6
|
Dahl H, Eide DM, Tengs T, Duale N, Kamstra JH, Oughton DH, Olsen AK. Perturbed transcriptional profiles after chronic low dose rate radiation in mice. PLoS One 2021; 16:e0256667. [PMID: 34428250 PMCID: PMC8384182 DOI: 10.1371/journal.pone.0256667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse health outcomes of ionizing radiation given chronically at low dose rates are highly debated, a controversy also relevant for other stressors. Increased knowledge is needed for a more comprehensive understanding of the damaging potential of ionizing radiation from all dose rates and doses. There is a lack of relevant low dose rate data that is partly ascribed to the rarity of exposure facilities allowing chronic low dose rate exposures. Using the FIGARO facility, we assessed early (one day post-radiation) and late (recovery time of 100-200 days) hepatic genome-wide transcriptional profiles in male mice of two strains (CBA/CaOlaHsd and C57BL/6NHsd) exposed chronically to a low dose rate (2.5 mGy/h; 1200h, LDR), a mid-dose rate (10 mGy/h; 300h, MDR) and acutely to a high dose rate (100 mGy/h; 30h, HDR) of gamma irradiation, given to an equivalent total dose of 3 Gy. Dose-rate and strain-specific transcriptional responses were identified. Differently modulated transcriptional responses across all dose rate exposure groups were evident by the representation of functional biological pathways. Evidence of changed epigenetic regulation (global DNA methylation) was not detected. A period of recovery markedly reduced the number of differentially expressed genes. Using enrichment analysis to identify the functional significance of the modulated genes, perturbed signaling pathways associated with both cancer and non-cancer effects were observed, such as lipid metabolism and inflammation. These pathways were seen after chronic low dose rate and were not restricted to the acute high dose rate exposure. The transcriptional response induced by chronic low dose rate ionizing radiation suggests contribution to conditions such as cardiovascular diseases. We contribute with novel genome wide transcriptional data highlighting dose-rate-specific radiation responses and emphasize the importance of considering both dose rate, duration of exposure, and variability in susceptibility when assessing risks from ionizing radiation.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dag M. Eide
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Torstein Tengs
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nur Duale
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jorke H. Kamstra
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Deborah H. Oughton
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Karin Olsen
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
7
|
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci Rep 2021; 11:9756. [PMID: 33963206 PMCID: PMC8105310 DOI: 10.1038/s41598-021-88403-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 02/03/2023] Open
Abstract
Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
Collapse
|
8
|
The long-term effects of exposure to ionising radiation on gene expression in mice. Mutat Res 2020; 821:111723. [PMID: 33096319 DOI: 10.1016/j.mrfmmm.2020.111723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
Despite great advancement in our understanding of the biological response to ionising radiation in mammals, a number of pertinent questions remain unanswered. For instance, the mechanisms underlying the long-term effects of acute radiation in vivo still eludes us. Here we report that acute exposure to X-rays in male mice significantly affects their transcriptome. Using microarrays and miRNA-sequencing, we profiled the gene expression pattern in the brain, the kidney, the liver and the sperm of irradiated and control from CBA/Ca and BALB/c in the timeline of 4 h, 24 h, 1 week and 10 weeks post-exposure. Acute exposure to 1 Gy of X-rays resulted in profound tissue- and strain-specific changes in gene expression pattern. There was profound change in the gene expression in the kidney of BALB/c irradiated mice over the period of 10 weeks after irradiation, whereas in the CBA/Ca strain the significant transcriptomic changes manifest over a shorter period of time up to 1 week post exposure. In the brain of irradiated CBA/Ca, significant changes in transcriptome were seen up to 10 weeks post-irradiation, while only short-term changes up to 4 h post-exposure was detected in the brain of irradiation BALB/c. Similarly, alteration in gene expression pattern was observed in the liver of irradiated BALB/c up to 10 weeks post-radiation, whereas only immediate but significant changes were observed in the CBA/Ca at 4 h post-irradiation. Furthermore, the analysis of miRNA in irradiated and control male mice also revealed highly tissue- and strain-specific changes in expression level, with no overlap between the differentially regulated miRNA genes across the three somatic tissues and the two inbred strains. We also analysed the pattern of miRNA expression in sperm of irradiated males, sacrificed at 24 h, 1 week and 10 weeks after irradiation. Only one miRNA (mmu-miR-217-5p) was significantly down-regulated in the CBA/Ca males. The results of our study may provide a plausible explanation for the delayed in vivo effects of irradiation.
