1
|
Son Y, Choi Y, Jeong YJ, Lee SH, Lee CG, Kim JS, Lee HJ. Effect of Low-Dose-Rate Radiation on Cognition and Gene Expression Profiles in Type II Diabetes Mellitus Mouse Model. Mol Neurobiol 2025:10.1007/s12035-025-04940-3. [PMID: 40293708 DOI: 10.1007/s12035-025-04940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Diabetes, a chronic metabolic disorder that disrupts blood glucose regulation, often results in cognitive impairment, diminishing the quality of life of affected individuals. H owever, the effect of low-dose-rate radiation on the progression of type 2 diabetes mellitus (T2DM) remains largely unexplored. Therefore, this study aimed to investigate whether low-dose-rate radiation could affect diabetic cognitive function and elucidate the underlying mechanisms using a mouse model of T2DM. In this study, male db/db (DB) mice were exposed to low-dose-rate (LDR) radiation, and their locomotor activity and cognitive functions were evaluated using the open-field and object recognition memory tests, respectively. The DB group exhibited diminished activity compared to the C57BL/6 mice used for wild-type (WT) group. Although no significant change was evident in locomotor activity, exposure to 2 Gy attenuated cognitive dysfunction in the DB group, as determined by the object recognition memory test. Following LDR radiation exposure, a total of 32 differentially expressed genes were identified in the hippocampus of DB mice (p < 0.05, fold change > 1.5). Subsequent analyses using DAVID and STRING clustered these genes into pathways related to apoptotic process, transcription, cellular response, cell differentiation, and long-term memory. Real-time polymerase chain reaction analysis indicated that LDR radiation ameliorated the expression of genes, including Arc, Bcl6, Cpne1, Egr1, and Nr4a1 in the hippocampus of DB mice, which was consistent with the RNA-sequencing data. Therefore, this study suggests the potential of LDR radiation to ameliorate cognitive function in DB mice, possibly by regulating genes associated with transcription, neuronal differentiation, and long-term memory in the hippocampus. These findings identify candidate genes for further investigation regarding the role of radiation in the progression of T2DM.
Collapse
Affiliation(s)
- Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Yoonsoo Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Ye Ji Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Soo-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea.
- College of Veterinary Medicine, Interdisciplinary Graduate Program in Advanced Convergence Technology & Science and Bio-Health Materials Core-Facility Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Lee HJ, Im H, Lee HJ, Kim H, Yi JY. Comparison of cellular responses to ionizing radiation in keratinocytes isolated from healthy donors and type II diabetes patients. Int J Radiat Biol 2024; 100:220-235. [PMID: 37812149 DOI: 10.1080/09553002.2023.2263549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Due to the expanding repertoire of treatment devices that use radiation, the possibility of exposure to both low-dose and high-dose radiation continues to increase. Skin is the outermost part of the body and thus directly exposed to radiation-induced damage. In particular, the skin of diabetes patients is fragile and easily damaged by external stimuli, such as radiation. However, damage and cellular responses induced by ionizing irradiation in diabetic skin have not been explored in detail. In this study, we investigated the effects of several irradiation dose on normal keratinocytes and those from type II diabetes patients, with particular focus on DNA damage. MATERIALS AND METHODS Cellular responses to low-dose radiation (0.1 Gy) and high-dose radiation (0.5 and 2 Gy) were evaluated. Cell cycle analysis was conducted via flow cytometry and cell viability analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Proteins related to the DNA damage response (DDR) and repair signaling pathways and apoptosis were detected via immunoblot analysis. Apoptosis and cell differentiation were additionally examined in 3D skin organoids using immunohistochemistry. RESULTS Compared to respective control groups, no significant changes were observed in cell cycle, DDR and repair mechanisms, cell survival, and differentiation in response to 0.1 Gy irradiation in both normal and diabetes type II keratinocytes. On the other hand, the cell cycle showed an increase in the G2/M phase in both cell types following exposure to 2 Gy irradiation. At radiation doses 2 Gy, activation of the DDR and repair signaling pathways, apoptosis, and cell differentiation were increased and viability was decreased in both cell types. Notably, these differences were more pronounced in normal than diabetes type II keratinocytes. CONCLUSIONS Normal keratinocytes respond more strongly to radiation-induced damage and recovery than diabetes type II keratinocytes.
Collapse
Affiliation(s)
- Hae Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyuntaik Im
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jae Youn Yi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
3
|
Paithankar JG, Gupta SC, Sharma A. Therapeutic potential of low dose ionizing radiation against cancer, dementia, and diabetes: evidences from epidemiological, clinical, and preclinical studies. Mol Biol Rep 2023; 50:2823-2834. [PMID: 36595119 PMCID: PMC9808703 DOI: 10.1007/s11033-022-08211-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The growing use of ionizing radiation (IR)-based diagnostic and treatment methods has been linked to increasing chronic diseases among patients and healthcare professionals. However, multiple factors such as IR dose, dose-rate, and duration of exposure influence the IR-induced chronic effects. The predicted links between low-dose ionizing radiation (LDIR) and health risks are controversial due to the non-availability of direct human studies. The studies pertaining to LDIR effects have importance in public health as exposure to background LDIR is routine. It has been anticipated that data from epidemiological and clinical reports and results of preclinical studies can resolve this controversy and help to clarify the notion of LDIR-associated health risks. Accumulating scientific literature shows reduced cancer risk, cancer-related deaths, curtailed neuro-impairments, improved neural functions, and reduced diabetes-related complications after LDIR exposure. In addition, it was found to alter evolutionarily conserved stress response pathways. However, the picture of molecular signaling pathways in LDIR responses is unclear. Besides, there is limited/no information on biomarkers of epidemiological LDIR exposure. Therefore, the present review discusses epidemiological, clinical, and preclinical studies on LDIR-induced positive effects in three chronic diseases (cancer, dementia, and diabetes) and their associated molecular mechanisms. The knowledge of LDIR response mechanisms may help to devise LDIR-based therapeutic modalities to stop disease progression. Modulation of these pathways may be helpful in developing radiation resistance among humans. However, more clinical evidence with additional biochemical, cellular, and molecular data and exploring the side effects of LDIR are the major areas of future research.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. .,Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, 781001, India.
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
4
|
Radiotherapy Advances in Renal Disease-Focus on Renal Ischemic Preconditioning. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010068. [PMID: 36671640 PMCID: PMC9855155 DOI: 10.3390/bioengineering10010068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Ionizing irradiation is widely applied as a fundamental therapeutic treatment in several diseases. Acute kidney injury (AKI) represents a global public health problem with major morbidity and mortality. Renal ischemia/reperfusion (I/R) is the main cause of AKI. I/R injury occurs when blood flow to the kidney is transiently interrupted and then restored. Such an ischemic insult significantly impairs renal function in the short and long terms. Renal ischemic preconditioning (IPC) corresponds to the maneuvers intended to prevent or attenuate the ischemic damage. In murine models, irradiation-induced preconditioning (IP) renders the renal parenchyma resistant to subsequent damage by activating defense pathways involved in oxidative stress, angiogenesis, and inflammation. Before envisioning translational applications in patients, safe irradiation modalities, including timing, dosage, and fractionation, need to be defined.
Collapse
|
5
|
Xu J, Liu D, Zhao D, Jiang X, Meng X, Jiang L, Yu M, Zhang L, Jiang H. Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sci 2022; 302:120644. [PMID: 35588864 DOI: 10.1016/j.lfs.2022.120644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
Cellular senescence refers to the permanent arrest of cell cycle caused by intrinsic and/or extrinsic stressors including oncogene activation, irradiation, DNA damage, oxidative stress, and certain cytokines (including senescence associated secretory phenotype). Cellular senescence is an important factor in aging. Accumulation of senescent cells has been implicated in the causation of various age-related organ disorders, tissue dysfunction, and chronic diseases. It is widely accepted that the biological effects triggered by low-dose radiation (LDR) are different from those caused by high-dose radiation. Experimental evidence suggests that LDR may promote growth and development, enhance longevity, induce embryo production, and delay the progression of chronic diseases. The underlying mechanisms of these effects include modulation of immune response, stimulation of hematopoietic system, antioxidative effect, reduced DNA damage and improved ability for DNA damage repair. In this review, we discuss the possible mechanisms by which LDR prevents senescence and aging from the perspectives of inhibiting cellular senescence and promoting the removal of senescent cells. We review a wide broad of evidence about the beneficial impact of LDR in senescence and aging models (including cardiovascular diseases, neurological diseases, arthritis and osteoporosis, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis) to highlight the potential value of LDR in preventing aging and age-related diseases. However, there is no consensus on the effect of LDR on human health, and several important aspects require further investigation.
Collapse
Affiliation(s)
- Jing Xu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Dandan Liu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Lili Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Meina Yu
- Department of Special Clinic, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Long Zhang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China.
| |
Collapse
|
6
|
Khbouz B, Lallemand F, Cirillo A, Rowart P, Legouis D, Sounni NE, Noël A, De Tullio P, de Seigneux S, Jouret F. Kidney-targeted irradiation triggers renal ischaemic preconditioning in mice. Am J Physiol Renal Physiol 2022; 323:F198-F211. [PMID: 35796462 DOI: 10.1152/ajprenal.00005.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) causes acute kidney injury (AKI). Ischemic preconditioning (IPC) attenuates I/R-associated AKI. Whole-body irradiation induces renal IPC in mice. Still, the mechanisms remain largely unknown. Furthermore, the impact of kidney-centered irradiation on renal resistance against I/R has not been studied. Renal irradiation (8.5Gy) was done in male 8-12-week-old C57bl/6 mice using Small Animal Radiation Therapy (SmART) device. Left renal I/R was performed by clamping the renal pedicles for 30 minutes, with simultaneous right nephrectomy, at 7, 14, and 28 days post-irradiation. The renal reperfusion lasted 48 hours. Following I/R, blood urea nitrogen (BUN) and creatinine (SCr) levels were lower in pre-irradiated mice compared to controls, so was the histological Jablonski score of AKI. The metabolomics signature of renal I/R was attenuated in pre-irradiated mice. The numbers of PCNA-, CD11b-, and F4-80-positive cells in the renal parenchyma post-I/R were reduced in pre-irradiated versus control groups. Such an IPC was significantly observed as early as D14 post-irradiation. RNA-Seq showed an up-regulation of angiogenesis- and stress response-related signaling pathways in irradiated non-ischemic kidneys at D28. RT-qPCR confirmed the increased expression of VEGF, ALK5, HO1, PECAM1, NOX2, HSP70, and HSP27 in irradiated kidneys compared to controls. In addition, irradiated kidneys showed an increased CD31-positive vascular area compared to controls. A 14-day gavage of irradiated mice with the anti-angiogenic drug Sunitinib before I/R abrogated the irradiation-induced IPC at both functional and structural levels. Our observations suggest that kidney-centered irradiation activates pro-angiogenic pathways and induces IPC, with preserved renal function and attenuated inflammation post-I/R.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, CHU of Liège, University of Liège, Liège, Belgium
| | - François Lallemand
- Cyclotron Research Center, University of Liège, Liège, Belgium.,Division of Radiotherapy, CHU of Liège, University of Liège, Liège, Belgium
| | - Arianna Cirillo
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics group, University of Liège, Liège, Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Legouis
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland.,Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Nor Eddine Sounni
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cancer Sciences, University of Liège, Liège, Belgium
| | - Agnès Noël
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cancer Sciences, University of Liège, Liège, Belgium
| | - Pascal De Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics group, University of Liège, Liège, Belgium
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, Geneva, Switzerland