Collapse
|
9
|
Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B. Organ-Specific Effects of Low Dose Radiation Exposure: A Comprehensive Review. Front Genet 2020; 11:566244. [PMID: 33133150 PMCID: PMC7565684 DOI: 10.3389/fgene.2020.566244] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
10
|
Orekhova NYA. Hepatic effects of low-dose rate radiation in natural mouse populations ( Apodemus uralensis and Apodemus agrarius): comparative interspecific analysis. Int J Radiat Biol 2020; 96:1038-1050. [PMID: 32412327 DOI: 10.1080/09553002.2020.1770362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypothesis: Natural mouse populations in radioactive contamination zone provide adequate information about dose loads and biological effects for 'non-human biota'. The comparative analysis of the responses of different species of mice allows us to reveal the possible variation in the effects of low-dose rate radiation relative to the ecological-physiological and functional-metabolic features of the species.Materials and methods: Objects of study - two sympatric rodent species [pygmy wood mouse (Apodemus uralensis Pallas, 1811) and striped field mouse (Apodemus agrarius Pallas, 1771)] caught on the territory of the East-Ural radioactive trace (EURT). The EURT zone is consequence the Kyshtym accident in South Urals in 1957. Nowadays, the main dose-forming radionuclide is β-emitting 90Sr. The individual dose rate of impacted mice caused by internal exposure to 90Sr varied from 0.021 to 0.152 mGy/day. The baseline functional-metabolic characteristics of the liver were researched: protein-, lipid-, and glycogen-synthesizing processes; glycolysis; aerobic synthesis of ATP; lipid peroxidation; and the H2O2-scavenging enzymatic status; and the functional activity of the genome.Results: The hepatic shifts for impacted populations are amplified with increasing dose rate of irradiation, regardless of which species is considered. But, the response of closely related species of rodents to irradiation is different both in the vector and the level (in A. agrarius sample was 2 time higher than that for A. uralensis).Conclusion: The radiation-induced hepatic shifts in A. uralensis from the EURT area correspond to the chronic response under stressful environmental conditions. The impacted population of A. agrarius can be considered the more reactive species to the radiation burden, demonstrating an acute effect. The interspecies contrast in the radiation response is associated with the original interspecies differences (background rodents' samples in 28 km from the impact study site), and also the degree of residency of the species in the impact plots.
Collapse
Affiliation(s)
- Natal Ya A Orekhova
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
11
|
Yi L, Hu N, Mu H, Sun J, Yin J, Dai K, Xu F, Yang N, Ding D. Identification of Cofilin-1 and Destrin as Potential Early-warning Biomarkers for Gamma Radiation in Mouse Liver Tissues. HEALTH PHYSICS 2019; 116:749-759. [PMID: 30913056 DOI: 10.1097/hp.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gamma radiation causes cell injury and leads to an increased risk of cancer, so it is of practical significance to identify biomarkers for gamma radiation. We used proteomic analysis to identify differentially expressed proteins in liver tissues of C57BL/6J mice treated with gamma radiation from Cs for 360 d. We confirmed obvious pathological changes in mouse liver tissues after irradiation. Compared with the control group, 74 proteins showed a fold change of ≥1.5 in the irradiated groups. We selected 24 proteins for bioinformatics analysis and peptide mass fingerprinting and found that 20 of the identified proteins were meaningful. These proteins were associated with tumorigenesis, tumor suppression, catalysis, cell apoptosis, cytoskeleton, metabolism, gene transcription, T-cell response, and other pathways. We confirmed that both cofilin-1 and destrin were up regulated in the irradiated groups by western blot and real-time polymerase chain reaction. Our findings indicate that cofilin-1 and destrin are sensitive to gamma radiation and may be potential biomarkers for gamma radiation. Whether these proteins are involved in radiation-induced tumorigenesis requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| | - Hongxiang Mu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jing Sun
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Keren Dai
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Fanghui Xu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nanyang Yang
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| |
Collapse
|
12
|
Radiation-Induced Reactions in The Liver - Modulation of Radiation Effects by Lifestyle-Related Factors. Int J Mol Sci 2018; 19:ijms19123855. [PMID: 30513990 PMCID: PMC6321068 DOI: 10.3390/ijms19123855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Radiation has a wide variety of effects on the liver. Fibrosis is a concern in medical fields as one of the acute effects of high-dose irradiation, such as with cancer radiotherapies. Cancer is also an important concern following exposure to radiation. The liver has an active metabolism and reacts to radiations. In addition, effects are modulated by many environmental factors, such as high-calorie foods or alcohol beverages. Adaptations to other environmental conditions could also influence the effects of radiation. Reactions to radiation may not be optimally regulated under conditions modulated by the environment, possibly leading to dysregulation, disease or cancer. Here, we introduce some reactions to ionizing radiation in the liver, as demonstrated primarily in animal experiments. In addition, modulation of radiation-induced effects in the liver due to factors such as obesity, alcohol drinking, or supplements derived from foods are reviewed. Perspectives on medical applications by modulations of radiation effects are also discussed.