| | - Francois Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, CHU of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Hong S, Nagayach A, Lu Y, Peng H, Duong QVA, Pham NB, Vuong CA, Bazan NG. A high fat, sugar, and salt Western diet induces motor-muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliorative action of metformin. CNS Neurosci Ther 2021; 27:1458-1471. [PMID: 34510763 PMCID: PMC8611779 DOI: 10.1111/cns.13726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Aims To explore the novel linkage between a Western diet combining high saturated fat, sugar, and salt (HFSS) and neurological dysfunctions during aging as well as Metformin intervention, we assessed cerebral cortex abnormalities associated with sensory and motor dysfunctions and cellular and molecular insights in brains using HFSS‐fed mice during aging. We also explored the effect of Metformin treatment on these mice. Methods C57BL/6 mice were fed with HFSS and treated with metformin from 20 to 22 months of age, resembling human aging from 56 to 68 years of age (an entry phase of the aged portion of lifespan). Results The motor and sensory cortexes in mice during aging after HFSS diet showed: (A) decreased motor‐muscular and sensory functions; (B) reduced inflammation‐resolving Arg‐1+ microglia; (C) increased inflammatory iNOs+ microglia and TNFα levels; (D) enhanced abundance of amyloid‐β peptide and of phosphorylated Tau. Metformin attenuated these changes. Conclusion A HFSS‐combined diet caused motor‐muscular and sensory dysfunctions, neuroinflammation, and neurodegeneration, whereas metformin counteracted these effects. Our findings show neuroinflammatory consequences of a HFSS diet in aging. Metformin curbs the HFSS‐related neuroinflammation eliciting neuroprotection.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Aarti Nagayach
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Quoc-Viet A Duong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas B Pham
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christopher A Vuong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Zhang F, Shao C, Chen Z, Li Y, Jing X, Huang Q. Low Dose of Trichostatin A Improves Radiation Resistance by Activating Akt/Nrf2-Dependent Antioxidation Pathway in Cancer Cells. Radiat Res 2021; 195:366-377. [PMID: 33513620 DOI: 10.1667/rade-20-00145.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/05/2020] [Indexed: 11/03/2022]
Abstract
Numerous studies have shown that histone deacetylase inhibitors (HDACis) improve cellular acetylation while also enhancing the radiation sensitivity. In this work, however, we confirmed that low-dose trichostatin A (TSA) as a typical HDACi could reduce rather than increase the radiosensitivity of cancer cells, while the cellular acetylation was also increased with TSA-induced epigenetic modification. The surviving fraction of HeLa/HepG2 cells pretreated with 25 nM TSA for 24 h was higher at 1 Gy/2 Gy of γ-ray radiation than that of the cells with the same radiation dose but without TSA pretreatment. To understand the underlying mechanism, we investigated the effect of low-dose TSA on HO-1, SOD and CAT induction and activating Akt together with its downstream Nrf2 signaling pathway. Our results indicated that TSA activated HO-1, SOD and CAT expression by increasing the phosphorylation level of Nrf2 in an Akt-dependent manner. In addition, we also observed that the 25-nM-TSA-pretreated group showed a significant increase in the antioxidant capacity in terms of SOD and CAT activities. Therefore, our results suggest that low-dose TSA can activate the Akt/Nrf2 pathway and upregulate expression of HO-1, SOD and CAT to stimulate the cellular defense mechanism. This work demonstrates that low-dose TSA treatment may activate the adaptation mechanism against the oxidative stress induced by ionizing radiation, and application of HDACi treatment should be undertaken with caution to avoid its possible radioresistance in radiotherapy.
Collapse
Affiliation(s)
- Fengqiu Zhang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Henan Key Laboratory of Ion-beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Changsheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Zhu Chen
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Yalin Li
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Hasan HF, Rashed LA, El Bakary NM. Concerted outcome of metformin and low dose of radiation in modulation of cisplatin induced uremic encephalopathy via renal and neural preservation. Life Sci 2021; 276:119429. [PMID: 33785333 DOI: 10.1016/j.lfs.2021.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
AIM The therapeutic expediency of cisplatin was limited due to its nephrotoxic side effects, so this study planned to assess the nephrotic and neuroprotective impact of metformin (MET) and low-dose radiation (LDR) in cisplatin-prompted kidney injury and uremic encephalopathy (UE). METHODS The effect of the 10-day MET treatment (200 mg/kg, orally) and/or fractionated LDR (0.25 Gy, of the total dose of 0.5 Gy, 1st and 7th day, respectively) on (5 mg/kg, intraperitoneally) cisplatin as a single dose was administered at the 5th day. Serum urea, creatinine and renal kidney injury molecule-1 were measured for the assessment of kidney function. Furthermore, the antioxidant potential in the renal and brain tissues was evaluated through, malondialdehyde and reduced glutathione estimation. Moreover, renal apoptotic markers: AMP-activated protein kinase, lipocalin, B-cell lymphoma 2 associated X protein, B-cell lymphoma 2, P53 and beclin 1 were estimated. UE was evaluated through the determination of serum inflammatory markers: nuclear factor kappa B, tumor-necrosis factor-α and interleukin 1 beta likewise, the cognitive deficits were assessed via forced swimming test, gamma-aminobutyric acid, n-methyl-d-aspartate and neuronal nitric oxide synthases besides AMP-activated protein kinase, light chain 3 and caspase3 levels in rats' cerebella. KEY FINDINGS The obtained results revealed a noticeable improvement in the previously mentioned biochemical factors and behavioral tasks that was reinforced by histopathological examination when using the present remedy. SIGNIFICANCE metformin and low doses of radiation afforded renoprotection and neuroprotection against cisplatin-induced acute uremic encephalopathy.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen M El Bakary
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
10
|
Azzam EI. What does radiation biology tell us about potential health effects at low dose and low dose rates? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S28-S39. [PMID: 31216522 DOI: 10.1088/1361-6498/ab2b09] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The health risks to humans exposed to low dose and low dose rate ionising radiation remain ambiguous and are the subject of debate. The need to establish risk assessment standards based on the mechanisms underlying low dose/low fluence radiation exposures has been recognised by scholarly and regulatory bodies as critical for reducing the uncertainty in predicting adverse health risks of human exposure to low doses of radiation. Here, a brief review of laboratory-based evidence of molecular and biochemical changes induced by low doses and low dose rates of radiation is presented. In particular, two phenomena, namely bystander effects and adaptive responses that may impact low-level radiation health risks, are discussed together with the need for further studies. The expansion of this knowledge by considering the important variables that affect the radiation response (e.g. genetic susceptibility, time after exposure), and using the latest advances in experimental models and bioinformatics tools, may guide epidemiological studies towards reducing the uncertainty in predicting the potential health hazards of exposure to low-dose radiation.
Collapse
Affiliation(s)
- Edouard I Azzam
- Departments of Radiology, RUTGERS New Jersey Medical School, Newark, NJ 07103, United States of America
| |
Collapse
|
11
|
Fractionated whole body gamma irradiation modulates the hepatic response in type II diabetes of high fat diet model rats. Mol Biol Rep 2019; 46:2273-2283. [PMID: 30747384 DOI: 10.1007/s11033-019-04681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
HFD animals were exposed to a low rate of different fractionated whole body gamma irradiation doses (0.5, 1 and 2 Gy, three fractions per week for two consecutive months) and the expression of certain genes involved in type 2 diabetes mellitus (T2DM) in livers and brains of HFD Wistar rats was investigated. Additionally, levels of diabetes-related proteins encoded by the studied genes were analyzed. Results indicated that mRNA level of incretin glucagon like peptite-1 receptor (GLP-1R) was augmented in livers and brains exposed to 1 and 2 Gy doses. Moreover, the mitochondrial uncoupling proteins 2 and 3 (UCP2/3) expressions in animals fed on HFD compared to those fed on normal chow diet were significantly increased at all applied doses. GLP-1R and UCP3 protein levels were up regulated in livers. Total protein content increased at 0.5 and 1 Gy gamma irradiation exposure and returned to its normal level at 2 Gy dose. Results could be an indicator of type 2 diabetes delayed development during irradiation exposure and support the importance of GLP-1R as a target gene in radiotherapy against T2DM and its chronic complications. A new hypothesis of brain-liver and intestine interface is speculated by which an increase in the hepatic GLP-1R is influenced by the effect of fractionated whole body gamma irradiation.
Collapse
|
12
|
Takai D, Abe A, Komura JI. Chronic exposure to gamma irradiation at low-dose rates accelerates blood pressure decline associated with aging in female B6C3F 1 mice. Int J Radiat Biol 2018; 95:347-353. [PMID: 30513245 DOI: 10.1080/09553002.2019.1552808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Many studies are focusing on the biological effects of gamma irradiation at low-dose rates. Studies have shown that chronic exposure to gamma irradiation at low-dose rates shortened the lifespan of mice due to neoplasm formation. The aim of this study was to clarify the physiological effects of long-term exposure to gamma irradiation at low-dose rates in mice, measured with noninvasive parameters such as blood pressure. MATERIALS AND METHODS Specific-pathogen-free female B6C3F1 mice were irradiated with gamma rays at a low dose of 20 mGy/day - a dose rate shown to shorten the life span in previous studies. The blood pressure parameters (systolic, diastolic, and mean blood pressure), heart rate, tail blood volume, and blood flow of the mice were measured every 7 weeks. Age-matched, non-irradiated mice were used as controls. RESULTS AND CONCLUSION The blood pressure levels of the irradiated mice decreased at an earlier age compared to the non-irradiated control mice. The expression levels of the marker genes of aging that are also associated with regulation of blood pressure showed significant differences between non-irradiated and irradiated mice. These results indicated that long-term exposure to gamma irradiation at low-dose rates induce the expression levels of Rap1a and reduces Panx1 and Sirt3, which may have contributed to the accelerated blood pressure decline in female mice.