Collapse
|
13
|
Paunesku T, Woloschak G. Reflections on Basic Science Studies Involving Low Doses of Ionizing Radiation. HEALTH PHYSICS 2018; 115:623-627. [PMID: 30260853 PMCID: PMC6226262 DOI: 10.1097/hp.0000000000000937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Investigation of health effects of low doses of radiation as a field of study has been riddled with difficulties since its inception. In this document we will use 100 mGy as the cutoff upper limit for low-dose radiation, borrowing this definition from the U.S. Department of Energy, although other agencies and researchers sometimes include up to five-fold higher doses under the same title. Difficulties in this area of research are most often ascribed to the fact that effects of low doses of radiation are subtle and difficult to distinguish from the plethora of other low-grade stresses. Thus, for example, most epidemiological studies include hundreds of thousands of samples and generate risk estimates that are statistically meaningful only when they are considered on a scale of hundreds or thousands of people. A logical approach to remedy the situation for low-dose research was to conduct well-controlled animal studies with hundreds of animals; nevertheless, even after many such studies were completed, our understanding of the biological basis for risk from low-dose radiation exposure is still not conclusive. In this paper we argue that the problem lies in the fact that our approach to animal studies is not comprehensive but conceptually binary. While some researchers apply epidemiological models to animal data, others look into molecular and cellular biology only. Very few studies are conducted to bridge this gap and consider how a realistic model of DNA damage could be integrated into a realistic model of radiation carcinogenesis.
Collapse
Affiliation(s)
| | - Gayle Woloschak
- Tarry Building Room 4-760, 300 E Superior, Chicago, IL 60611
| |
Collapse
|
14
|
Maqsudur Rashid A, Ramalingam L, Al-Jawadi A, Moustaid-Moussa N, Moussa H. Low dose radiation, inflammation, cancer and chemoprevention. Int J Radiat Biol 2018; 95:506-515. [DOI: 10.1080/09553002.2018.1484194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Al Maqsudur Rashid
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Arwa Al-Jawadi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
15
|
Braga-Tanaka I, Tanaka S, Kohda A, Takai D, Nakamura S, Ono T, Tanaka K, Komura JI. Experimental studies on the biological effects of chronic low dose-rate radiation exposure in mice: overview of the studies at the Institute for Environmental Sciences. Int J Radiat Biol 2018. [PMID: 29533133 DOI: 10.1080/09553002.2018.1451048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the results of experiments conducted in the Institute for Environmental Sciences for the past 21 years, focusing on the biological effects of long-term low dose-rate radiation exposure on mice. Mice were chronically exposed to gamma rays at dose-rates of 0.05, 1 or 20 mGy/day for 400 days to total doses of 20, 400 or 8000 mGy, respectively. The dose rate 0.05 mGy/day is comparable to the dose limit for radiation workers. The parameters examined were lifespan, neoplasm incidence, antineoplasm immunity, body weight, chromosome aberration(s), gene mutation(s), alterations in mRNA and protein levels and trans-generational effects. At 20 mGy/day, all biological endpoints were significantly altered except neoplasm incidence in the offspring of exposed males. Slight but statistically significant changes in lifespan, neoplasm incidences, chromosome abnormalities and gene expressions were observed at 1 mGy/day. Except for transient alterations in the mRNA levels of some genes and increased liver neoplasm incidence attributed to radiation exposure, the remaining biological endpoints were not influenced after exposure to 0.05 mGy/day. Results suggest that chronic low dose-rate exposure may induce small biological effects.