Collapse
Affiliation(s)
- Daisaku Takai
- a Department of Radiobiology , Institute for Environmental Sciences , Takahoko , Rokkasho , Aomori , Japan
| | - Akiko Abe
- b JAC Co. ltd , Meguro , Tokyo , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Takahoko , Rokkasho , Aomori , Japan
| |
Collapse
|
13
|
Cheng J, Li F, Wang G, Guo W, Huang S, Wang B, Li C, Jiang Q, Cai L, Cui J. Optimal LDR to Protect the Kidney From Diabetes: Whole-Body Exposure to 25 mGy X-rays Weekly for 8 Weeks Efficiently Attenuates Renal Damage in Diabetic Mice. Dose Response 2018; 16:1559325818789843. [PMID: 30210268 PMCID: PMC6130090 DOI: 10.1177/1559325818789843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
To explore an optimal frequency of whole-body low-dose radiation (LDR) to protect the kidney from diabetes, type 1 diabetic mice were induced with multiple injections of low-dose streptozotocin in male C57BL/6J mice. Diabetic or age-matched normal mice received whole-body exposure to 12.5 or 25 mGy either every other day or weekly for 4 or 8 weeks. Diabetes decreased the urinary creatinine and increased the microalbumin in urine, renal accumulation of 3-nitrotyrosine and 4-hydroxynonenal, and renal expression of collagen IV and fibronectin. All these renal pathological and functional changes in diabetic mice were significantly attenuated by exposure to LDR at all regimens. However, whole-body exposure of diabetic mice to 25 mGy weekly and to 12.5 mGy every other day for 8 weeks provided a better prevention of diabetic nephropathy than other LDR regimens. Furthermore, whole-body exposure to 25 mGy weekly for 8 weeks showed no detectable effect on the kidney of normal mice, but whole-body exposure to normal mice at 12.5 mGy every other day for 8 weeks increased urinary microalbumin and renal expression of collagen IV and fibronectin. These results suggest that whole-body exposure to LDR at 25 mGy weekly is the optimal condition of LDR to protect the kidney from diabetes.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Fengsheng Li
- Department of Pediatrics, Pediatric Research Institute, the
University of Louisville, Louisville, KY, USA
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Guanjun Wang
- The First Hospital of Jilin University, Changchun, China
| | - Weiying Guo
- Department of Pediatrics, Pediatric Research Institute, the
University of Louisville, Louisville, KY, USA
- The First Hospital of Jilin University, Changchun, China
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Brain Wang
- Department of Radiation Oncology, the University of Louisville,
Louisville, KY, USA
| | - Cai Li
- The First Hospital of Jilin University, Changchun, China
| | - Qisheng Jiang
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, the
University of Louisville, Louisville, KY, USA
- Department of Radiation Oncology, the University of Louisville,
Louisville, KY, USA
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Khalil A, Omran H. The role of gut in type 2 diabetes mellitus during whole body gamma irradiation in high-fat diet Wistar rats. Int J Radiat Biol 2017; 94:137-149. [PMID: 29252073 DOI: 10.1080/09553002.2018.1419300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The effects of a low rate (100 mGy/min) fractionated whole body gamma irradiation (FWBGI) at different doses were assessed using a real-time PCR technique on the expression of some target genes implicated in the development of type 2 diabetes mellitus in high-fat diet (HFD) Wistar rats. METHOD HFD Wistar rats were exposed to different doses (12, 24 and 48 Gy) divided into 24 fractions (three times a week for two months), thus, the daily doses were 0.5, 1, 2 Gy, respectively. Total RNA was extracted and the expression of target genes was measured in the four intestinal segments (duodenum, jejunum, ileum and colon). RESULTS The pre-diabetic state already induced by HFD was found to be improved by irradiation exposure. This irradiation effect occurs mainly via altered anti-diabetic gene expressions (mRNA and protein levels) of the incretin glucagon-like peptide-1 (GLP-1) overall bowel segments except the colon which has its own specific response to irradiation exposure by the induction of the insulin receptor substrate 4 (IRS-4) and the uncoupling protein 3 (UCP3). CONCLUSIONS Results could be of great importance suggesting for the first time, a protective role for FWBGI on HFD animal models by increasing GLP-1 and UCP3 levels.
Collapse
Affiliation(s)
- Ayman Khalil
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| | - Hasan Omran
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| |
Collapse
|
15
|
Nakajima H, Furukawa C, Chang YC, Ogata H, Magae J. Delayed Growth Suppression and Radioresistance Induced by Long-Term Continuous Gamma Irradiation. Radiat Res 2017; 188:181-190. [DOI: 10.1667/rr14666.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroo Nakajima
- Department of Breast Surgery, Misugi-kai Sato Hospital, 65-1 Yabuhigashi-machi, Hirakata-shi, Osaka 573-1124, Japan
| | - Chiharu Furukawa
- Department of Biotechnology, Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
| | - Young-Chae Chang
- Department of Cell Biology, Catholic University of Daegu, School of Medicine, 3056-6 Daemyung-4-Dong, Nam-gu, Daegu 705-718, Republic of Korea
| | - Hiromitsu Ogata
- Center for Public Health Informatics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Junji Magae
- Department of Biotechnology, Institute of Research and Innovation, 1201 Takada, Kashiwa 277-0861, Japan
- Center for Public Health Informatics, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263, Japan
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
16
|
Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. JOURNAL OF RADIATION RESEARCH 2017; 58:165-182. [PMID: 28077626 PMCID: PMC5439383 DOI: 10.1093/jrr/rrw120] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/22/2016] [Indexed: 05/13/2023]
Abstract
Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (<6 mSv/h) exposures may be harmful. It induces genetic and epigenetic changes and is associated with a range of physiological disturbances that includes altered immune system, abnormal brain development with resultant cognitive impairment, cataractogenesis, abnormal embryonic development, circulatory diseases, weight gain, premature menopause in female animals, tumorigenesis and shortened lifespan. Paternal or prenatal LDIR/LDRIR exposure is associated with reduced fertility and number of live fetuses, and transgenerational genomic aberrations. On the other hand, in some experimental studies, LDIR/LDRIR exposure has also been reported to bring about beneficial effects such as reduction in tumorigenesis, prolonged lifespan and enhanced fertility. The differences in reported effects of LDIR/LDRIR exposure are dependent on animal genetic background (susceptibility), age (prenatal or postnatal days), sex, nature of radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, 138602, Singapore
| | - Weng Keong Loke
- Temasek Laboratories, National University of Singapore, 5A, Engineering Drive 1, 117411,Singapore
| | - Boo Cheong Khoo
- DSO National Laboratories,Defence Medical and Environmental Research Institute, 11 Stockport Road,117605,Singapore
| |
Collapse
|
17
|
Sykes PJ. The ups and downs of low dose ionising radiobiology research. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:807-811. [PMID: 27658668 DOI: 10.1007/s13246-016-0486-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pamela J Sykes
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
18
|
Azzam EI, Colangelo NW, Domogauer JD, Sharma N, de Toledo SM. Is Ionizing Radiation Harmful at any Exposure? An Echo That Continues to Vibrate. HEALTH PHYSICS 2016; 110:249-51. [PMID: 26808874 PMCID: PMC4729313 DOI: 10.1097/hp.0000000000000450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The health risks to humans and non-human biota exposed to low dose ionizing radiation remain ambiguous and are the subject of intense debate. The need to establish risk assessment standards based on the mechanisms underlying low-level radiation exposure has been recognized by regulatory agencies as critical to adequately protect people and to make the most effective use of national resources. Here, the authors briefly review evidence showing that the molecular and biochemical changes induced by low doses of radiation differ from those induced by high doses. In particular, an array of redundant and inter-related mechanisms act in both prokaryotes and eukaryotes to restore DNA integrity following exposures to relatively low doses of sparsely ionizing radiation. Furthermore, the radiation-induced protective mechanisms often overcompensate and minimize the mutagenic potential of the byproducts of normal oxidative metabolism. In contrast to adaptive protection observed at low doses of sparsely ionizing radiation, there is evidence that even a single nuclear traversal by a densely ionizing particle track can trigger harmful effects that spread beyond the traversed cell and induce damaging effects in the nearby bystander cells. In vivo studies examining whether exposure to low dose radiation at younger age modulates the latency of expression of age-related diseases such as cancer, together with studies on the role of genetic susceptibility, will further illuminate the magnitude of risk of exposure to low dose radiation.
Collapse
Affiliation(s)
- Edouard I Azzam
- *Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | | | | | | | | |
Collapse
|
19
|
Activation of Antioxidative Functions by Radon Inhalation Enhances the Mitigation Effects of Pregabalin on Chronic Constriction Injury-Induced Neuropathic Pain in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9853692. [PMID: 26798431 PMCID: PMC4699081 DOI: 10.1155/2016/9853692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Radon inhalation brings pain relief for chronic constriction injury- (CCI-) induced neuropathic pain in mice due to the activation of antioxidative functions, which is different from the mechanism of the pregabalin effect. In this study, we assessed whether a combination of radon inhalation and pregabalin administration is more effective against neuropathic pain than radon or pregabalin only. Mice were treated with inhaled radon at a concentration of 1,000 Bq/m(3) for 24 hours and pregabalin administration after CCI surgery. In mice treated with pregabalin at a dose of 3 mg/kg weight, the 50% paw withdrawal threshold of mice treated with pregabalin or radon and pregabalin was significantly increased, suggesting pain relief. The therapeutic effects of radon inhalation or the combined effects of radon and pregabalin (3 mg/kg weight) were almost equivalent to treatment with pregabalin at a dose of 1.4 mg/kg weight or 4.1 mg/kg weight, respectively. Radon inhalation and the combination of radon and pregabalin increased antioxidant associated substances in the paw. The antioxidant substances increased much more in radon inhalation than in pregabalin administration. These findings suggested that the activation of antioxidative functions by radon inhalation enhances the pain relief of pregabalin and that this combined effect is probably an additive effect.
Collapse
|
20
|
Nishiyama Y, Kataoka T, Yamato K, Etani R, Taguchi T, Yamaoka K. Radon inhalation suppresses nephropathy in streptozotocin-induced type-1 diabetic mice. J NUCL SCI TECHNOL 2015. [DOI: 10.1080/00223131.2015.1078751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Shao M, Yu L, Zhang F, Lu X, Li X, Cheng P, Lin X, He L, Jin S, Tan Y, Yang H, Zhang C, Cai L. Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model. Am J Physiol Endocrinol Metab 2015; 309:E45-E54. [PMID: 25968574 PMCID: PMC4490332 DOI: 10.1152/ajpendo.00026.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
The onset of diabetic nephropathy (DN) is associated with both systemic and renal changes. Fibroblast growth factor (FGF)-21 prevents diabetic complications mainly by improving systemic metabolism. In addition, low-dose radiation (LDR) protects mice from DN directly by preventing renal oxidative stress and inflammation. In the present study, we tried to define whether the combination of FGF21 and LDR could further prevent DN by blocking its systemic and renal pathogeneses. To this end, type 2 diabetes was induced by feeding a high-fat diet for 12 wk followed by a single dose injection of streptozotocin. Diabetic mice were exposed to 50 mGy LDR every other day for 4 wk with and without 1.5 mg/kg FGF21 daily for 8 wk. The changes in systemic parameters, including blood glucose levels, lipid profiles, and insulin resistance, as well as renal pathology, were examined. Diabetic mice exhibited renal dysfunction and pathological abnormalities, all of which were prevented significantly by LDR and/or FGF21; the best effects were observed in the group that received the combination treatment. Our studies revealed that the additive renal protection conferred by the combined treatment against diabetes-induced renal fibrosis, inflammation, and oxidative damage was associated with the systemic improvement of hyperglycemia, hyperlipidemia, and insulin resistance. These results suggest that the combination treatment with LDR and FGF21 prevented DN more efficiently than did either treatment alone. The mechanism behind these protective effects could be attributed to the suppression of both systemic and renal pathways.
Collapse
Affiliation(s)
- Minglong Shao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Peng Cheng
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiufei Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Shunzi Jin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health of Jilin University, Changchun, China; and
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, Kentucky
| | - Hong Yang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China;
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
22
|
Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 2014; 19:447-64. [PMID: 24523032 PMCID: PMC4041942 DOI: 10.1007/s12192-014-0493-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.