Collapse
Affiliation(s)
- Ignacia Braga-Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Satoshi Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Atsushi Kohda
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Daisaku Takai
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Shingo Nakamura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Tetsuya Ono
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Kimio Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| |
Collapse
|
16
|
Sugihara T, Tanaka S, Braga-Tanaka I, Murano H, Nakamura-Murano M, Komura JI. Screening of biomarkers for liver adenoma in low-dose-rate γ-ray-irradiated mice. Int J Radiat Biol 2018; 94:315-326. [PMID: 29424599 DOI: 10.1080/09553002.2018.1439193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic low-dose-rate (20 mGy/day) γ-irradiation increases the incidence of hepatocellular adenomas (HCA) in female B6C3F1 mice. The purpose of this study is to identify potential serum biomarkers for these HCAs by a new approach. MATERIAL AND METHODS Microarray analysis were performed to compare the gene expression profiles of HCAs from mice exposed to low-dose-rate γ-rays with those of normal livers from non-irradiated mice. From the differentially expressed genes, those for possibly secretory proteins were selected. Then, the levels of the proteins in sera were analysed by ELISA. RESULTS Microarray analysis identified 4181 genes differentially expressed in HCAs (>2.0-fold). From these genes, those for α-fetoprotein (Afp), α-1B-glycoprotein (A1bg) and serine peptidase inhibitor Kazal type-3 (Spink3) were selected as the genes for candidate proteins. ELISA revealed that the levels of Afp and A1bg proteins in sera significantly increased and decreased, respectively, in low-dose-rate irradiated mice with HCAs and also same tendency was observed in human patients with hepatocellular carcinomas. CONCLUSION These results indicate that A1bg could be a new serum biomarker for liver tumor. This new approach of using microarray to select genes for secretory proteins is useful for prediction of novel tumor markers in sera.
Collapse
Affiliation(s)
- Takashi Sugihara
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Satoshi Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Ignacia Braga-Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Hayato Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Masako Nakamura-Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| |
Collapse
|
17
|
Yi L, Hu N, Yin J, Sun J, Mu H, Dai K, Ding D. Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low-dose-rate gamma rays. PLoS One 2017; 12:e0182671. [PMID: 28931006 PMCID: PMC5607120 DOI: 10.1371/journal.pone.0182671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
The biological effects of low-dose or low-dose-rate ionizing radiation on normal tissues has attracted attention. Based on previous research, we observed the morphology of liver tissues of C57BL/6J mice that received <50, 50–500, and 500–1000 μGy/h of 137Cs radiation for 180 d. We found that the pathological changes in liver tissues were more obvious as the irradiation dose rates increased. Additionally, differential protein expression in liver tissues was analyzed using a proteomics approach. Compared with the matched group in the 2D gel analysis of the irradiated groups, 69 proteins had ≥ 1.5-fold changes in expression. Twenty-three proteins were selected based on ≥2.5-fold change in expression, and 22 of them were meaningful for bioinformatics and protein fingerprinting analysis. These molecules were relevant to cytoskeleton processes, cell metabolism, biological defense, mitochondrial damage, detoxification and tumorigenesis. The results from real-time PCR and western blot (WB) analyses showed that calreticulin (CRT) was up-regulated in the irradiated groups, which indicates that CRT may be relevant to stress reactions when mouse livers are exposed to low-dose irradiation and that low-dose-rate ionizing radiation may pose a cancer risk. The CRT protein can be a potential candidate for low-dose or low-dose-rate ionizing radiation early-warning biomarkers. However, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Jing Sun
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Hongxiang Mu
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Keren Dai
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, P.R. China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, P.R. China
- * E-mail:
| |
Collapse
|
18
|
Nakajima T, Wang B, Ono T, Uehara Y, Nakamura S, Ichinohe K, Braga-Tanaka I, Tanaka S, Tanaka K, Nenoi M. Differences in sustained alterations in protein expression between livers of mice exposed to high-dose-rate and low-dose-rate radiation. JOURNAL OF RADIATION RESEARCH 2017; 58:421-429. [PMID: 28201773 PMCID: PMC5570048 DOI: 10.1093/jrr/rrw133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 05/13/2023]
Abstract
Molecular mechanisms of radiation dose-rate effects are not well understood. Among many possibilities, long-lasting sustained alterations in protein levels would provide critical information. To evaluate sustained effects after acute and chronic radiation exposure, we analyzed alterations in protein expression in the livers of mice. Acute exposure consisted of a lethal dose of 8 Gy and a sublethal dose of 4 Gy, with analysis conducted 6 days and 3 months after irradiation, respectively. Chronic irradiation consisted of a total dose of 8 Gy delivered over 400 days (20 mGy/day). Analyses following chronic irradiation were done immediately and at 3 months after the end of the exposure. Based on antibody arrays of protein expression following both acute lethal and sublethal dose exposures, common alterations in the expression of two proteins were detected. In the sublethal dose exposure, the expression of additional proteins was altered 3 months after irradiation. Immunohistochemical analysis showed that the increase in one of the two commonly altered proteins, MyD88, was observed around blood vessels in the liver. The alterations in protein expression after chronic radiation exposure were different from those caused by acute radiation exposures. Alterations in the expression of proteins related to inflammation and apoptosis, such as caspase 12, were observed even at 3 months after the end of the chronic radiation exposure. The alterations in protein expression depended on the dose, the dose rate, and the passage of time after irradiation. These changes could be involved in long-term effects of radiation in the liver.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