Collapse
Affiliation(s)
- Philip L. Hooper
- />Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Gabor Balogh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eric Rivas
- />Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, TX USA
- />Department of Kinesiology, Texas Woman’s University, Denton, TX USA
| | - Kylie Kavanagh
- />Department of Pathology, Wake Forest School of Medicine, Winston–Salem, NC USA
| | - Laszlo Vigh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
23
|
Cheng J, Li F, Cui J, Guo W, Li C, Li W, Wang G, Xing X, Gao Y, Ge Y, Wang G, Cai L. Optimal conditions of LDR to protect the kidney from diabetes: exposure to 12.5 mGy X-rays for 8 weeks efficiently protects the kidney from diabetes. Life Sci 2014; 103:49-58. [PMID: 24631139 PMCID: PMC4066175 DOI: 10.1016/j.lfs.2014.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/28/2014] [Indexed: 12/23/2022]
Abstract
AIMS We reported the attenuation of diabetes-induced renal dysfunction by exposure to multiple low-dose radiation (LDR) at 25 mGy every other day by suppressing renal oxidative damage. We here explored the optimal conditions of LDR to protect the kidney from diabetes. MAIN METHODS Male C57BL/6J mice with type 1 diabetes were induced with multiple injections of low-dose streptozotocin. Diabetic mice received whole body X-irradiation at a dose of 12.5, 25 or 50 mGy every other day for either 4 or 8 weeks. Age-matched normal mice were similarly irradiated at the dose of 25 mGy for 4 or 8 weeks. The renal function and histopathological changes were examined at the 4th and 8th weeks of the study. KEY FINDINGS Diabetes induced renal dysfunction is shown by the decreased creatinine and increased microalbumin in the urine. Renal oxidative damage, detected by protein nitration and lipid oxidation, and remodeling, reflected by increased expression of connective tissue growth factor, collagen IV and fibronectin, were significantly increased in diabetic mice. All these renal pathological and function changes in diabetic mice were significantly attenuated by exposure to LDR at all regimens, among which, however, exposure to LDR at 12.5 mGy for 8 weeks provided the best protective effect on the kidney of diabetic mice. SIGNIFICANCE Our results suggest that whole-body LDR at 12.5 mGy every other day for 8 weeks is the optimal condition of LDR to protect the kidney from diabetes.
Collapse
Affiliation(s)
- Jie Cheng
- The First Hospital of Jilin University, Changchun 130021, China
| | - Fengsheng Li
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; The Second Artillery General Hospital, Beijing 1000884, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun 130021, China
| | - Weiying Guo
- The First Hospital of Jilin University, Changchun 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Cai Li
- The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Li
- The First Hospital of Jilin University, Changchun 130021, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Xing
- Changchun Institute for Food and Drug Control, Changchun 130000, China
| | - Ying Gao
- The First Hospital of Jilin University, Changchun 130021, China
| | - Yuanyuan Ge
- The First Hospital of Jilin University, Changchun 130021, China
| | - Guanjun Wang
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; Department of Radiation Oncology and Pharmacology, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
24
|
Kataoka T. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation. JOURNAL OF RADIATION RESEARCH 2013; 54:587-96. [PMID: 23420683 PMCID: PMC3709669 DOI: 10.1093/jrr/rrs141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 05/30/2023]
Abstract
Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
25
|
Nomura T, Sakai K, Ogata H, Magae J. Prolongation of life span in the accelerated aging klotho mouse model, by low-dose-rate continuous γ irradiation. Radiat Res 2013; 179:717-24. [PMID: 23662650 DOI: 10.1667/rr2977.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While lifespan studies provide basic information for estimating the risk of ionizing radiation, findings on the effect of low-dose/low-dose-rate irradiation on the lifespan of mammals are controversial. Here we evaluate the effect of continuous exposure to low-dose-rate γ radiation on the lifespan of mice with accelerated aging caused by mutation of the klotho gene. While control mice died within 80 days after birth, more than 10% of mice exposed continuously to 0.35 or 0.7 or mGy/h γ radiation from 40 days after birth survived for more than 80 days. Two of 50 mice survived for more than 100 days. Low-dose-rate irradiation significantly increased plasma calcium concentration in mutant mice, and concomitantly increased hepatic catalase activity. Although hepatic activity of superoxide dismutase in mutant mice decreased significantly compared to wild-type mice, continuous γ irradiation decreased the activity in mutant mice significantly. These results suggest that low-dose-rate ionizing radiation can prolong the lifespan of mice in certain settings.
Collapse
Affiliation(s)
- Takaharu Nomura
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| | | | | | | |
Collapse
|
26
|
Tomita M, Maeda M, Kobayashi K, Matsumoto H. Dose response of soft X-ray-induced bystander cell killing affected by p53 status. Radiat Res 2013; 179:200-7. [PMID: 23289390 DOI: 10.1667/rr3010.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A radiation-induced bystander response, which is generally defined as a cellular response that is induced in nonirradiated cells that received bystander signals from directly irradiated cells within an irradiated cell population. In our earlier X-ray microbeam studies, bystander cell killing in normal human fibroblasts had a parabolic relationship to the irradiation dose. To elucidate the role of p53 in the bystander cell killing, the effects were assessed using human non-small cell lung cancer cells expressing wild-type or temperature-sensitive mutated p53. The surviving fraction of bystander wild-type p53 cells showed a parabolic relationship to the irradiation dose; survival was steeply reduced up to 0.45 Gy, recovered toward to 2 Gy, and remained at control levels up to 5 Gy. In contrast, in the mutated p53 cells at a nonpermissive temperature, the surviving fraction was steeply reduced up to 1 Gy and remained at the reduced level up to 5 Gy. When the mutated p53 cells were incubated at a permissive temperature, the decrease in the surviving fraction at 2 Gy was suppressed. The wild-type p53 cells were not only restrained in releasing bystander signals at 2 Gy, but were also resistant to the signals released by the mutated p53 cells. These results suggest that the X-ray-induced bystander cell killing depends on both the irradiation dose and the p53 status of the targeted cells and the bystander cells.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan.