- Corresponding author. National Institute of Radiological Sciences, National Institutes of Quantum and Radiolgical Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan. Tel: +81-43-206-3086; Fax: +81-43-255-6497;
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
| | - Tetsuya Ono
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Yoshihiko Uehara
- Department of Cell Biology, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shingo Nakamura
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Ignacia Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
| |
Collapse
|
19
|
Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. JOURNAL OF RADIATION RESEARCH 2017; 58:165-182. [PMID: 28077626 PMCID: PMC5439383 DOI: 10.1093/jrr/rrw120] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/22/2016] [Indexed: 05/13/2023]
Abstract
Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (<6 mSv/h) exposures may be harmful. It induces genetic and epigenetic changes and is associated with a range of physiological disturbances that includes altered immune system, abnormal brain development with resultant cognitive impairment, cataractogenesis, abnormal embryonic development, circulatory diseases, weight gain, premature menopause in female animals, tumorigenesis and shortened lifespan. Paternal or prenatal LDIR/LDRIR exposure is associated with reduced fertility and number of live fetuses, and transgenerational genomic aberrations. On the other hand, in some experimental studies, LDIR/LDRIR exposure has also been reported to bring about beneficial effects such as reduction in tumorigenesis, prolonged lifespan and enhanced fertility. The differences in reported effects of LDIR/LDRIR exposure are dependent on animal genetic background (susceptibility), age (prenatal or postnatal days), sex, nature of radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, 138602, Singapore
| | - Weng Keong Loke
- Temasek Laboratories, National University of Singapore, 5A, Engineering Drive 1, 117411,Singapore
| | - Boo Cheong Khoo
- DSO National Laboratories,Defence Medical and Environmental Research Institute, 11 Stockport Road,117605,Singapore
| |
Collapse
|
20
|
Yi L, Li L, Yin J, Hu N, Li G, Ding D. Proteomics analysis of liver tissues from C57BL/6J mice receiving low-dose 137Cs radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2549-2556. [PMID: 26429139 DOI: 10.1007/s11356-015-5494-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Differentially expressed proteins in liver tissues of C57BL/6J mice receiving low-dose (137)Cs radiation were examined by proteomics analysis. Compared with the control group, 80 proteins were differentially expressed in the irradiated group. Among the 40 randomly selected proteins used for peptide mass fingerprinting analysis and bioinformatics, 24 were meaningful. These proteins were related to antioxidant defense, amino acid metabolism, detoxification, anti-tumor development, amino acid transport, anti-peroxidation, and composition of respiratory chain. Western blot analysis showed that catalase (CAT), glycine N-methyltransferase (GNMT), and glutathione S-transferase P1 (GSTP1) were up-regulated in the irradiated group; these results were in agreement with qPCR results. These results show that CAT, GNMT, and GSTP1 may be related to stress response induced by low-dose irradiation in mice liver. The underlying mechanism however requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Linwei Li
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
21
|
Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res (Camb) 2016; 5:12-33. [PMID: 30090323 PMCID: PMC6061884 DOI: 10.1039/c5tx00222b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
Organisms respond to physical, chemical and biological threats by a potent inflammatory response, aimed at preserving tissue integrity and restoring tissue homeostasis and function. Systemic effects in an organism refer to an effect or phenomenon which originates at a specific point and can spread throughout the body affecting a group of organs or tissues. Ionizing radiation (IR)-induced systemic effects arise usually from a local exposure of an organ or part of the body. This stress induces a variety of responses in the irradiated cells/tissues, initiated by the DNA damage response and DNA repair (DDR/R), apoptosis or immune response, including inflammation. Activation of this IR-response (IRR) system, especially at the organism level, consists of several subsystems and exerts a variety of targeted and non-targeted effects. Based on the above, we believe that in order to understand this complex response system better one should follow a 'holistic' approach including all possible mechanisms and at all organization levels. In this review, we describe the current status of knowledge on the topic, as well as the key molecules and main mechanisms involved in the 'spreading' of the message throughout the body or cells. Last but not least, we discuss the danger-signal mediated systemic immune effects of radiotherapy for the clinical setup.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Danae A Laskaratou
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Benjamin Frey
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Serge M Candéias
- iRTSV-LCBM , CEA , Grenoble F-38000 , France
- IRTSV-LCBM , CNRS , Grenoble F-38000 , France
- iRTSV-LCBM , Univ. Grenoble Alpes , Grenoble F-38000 , France
| | - Udo S Gaipl
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Katalin Lumniczky
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Alexandros G Georgakilas
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| |
Collapse
|
22
|
Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:379-401. [PMID: 26343037 DOI: 10.1007/s00411-015-0613-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/18/2015] [Indexed: 05/21/2023]
Abstract
The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.
Collapse
Affiliation(s)
- Werner Rühm
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy E Shore
- Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima City, 732-0815, Japan
| | - Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russian Federation, 456780
| | - Bernd Grosche
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Oberschleissheim, Germany
| | - Ohtsura Niwa
- Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Suminori Akiba
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7 Ienomae, Rokkasho, Aomori-ken, 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Tokyo, 201-8511, Japan
| | - Nobuhiko Ban
- Faculty of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8558, Japan
| | - Michiaki Kai
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, 840-1201, Japan
| | - Christopher H Clement
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada
| | - Simon Bouffler
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, Didcot, OX11 ORQ, UK
| | - Hideki Toma
- JAPAN NUS Co., Ltd. (JANUS), 7-5-25 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Nobuyuki Hamada
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada.
| |
Collapse
|
23
|
Paul S, Smilenov LB, Elliston CD, Amundson SA. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model. Radiat Res 2015; 184:24-32. [PMID: 26114327 DOI: 10.1667/rr14044.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate <5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event.
Collapse
Affiliation(s)
- Sunirmal Paul
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032;,b Rutgers University, Newark, New Jersey 07103; and
| | - Lubomir B Smilenov
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Carl D Elliston
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032;,c Maimonides Medical Center, Brooklyn, New York 11219
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
24
|
Low dose irradiation profoundly affects transcriptome and microRNAme in rat mammary gland tissues. Oncoscience 2014; 1:751-62. [PMID: 25594002 PMCID: PMC4278272 DOI: 10.18632/oncoscience.94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
Ionizing radiation has been successfully used in medical tests and treatment therapies for a variety of medical conditions. However, patients and health-care workers are greatly concerned about overexposure to medical ionizing radiation and possible cancer induction due to frequent mammographies and/or CT scans. Diagnostic imaging involves the use of low doses of ionizing radiation, and its potential carcinogenic role creates a cancer risk concern for exposed individuals. In this study, the effects of X-ray exposure of different doses on the gene expression patterns and the micro-RNA expression patterns in normal breast tissue were investigated in rats. Our results revealed the activation of immune response pathways upon low dose of radiation exposure. These included natural killer mediated cytotoxicity pathways, antigen processing and presentation pathways, chemokine signaling pathways, and T- and B-cell receptor signaling pathways. Both high and low doses of radiation led to miRNA expression alterations. Increased expression of miR-34a may be linked to cell cycle arrest and apoptosis. Up-regulation of miR-34a was correlated with down-regulation of its target E2F3 and up-regulation of p53. This data suggests that ionizing radiation at specific high and low doses leads to cell cycle arrest and a possible initiation of apoptosis.
Collapse
|
25
|
Diet-induced obesity modulates epigenetic responses to ionizing radiation in mice. PLoS One 2014; 9:e106277. [PMID: 25171162 PMCID: PMC4149562 DOI: 10.1371/journal.pone.0106277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/05/2014] [Indexed: 01/16/2023] Open
Abstract
Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress.
Collapse
|
26
|
Paul S, Ghandhi SA, Weber W, Doyle-Eisele M, Melo D, Guilmette R, Amundson SA. Gene expression response of mice after a single dose of 137CS as an internal emitter. Radiat Res 2014; 182:380-9. [PMID: 25162453 DOI: 10.1667/rr13466.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466-6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2-3 days), the majority of responsive genes were expressed above control levels, while at later times (20-30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response.