| | | | | | | |
Collapse
|
27
|
Nishiyama Y, Kataoka T, Yamato K, Taguchi T, Yamaoka K. Suppression of dextran sulfate sodium-induced colitis in mice by radon inhalation. Mediators Inflamm 2012; 2012:239617. [PMID: 23365486 PMCID: PMC3540833 DOI: 10.1155/2012/239617] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
The enhanced release of reactive oxygen species from activated neutrophils plays important role in the pathogenesis of inflammatory bowel disease. We previously reported that radon inhalation activates antioxidative functions in various organs of mice. In this study, we examined the protective effects of radon inhalation on dextran sulfate sodium- (DSS) induced colitis in mice which were subjected to DSS for 7 days. Mice were continuously treated with air only (sham) or radon at a concentration of 2000 Bq/m³ from a day before DSS administration to the end of colitis induction. In the results, radon inhalation suppressed the elevation of the disease activity index score and histological damage score induced by DSS. Based on the changes in tumor necrosis factor-alpha in plasma and myeloperoxidase activity in the colon, it was shown that radon inhalation suppressed DSS-induced colonic inflammation. Moreover, radon inhalation suppressed lipid peroxidation of the colon induced by DSS. The antioxidant level (superoxide dismutase and total glutathione) in the colon after DSS administration was significantly higher in mice treated with radon than with the sham. These results suggested that radon inhalation suppressed DSS-induced colitis through the enhancement of antioxidative functions in the colon.
Collapse
Affiliation(s)
- Yuichi Nishiyama
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Keiko Yamato
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Takehito Taguchi
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
28
|
Xing X, Zhang C, Shao M, Tong Q, Zhang G, Li C, Cheng J, Jin S, Ma J, Wang G, Li X, Cai L. Low-dose radiation activates Akt and Nrf2 in the kidney of diabetic mice: a potential mechanism to prevent diabetic nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:291087. [PMID: 23227273 PMCID: PMC3514845 DOI: 10.1155/2012/291087] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
Abstract
Repetitive exposure of diabetic mice to low-dose radiation (LDR) at 25 mGy could significantly attenuate diabetes-induced renal inflammation, oxidative damage, remodeling, and dysfunction, for which, however, the underlying mechanism remained unknown. The present study explored the effects of LDR on the expression and function of Akt and Nrf2 in the kidney of diabetic mice. C57BL/6J mice were used to induce type 1 diabetes with multiple low-dose streptozotocin. Diabetic and age-matched control mice were irradiated with whole body X-rays at either single 25 mGy and 75 mGy or accumulated 75 mGy (25 mGy daily for 3 days) and then sacrificed at 1-12 h for examining renal Akt phosphorylation and Nrf2 expression and function. We found that 75 mGy of X-rays can stimulate Akt signaling pathway and upregulate Nrf2 expression and function in diabetic kidneys; single exposure of 25 mGy did not, but three exposures to 25 mGy of X-rays could offer a similar effect as single exposure to 75 mGy on the stimulation of Akt phosphorylation and the upregulation of Nrf2 expression and transcription function. These results suggest that single 75 mGy or multiple 25 mGy of X-rays can stimulate Akt phosphorylation and upregulate Nrf2 expression and function, which may explain the prevention of LDR against the diabetic nephropathy mentioned above.
Collapse
Affiliation(s)
- Xiao Xing
- School of Public Health of Jilin University, Changchun 130021, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Chashan University Park, Wenzhou 325035, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Chashan University Park, Wenzhou 325035, China
- The Department of Pediatrics, School of Medicine, The University of Louisville, 570 South Preston Street, Baxter I Building Suite 304F, Louisville, KY 40059, USA
| | - Minglong Shao
- School of Public Health of Jilin University, Changchun 130021, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Chashan University Park, Wenzhou 325035, China
| | - Qingyue Tong
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Guirong Zhang
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Cai Li
- Norman Bethune First Hospital, Jilin University, Changchun 130021, China
| | - Jie Cheng
- Norman Bethune First Hospital, Jilin University, Changchun 130021, China
| | - Shunzi Jin
- School of Public Health of Jilin University, Changchun 130021, China
| | - Jisheng Ma
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guanjun Wang
- Norman Bethune First Hospital, Jilin University, Changchun 130021, China
| | - Xiaokun Li
- School of Public Health of Jilin University, Changchun 130021, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Chashan University Park, Wenzhou 325035, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Chashan University Park, Wenzhou 325035, China
- The Department of Pediatrics, School of Medicine, The University of Louisville, 570 South Preston Street, Baxter I Building Suite 304F, Louisville, KY 40059, USA
- Departments of Pharmacology and Toxicology and Radiation Oncology, School of Medicine, The University of Louisville, 570 South Preston Street, Baxter I Building Suite 304F, Louisville, KY 40059, USA
| |
Collapse
|
29
|
Abstract
The current radiation safety paradigm using the linear no-threshold (LNT) model is based on the premise that even the smallest amount of radiation may cause mutations increasing the risk of cancer. Autopsy studies have shown that the presence of cancer cells is not a decisive factor in the occurrence of clinical cancer. On the other hand, suppression of immune system more than doubles the cancer risk in organ transplant patients, indicating its key role in keeping occult cancers in check. Low dose radiation (LDR) elevates immune response, and so it may reduce rather than increase the risk of cancer. LNT model pays exclusive attention to DNA damage, which is not a decisive factor, and completely ignores immune system response, which is an important factor, and so is not scientifically justifiable. By not recognizing the importance of the immune system in cancer, and not exploring exercise intervention, the current paradigm may have missed an opportunity to reduce cancer deaths among atomic bomb survivors. Increased antioxidants from LDR may reduce aging-related non-cancer diseases since oxidative damage is implicated in these. A paradigm shift is warranted to reduce further casualties, reduce fear of LDR, and enable investigation of potential beneficial applications of LDR.
Collapse
|
30
|
Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2011; 327:48-60. [PMID: 22182453 DOI: 10.1016/j.canlet.2011.12.012] [Citation(s) in RCA: 976] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022]
Abstract
Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes.
Collapse
|
31
|
Affiliation(s)
- Edouard I Azzam
- Department of Radiology, UMDNJ - New Jersey Medical School Cancer Center, Newark, NJ, USA.
| |
Collapse
|