Collapse
Affiliation(s)
- Sunirmal Paul
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | | | | | | | | | | |
Collapse
|
27
|
McDonald JT, Briggs C, Szelag H, Peluso M, Schneider D, Perepletchikov A, Klement GL, Tuerk I, Hlatky L. Chronic low dose-rate radiation down-regulates transcription related to mitosis and chromosomal movement similar to acute high dose in prostate cells. Int J Radiat Biol 2014; 90:231-40. [PMID: 24397407 DOI: 10.3109/09553002.2014.877175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Despite concerns over risks from exposure to low-dose ionizing radiations encountered in the environment and workplace, the molecular consequences of these exposures, particularly at representative doses and dose-rates, remains poorly understood. MATERIALS AND METHODS Using a novel flood source construct, we performed a direct comparison of genome-wide gene expression regulations resulting from exposure of primary human prostate fibroblast cultures to acute (10 cGy and 200 cGy) and longer-term chronic (1.0-2.45 cGy cumulative over 24 h) exposures. RESULTS Expression profiling showed significant differential regulation of 396 genes with no measureable changes in the acute 10 cGy dose. However, there were 106 genes in common between samples given an acute 200 cGy dose compared to those given chronic doses, most of which were decreased and related to cell cycle or chromosomal movement in M-phase. Biological pathway analysis showed decreases in cell cycle, chromosomal movement, cell survival and DNA replication, recombination and repair as well as a predicted activation of transcriptional regulators TP53, RB1 and CDKN2A. In agreement with these results, prostate epithelial cells given 200 cGy or chronic doses displayed functional decreases in proliferation and mitotic cells. CONCLUSIONS In summary, we showed a contrast to the common observation of constant or reduced effect per unit dose as the dose (acute) was diminished, that even very low total doses delivered chronically could rival the perturbing effect of acute doses 100 times as intense. Underscored is the importance of the means of dose delivery, shown to be as important as dose size when considering biologic effect.
Collapse
Affiliation(s)
- J Tyson McDonald
- Center of Cancer Systems Biology, GeneSys Research Institute (GRI)/Tufts University School of Medicine , Boston
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang B, Tanaka K, Ji B, Ono M, Fang Y, Ninomiya Y, Maruyama K, Izumi-Nakajima N, Begum N, Higuchi M, Fujimori A, Uehara Y, Nakajima T, Suhara T, Ono T, Nenoi M. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:84-96. [PMID: 23908553 PMCID: PMC3885129 DOI: 10.1093/jrr/rrt096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with (11)C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice.
Collapse
Affiliation(s)
- Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
- Corresponding author. Tel: +81-43-206-3093; Fax: +81-43-251-4582;
| | - Kaoru Tanaka
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bin Ji
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Maiko Ono
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yaqun Fang
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yasuharu Ninomiya
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kouichi Maruyama
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nakako Izumi-Nakajima
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nasrin Begum
- Center for Nuclear Medicine and Ultrasound, Rajshahi H-18, Rajshahi Medical College Hospital Campus, Medical College Road, Rajshahi 6000, People's Republic of Bangladesh
| | - Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshihiko Uehara
- Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
29
|
Fushiki S. Radiation hazards in children - lessons from Chernobyl, Three Mile Island and Fukushima. Brain Dev 2013; 35:220-7. [PMID: 23063247 DOI: 10.1016/j.braindev.2012.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022]
Abstract
On March 11, 2011, Japan was hit by the Great East Japan Earthquake followed by the Fukushima Daiichi Nuclear Disaster. Firstly, this review focuses on what happened after the accidents at the Three Mile Island nuclear power station in 1979 and the Chernobyl nuclear power plant in 1986, in terms of the effects of these incidents on health. The most critical issue when considering the effects of radiation on the health of children was the increase of thyroid cancer, as clearly demonstrated among people who were children or adolescence at the time of the Chernobyl accident. Therefore, in the early days after a nuclear accident, the primary concern should be efforts to prevent the exposure of children to radioactive iodine through inhalation and ingestion, because radioactive iodine preferentially accumulates in the thyroid. In the longer term, another concern is exposure to radionuclides with long half-lives, including cesium137 and cesium134, with physical half-lives of 30 and 2 years, respectively. Secondly, fetal radiation risks and radiobiological studies on low-level radiation are briefly reviewed, with reference to the effects upon the developing brain. A fetal dose of 100 mSv may increase the risk of an effect on brain development, especially neuronal migration, based upon the results of experiments with rodents. Finally, this review proposes that research on the health effects of low level radiation should be prioritized so that accurate information on the effects of radiation can be disseminated and prevent the prevalence of unnecessary fear lacking scientific justification.
Collapse
Affiliation(s)
- Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi Hirokoji, Kajii-cho 465, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
30
|
Schüler E, Parris TZ, Rudqvist N, Helou K, Forssell-Aronsson E. Effects of internal low-dose irradiation from 131I on gene expression in normal tissues in Balb/c mice. EJNMMI Res 2011; 1:29. [PMID: 22214497 PMCID: PMC3251037 DOI: 10.1186/2191-219x-1-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study was to investigate the global gene expression response of normal tissues following internal low absorbed dose irradiation of 131I. Methods Balb/c mice were intravenously injected with 13 to 260 kBq of 131I and euthanized 24 h after injection. Kidneys, liver, lungs, and spleen were surgically removed. The absorbed dose to the tissues was 0.1 to 9.7 mGy. Total RNA was extracted, and Illumina MouseRef-8 Whole-Genome Expression BeadChips (Illumina, Inc., San Diego, California, USA) were used to compare the gene expression of the irradiated tissues to that of non-irradiated controls. The Benjamini-Hochberg method was used to determine differentially expressed transcripts and control for false discovery rate. Only transcripts with a modulation of 1.5-fold or higher, either positively or negatively regulated, were included in the analysis. Results The number of transcripts affected ranged from 260 in the kidney cortex to 857 in the lungs. The majority of the affected transcripts were specific for the different absorbed doses delivered, and few transcripts were shared between the different tissues investigated. The response of the transcripts affected at all dose levels was generally found to be independent of dose, and only a few transcripts showed increasing or decreasing regulation with increasing absorbed dose. Few biological processes were affected at all absorbed dose levels studied or in all tissues studied. The types of biological processes affected were clearly tissue-dependent. Immune response was the only biological process affected in all tissues, and processes affected in more than three tissues were primarily associated with the response to stimuli and metabolism. Conclusion Despite the low absorbed doses delivered to the tissues investigated, a surprisingly strong response was observed. Affected biological processes were primarily associated with the normal function of the tissues, and only small deviations from the normal metabolic activity in the tissues were induced.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University hospital, Gothenburg, 413 45, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Vares G, Uehara Y, Ono T, Nakajima T, Wang B, Taki K, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M. Transcription factor-recognition sequences potentially involved in modulation of gene expression after exposure to low-dose-rate γ-rays in the mouse liver. JOURNAL OF RADIATION RESEARCH 2011; 52:249-256. [PMID: 21343681 DOI: 10.1269/jrr.10110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In vivo modulation of gene expression profiles after low-dose and low-dose-rate irradiation has been observed in a variety of experimental systems. However, few studies actually investigated the underlying mechanisms for these genetic responses. In this study, we used pre-existing microarray data and searched for gene modulations in response to long-term, low-dose-rate irradiation. Nucleotide sequences in the neighboring region of the up-regulated, down-regulated, and unaffected genes were retrieved from the Entrez Gene database, and recognition sequences for transcription factors (TFs) were searched using the TFSEARCH database. As a result, we suggested 21 potential TF-binding sites with significantly different incidence between the three gene groups (up-regulated, down-regulated and unaffected gene groups). The binding sites for sterol regulatory element-binding protein 1 (SREBP-1), aryl hydrocarbon receptor (AhR/Ar) and olfactory 1 (Olf-1) were suggested to be involved in up-regulation, while the binding sites for glucocorticoid receptor (GR(GGTACAANNT GTYCTK) ) and hepatocyte nuclear factor 1 (HNF-1) were suggested to be involved in down-regulation of the genes. In addition, the binding sites for activating enhancer-binding protein 4 (AP-4), nuclear factor-κB (NFκB), GR (NNNNNNCNNTNTGTNCTNN) and early growth response 3 (Egr-3) were correlated with modulation of gene expression regardless of the direction of modulation. Our results suggest that these TF-binding sites are involved in gene modulations after long-term continuous irradiation with low-dose-rate γ rays. GR and/or SREBP-1 might be associated with the altered metabolic process observed in liver after exposure to low-dose-rate irradiation.
Collapse
Affiliation(s)
- Guillaume Vares
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sugihara T, Murano H, Nakamura M, Ichinohe K, Tanaka K. p53-Mediated Gene Activation in Mice at High Doses of Chronic Low-Dose-Rate γ Radiation. Radiat Res 2010; 175:328-35. [DOI: 10.1667/rr2446.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| | - Hayato Murano
- Tohoku Environmental Sciences Services Corporation, 330-2 Noduki, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Masako Nakamura
- Tohoku Environmental Sciences Services Corporation, 330-2 Noduki, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| |
Collapse
|
33
|
Corrections: in the article “Gene Expression Profiles in Mouse Liver after Long-Term Low-Dose-Rate Irradiation with Gamma Rays” by Ueharaet al. Radiat Res 2010. [DOI: 10.1667/0033-7587-174.6.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|